Blunt Notch Strength

  • René Alderliesten
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 236)

Abstract

The blunt notch strength of FMLs is discussed with respect to the deformation and failure phenomena of the individual constituents. The influence of metal plasticity, the splitting and delamination phenomena in the composite layers, and fibre failure are discussed. Various failure criteria and theories are presented to describe the blunt notch strength in the major material axes and under off-axis angles with respect to these axes.

Keywords

Ultimate Strength Specimen Geometry Stress Concentration Factor Notch Root Failure Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bosker OJ (1998) Blunt notch strength of aluminium 2024-T3, report B2v-98-33. Delft University of Technology, DelftGoogle Scholar
  2. 2.
    Brügemann V (2003) Test procedures for fibre metal laminates, report TD-R-03-005. Fibre Metal Laminates Centre of Competence, Delft, The NetherlandsGoogle Scholar
  3. 3.
    ASTM Standard D5766/D5766M, Standard test method for open-hole tensile strength of polymer matrix composite Laminates1. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesGoogle Scholar
  4. 4.
    Beumler T (2004) Flying GLARE®, A contribution to aircraft certification issues on strength properties in non-damaged and fatigue damaged GLARE® structures. PhD dissertation, Delft University of Technology, Delft, The NetherlandsGoogle Scholar
  5. 5.
    Bosker OJ (1998) Uni-axial blunt notch strength of GLARE 3 and GLARE 4, report B2v-98-28. Delft University of Technology, DelftGoogle Scholar
  6. 6.
    Bosker OJ (1998) Overview of existing literature on the blunt notch strength of GLARE, report B2v-98-35. Delft University of Technology, DelftGoogle Scholar
  7. 7.
    Ypma M (2000) Overview of tests concerning the influence of temperature and environmental exposure on GLARE, report B2v-00-41. Delft University of Technology, DelftGoogle Scholar
  8. 8.
    Hooijmeijjer PA (2000) Blunt notch strength of GLARE at elevated test temperatures, report B2v-00-68. Delft University of Technology, DelftGoogle Scholar
  9. 9.
    Mortier W, Pellenkoft FJ (2001) Blunt notch strength of open hole versus filled hole, report B2v-01-04. Delft University of Technology, DelftGoogle Scholar
  10. 10.
    Pellenkoft FJ, Mortier WJ (2001) Influence hole diameter on blunt notch strength, report B2v-01-05. Delft University of Technology, DelftGoogle Scholar
  11. 11.
    Hooijmeijjer PA (2001) Experimental project to assess the failure mechanisms during blunt notch of GLARE under 45°, report B2v-01-33. Delft University of Technology, DelftGoogle Scholar
  12. 12.
    Borgonje B (2009) GLARE outdoor exposure program: blunt notch strength—final issue, report B2v-02-40. Delft University of Technology, DelftGoogle Scholar
  13. 13.
    Hooijmeijer PA (1998) Blunt notch strength of spliced GLARE, inside doubler, preliminary thesis. Delft University of Technology, DelftGoogle Scholar
  14. 14.
    Mattousch A (1993) Open hole properties of some GLARE grades, report TD-R-93-014. Structural Laminates CompanyGoogle Scholar
  15. 15.
    van Rijn JCFN (1995) Blunt notch behaviour of GLARE3, NLR CR 95237 L. National Aerospace Laboratory NLRGoogle Scholar
  16. 16.
    Bosker OJ (1998) Finite element calculations to predict the uni-axial on-axis and off-axis blunt notch strength of GLARE and comparison with test results, report B2v-98-34. Delft University of Technology, DelftGoogle Scholar
  17. 17.
    Hagenbeek M (2000) Investigation into applicability of analytical methods for blunt notch strength prediction of FML’s, report B2v-00-57. Delft University of Technology, DelftGoogle Scholar
  18. 18.
    Bosker OJ (2000) Progress on the development of a GLARE blunt notch strength prediction tool, report B2v-00-66. Delft University of Technology, DelftGoogle Scholar
  19. 19.
    Bosker OJ (1998) Development of a GLARE blunt notch strength prediction tool for the Airbus A3XX. MSc thesis, Delft University of Technology, DelftGoogle Scholar
  20. 20.
    Vermeeren CAJR (1995) The residual strength of fibre metal laminates. PhD dissertation, Delft University of Technology, DelftGoogle Scholar
  21. 21.
    van Rijn JCFN (1994) Stress distribution around a circular hole in a fibre metal laminate finite width plate specimen, NLR TP 94058 L. National Aerospace Laboratory NLRGoogle Scholar
  22. 22.
    van Rijn JCFN (1994) Preliminary model for the blunt notch behaviour of fibre metal laminates, NLR TP 94532 L. National Aerospace Laboratory NLRGoogle Scholar
  23. 23.
    Peterson RE (1953) Stress concentration design factors. Wiley, New YorkGoogle Scholar
  24. 24.
    Hagenbeek M (2001) Investigation of the finite width and notch size effect for the analytical blunt notch strength prediction method, report B2v-01-20. Delft University of Technology, DelftGoogle Scholar
  25. 25.
    Vermeeren CAJR (1990) The blunt notch behaviour of metal laminates: ARALL and GLARE, report LR-617. Delft University of Technology, Delft, The NetherlandsGoogle Scholar
  26. 26.
    Lekhnitskii SG (1968) Anisotropic plates (Translated from the Second Russian Edition by S.W. Tsai and T. Cheron). Gordon and Breach Science Publishers, Inc., New YorkGoogle Scholar
  27. 27.
    Tan SC (1987) Laminated composites containing an elliptical opening. I. Approximate stress analyses and fracture models. J Compos Mater 21:925–948CrossRefGoogle Scholar
  28. 28.
    Bosker OJ, de Kraker L (1998) Determination of optimum blunt notch specimen geometry, report B2v-98-37. Delft University of Technology, DelftGoogle Scholar
  29. 29.
    Mattousch A (1993) Test procedures for fiber metal laminates, report TD-R-93-003. Structural Laminates Company, Delft, The NetherlandsGoogle Scholar
  30. 30.
    Wu G, Tan Y, Yang J-M (2007) Evaluation of residual strength of notched fiber metal laminates. Mater Sci Eng A 457:338–349CrossRefGoogle Scholar
  31. 31.
    Yeh P-C, Chang P-U, Yang J-M, Wu PH, Liu MC (2011) Blunt notch strength of hybrid boron/glass/aluminum fiber metal laminates. Mater Sci Eng A 528:2164–2173CrossRefGoogle Scholar
  32. 32.
    Meziere Y (2000) Experimental project to assess the failure mechanisms during blunt notch of GLARE, report B2v-00-47. Delft University of Technology, DelftGoogle Scholar
  33. 33.
    Rensma E (2007) Investigation of innovative concepts for hybrid structures. MSc thesis, Delft University of Technology, DelftGoogle Scholar
  34. 34.
    Rooijen RGJ (2006) Bearing strength characteristics of standard and steel reinforced GLARE. PhD dissertation, Delft University of Technology, DelftGoogle Scholar
  35. 35.
    Sun CT, Quinn BJ, Tao J, Oplinger DW (1996) Comparative evaluation of failure analysis methods for composite laminates, report DOT/FAA/AR-95/109. Department of Transportation, Federal Aviation Administration, Washington D.CGoogle Scholar
  36. 36.
    Bosker OJ (2000) GLARE uni-axial blunt notch test results, report B2v-99-27. Delft University of Technology, DelftGoogle Scholar
  37. 37.
    Bosker OJ (2001) Blunt notch strength. In: Vlot A, Gunnink JW (eds) Fibre metal laminates—an introduction. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  38. 38.
    Whitney JM, Nuismer RJ (1974) Stress fracture criteria for laminated composites containing stress concentrations. J Compos Mater 8:253–265CrossRefGoogle Scholar
  39. 39.
    Nuismer RJ, Whitney JM (1975) Uniaxial failure of composite laminates containing stress concentrations. Fract Mech Compos ASTM-STP 593:117–142CrossRefGoogle Scholar
  40. 40.
    Konish HJ, Whitney JM (1975) Approximate stresses in an orthotropic plate containing a circular hole. J Compos Mater 9:157–166CrossRefGoogle Scholar
  41. 41.
    Karlak RF (1977) Hole effects in a related series of symmetrical laminates. In: Ornie JA, Crossman FW (eds) Failure modes in composites IV. The Metallurgical Society of AIME, Warundale, PA, pp 105–117Google Scholar
  42. 42.
    Pipes RB, Wetherhold RC, Gillespie JW (1979) Notched strength of composite materials. J Compos Mater 13:148–179CrossRefGoogle Scholar
  43. 43.
    Pipes RB, Gillespie JW, Wetherhold RC (1979) Superposition of notched strength of composite laminates. Polym Eng Sci 19:1151–1155CrossRefGoogle Scholar
  44. 44.
    van Rijn JCFN (1992) The use of composite fracture models to describe the blunt notch behaviour of metal laminates. NLR TP 92061 U, National Aerospace Laboratory NLRGoogle Scholar
  45. 45.
    Müller RPG (1995) An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints, the significance of the rivet squeeze force, and a comparison of 2024-T3 and GLARE 3. PhD dissertation, Delft University of Technology, DelftGoogle Scholar
  46. 46.
    Hooijmeijjer PA (2002) GLARE 2 under small off-axis angles, report B2v-02-01. Delft University of Technology, DelftGoogle Scholar
  47. 47.
    Borgonje B (2001) Blunt notch strength testing under shear loading, report B2v-01-12. Delft University of Technology, DelftGoogle Scholar
  48. 48.
    Bosker OJ (2000) GLARE bi-axial blunt notch test results, report B2v-00-30. Delft University of Technology, DelftGoogle Scholar
  49. 49.
    Herakovich CT, Aboudi J, Lee SW, Strauss EA (1988) Damage in composite laminates: effects of transverse cracks. Mech Mater 7(2):91–107CrossRefGoogle Scholar
  50. 50.
    Bosker OJ (2001) Tsai-Hill failure criterion to predict the bi-axial blunt notch strength of GLARE, report TD-R-00-014. Structural Laminates IndustriesGoogle Scholar
  51. 51.
    Brügemann VP (2002) Validation of the load introduction for bi-axial blunt notch tests, report B2v-02-37. Delft University of Technology, DelftGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • René Alderliesten
    • 1
  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations