Patents and Intellectual Property

  • René AlderliestenEmail author
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 236)


Along with the developments of hybrid laminated configurations comprising metallic and fibre-reinforced polymer constituents, patents have been filed to protect the intellectual properties associated with these developments. This chapter provides an overview of the patents filed worldwide over the past three decades to illustrate the various structural-, material-, and manufacturing concepts developed. These concepts are subsequently discussed with respect to their novelty and innovation.


Fibre Volume Fraction Aluminium Layer Monolithic Aluminium Skin Panel Original Patent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alderliesten RC (2009) On the development of hybrid material concepts for aircraft structures. Recent Pat Eng 3(1):25–38CrossRefGoogle Scholar
  2. 2.
    Vlot A (2001) History of the development. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  3. 3.
    Schijve J, Van Lipzig HTM, Van Gestel GFJA, Hoeymakers AHW (1979) Fatigue properties of adhesive-bonded laminated sheet material of aluminium alloys. Eng Fract Mech 12:561–579CrossRefGoogle Scholar
  4. 4.
    Schijve J (2001) Fatigue of structures and materials. Kluwer Academic Publishers, DordrechtGoogle Scholar
  5. 5.
    Schijve J, Vogelesang LB, Marissen R (1981) NL8100087Google Scholar
  6. 6.
    Schijve J, Vogelesang LB, Marissen R (1981) NL8100088Google Scholar
  7. 7.
    Schijve J, Vogelesang LB, Marissen R (1982) EP0056289Google Scholar
  8. 8.
    Marissen R (1988) Fatigue crack growth in ARALL. A hybrid aluminium-aramid composite material. Crack growth mechanisms and quantitative predictions of the crack growth rate. PhD dissertation, Delft University of TechnologyGoogle Scholar
  9. 9.
    Roebroeks GHJJ (1991) Towards GLARE—the development of a fatigue insensitive and damage tolerant aircraft material. PhD thesis, Delft University of Technology, DelftGoogle Scholar
  10. 10.
    Vogelesang LB, Roebroeks GHJJ (1991) US5039571Google Scholar
  11. 11.
    Roebroeks GHJJ (2003) NL1022706Google Scholar
  12. 12.
    Moreton R, Peel CJ (1992) GB2253185A1Google Scholar
  13. 13.
    Hilders HG (2000) WO00/53408 A1Google Scholar
  14. 14.
    Suarez Bermejo JC, Santiago MA, Diez de Ulzurrun Romeo I, Lopez Martin F, Herreros Sierra MA, Illescas Molina J, Soria Bartolome A, Garcia Nunez A (2006) WO06/103309 A2Google Scholar
  15. 15.
    Roebroeks GHJJ, Mattousch AC (1996) US5547735Google Scholar
  16. 16.
    Roebroeks GHJJ (2001) NL1019574Google Scholar
  17. 17.
    Vogelesang LB, Verbruggen LCE, Paalvast CG (1989) US4836084Google Scholar
  18. 18.
    Musaefendic J (2004) AU2004001004 A1Google Scholar
  19. 19.
    Gunnink JW, Evancho JW (2008) EP2085215 A1Google Scholar
  20. 20.
    Gunnink JW, Evancho JW (2009) WO2009/095381 A1Google Scholar
  21. 21.
    Gunnink JW, Evancho JW (2011) US2011/0052910 A1Google Scholar
  22. 22.
    Roebroeks GHJJ (1998) US6736919Google Scholar
  23. 23.
    Rajabali AF, Ter Steeg WJN (2005) US2005/0089704A1Google Scholar
  24. 24.
    Van Rooijen RGJ, Van der Zwaag S (2006) WO2006/123928 A1Google Scholar
  25. 25.
    Gunnink JW (1990) US4935291Google Scholar
  26. 26.
    Roebroeks GHJJ, Gunnink JW (2007) WO2007/061304A1Google Scholar
  27. 27.
    Roebroeks GHJJ, Gunnink JW (2007) WO2007/145512A1Google Scholar
  28. 28.
    Alderliesten RC, Benedictus R (2011) EP2627505B1Google Scholar
  29. 29.
    Alderliesten RC, Conen M (2011) NL2007603(C)Google Scholar
  30. 30.
    Alderliesten RC, Benedictus R, Rans CD, Rodi R (2010) NL2005028(C)Google Scholar
  31. 31.
    Garesché CE, Roebroeks GHJJ, Van Wimmersma-Greidanus B, Van Oost RC, Gunnink JW (1995) US5429326Google Scholar
  32. 32.
    Pettit RG (1996) US5567535Google Scholar
  33. 33.
    Roebroeks GHJJ (2002) WO02/078950A1Google Scholar
  34. 34.
    Labordus M, Verhoeven CG, Van Tooren MJL (2004) US2004/0151921A1Google Scholar
  35. 35.
    Beumler T (2014) EP2907654A1Google Scholar
  36. 36.
    Beumler T (2011) WO2012/049021A1Google Scholar
  37. 37.
    Vogelesang LB, Smulders FE, Chen D (1998) EP0323660Google Scholar
  38. 38.
    Roebroeks GHJJ (2007) WO2007/037695A1Google Scholar
  39. 39.
    Pettit RG (1993) US5227216Google Scholar
  40. 40.
    Roebroeks GHJJ (2007) WO2007/027093A1Google Scholar
  41. 41.
    Laliberté J, Mahendran D, Djokic D, Li C, Kratz J (2007) Effect of process-induced residual stresses on mechanical properties and fatigue crack initiation in fibre metal laminates. In: Proceedings of the 24th ICAF symposium, Naples, Italy, ICAF Doc. No. 2417Google Scholar
  42. 42.
    Rajabali AF (2003) WO03/011594A1Google Scholar
  43. 43.
    Rajabali AF (2003) WO2004/041519A1Google Scholar
  44. 44.
    Rajabali AF (2007) US7223318B2Google Scholar
  45. 45.
    Rajabali AF, Ter Steeg WJN (2007) US7279062B2Google Scholar
  46. 46.
    Kroon EJ, Roebroeks GHJJ (2001) NL1018120Google Scholar
  47. 47.
    Roebroeks GHJJ (2002) NL1022247Google Scholar
  48. 48.
    Roebroeks GHJJ, Kroon EJ (2007) WO2007/035100A3Google Scholar
  49. 49.
    Heinimann MB, Kulak M, Chu EW, Siemon JT (2008) WO2008/054876A2Google Scholar
  50. 50.
    Alderliesten RC, Grashof BA (2010) NL2005667(C)Google Scholar
  51. 51.
    Labordus M, Van Tooren MJL (2004) US2004/0053027 A1Google Scholar
  52. 52.
    Cano RJ, Grimsley BW, Weiser ES, Jensen BJ (2006) US7595112 B1Google Scholar
  53. 53.
    Popp V, Beumler T (2010) US2010/0086804 A1Google Scholar
  54. 54.
    Haack C, Beumler T (2010) US2010/0206987 A1Google Scholar
  55. 55.
    Rajabali AF, Ter Steeg WJN (2006) US2006/0159886A1Google Scholar
  56. 56.
    Rajabali AF, Markestein MA (2006) US2006/0159887A1Google Scholar
  57. 57.
    Rajabali AF, Ter Steeg WJN (2007) US2007/0042214A1Google Scholar
  58. 58.
    Martin A, Tillich A, Pellenkoft F (2008) US2008/0006741A1Google Scholar
  59. 59.
    Pellenkoft F, Gennai A (2006) EP1932757A1Google Scholar
  60. 60.
    De Jong TW, Kroon E, Sinke J (2001) Formability. In: Vlot A, Gunnink JW (eds) Fibre metal laminates—an introduction. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  61. 61.
    Livi F, Puccini G (2002) EP1336469A1Google Scholar
  62. 62.
    Beumler T (2008) WO2008/053041A1Google Scholar
  63. 63.
    Roebroeks GHJJ, Gunnink JW, Kroon EJ (2008) WO2008/033017A1Google Scholar
  64. 64.
    Ohrloff N, Beumler T, Daverschot D, Plokker M (2009) WO2010/043516A1Google Scholar
  65. 65.
    Kroon EJ, Gunnink JW (2003) NL1022709Google Scholar
  66. 66.
    Labordus M, Van Tooren MJL, De Graaf TJM (2004) WO2004/085141A1Google Scholar
  67. 67.
    Evers RC (1982) US4359567Google Scholar
  68. 68.
    Dotrong M, Dotrong M, Evers RC (1995) US5426173Google Scholar
  69. 69.
    Kitagawa T, Murase H, Yabuki K (1998) Morphological study on poly-p-phenylene-benzobisoxazole (PBO) fiber. J Polym Sci Part B Polym Phys 36:39–48CrossRefGoogle Scholar
  70. 70.
  71. 71.
    Schulze K, Hausmann J, Schmitz D (2013) DE2011082697A1Google Scholar
  72. 72.
    Heinimann M, Kulak M, Bucci R, James M, Wilson G, Brockenbrough J, Zonker H, Sklyut H (2007) Validation of advanced metallic hybrid concept with improved damage tolerance capabilities for next generation lower wing and fuselage applications. In: Lazzeri L, Salvetti A (eds) Proceedings of the 24th ICAF symposium, Naples, Italy, ICAF Doc. No. 2417Google Scholar
  73. 73.
    Vogelesang LB, Marissen R, Schijve J (1981) A new fatigue resistant material: aramid reinforced aluminum laminate (ARALL). In: De Jonge JB, Van der Linden HH (eds) Proceedings of the 11th ICAF symposium, Noordwijkerhout, The Netherlands, ICAF Doc. No. 1216Google Scholar
  74. 74.
    Mangkoesoebroto RH (1987) The effect of fibre volume fraction on the mechanical properties and the fatigue behaviour of ARALL laminates. MSc thesis, Delft University of Technology (not in public domain)Google Scholar
  75. 75.
    Bradley WL, Cohen RN (1985) Matrix deformation and fracture in graphite-reinforced epoxies. ASTM STP 876:389–410Google Scholar
  76. 76.
    Hunston DL, Moulton RJ, Johnston JJ, Bascom WD (1987) Matrix resin effects in composite delamination: mode I fracture aspects. ASTM STP 937:74–94Google Scholar
  77. 77.
    Khan B, Rao RMVGK, Venkataraman N (1995) Low velocity impact fatigue studies on glass epoxy composite laminates with varied material and test parameters—effect of incident energy and fibre volume fraction. J Reinf Plast Compos 14:1150–1159Google Scholar
  78. 78.
    Li X, Carlsson LA, Davies P (2004) Influence of fiber volume fraction on mode III interlaminar fracture toughness of glass/epoxy composites. Compos Sci Technol 64:1279–1286CrossRefGoogle Scholar
  79. 79.
    Wilson G, Alderliesten R, Gunnink JW (2012) EP2763849B1Google Scholar
  80. 80.
    Gunnink JW (2012) WO2012/074394A1Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations