Skip to main content

Effect of Temperature

  • Chapter
  • First Online:
Fatigue and Fracture of Fibre Metal Laminates

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 236))

Abstract

The influence of the environmental temperature is first discussed with respect to the residual stresses and thermal properties. The second part of the chapter explains how the temperature influences the mechanical and fatigue initiation properties, the delamination and crack growth resistance. It is illustrated how the relation between ambient temperature and constituent properties explains the FML behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laliberté J, Mahendran M, Djokic D, Li C, Kratz J (2007) Effect of process-induced residual stresses on mechanical properties and fatigue initiation in fibre metal laminates. In: Proceedings of the 24th ICAF symposium, Napels, Italy

    Google Scholar 

  2. Mensink JLM (1994) Thermal properties and possibilities for space applications for fibre metal laminates. Master’s thesis, Delft University of Technology, Delft

    Google Scholar 

  3. Graafmans GMH (1995) Thermal behaviour of fibre metal laminates. MSc thesis, Delft University of Technology, Delft

    Google Scholar 

  4. Verolme JL (1996) Thermal behavior of fibre metal laminates, report TD-R-95-024 (issue 2). Structural Laminates Company, Delft

    Google Scholar 

  5. Sjöström J (2012) Thermal properties of GLARE: heat capacity, anisotropic thermal conductivity, and thermogravimetric analysis—Benchmark material WP1. Report NMP3-LA-2010-246037 Project FIRE-RESIST

    Google Scholar 

  6. Horst P (1995) Methods fibre metal laminates (subtask 5.1), brite/euram-2040. Technical report MBB TN-TK536-5/95, DBAA

    Google Scholar 

  7. Boertien MFHC (1996) Strength of GLARE after exposure to moisture. Master’s thesis, Delft University of Technology, Delft

    Google Scholar 

  8. van der Hoeven W, Schra L (1999) Interim report, qualification testing for the Glare panel in the A310p/F MSN 484 aircraft. Results of tests on non-exposed specimens. Technical report NLR-CR-99269, National Aerospace Laboratory NLR

    Google Scholar 

  9. van der Hoeven W, Schra L (2000) Final report Glare durability program, Results of tests carried out at NLR. Technical report NLR-CR-2000-237, National Aerospace Laboratory NLR

    Google Scholar 

  10. Hagenbeek M (2005) Characterisation of fibre metal laminates under thermo-mechanical loadings. PhD dissertation, Delft University of Technology, Delft

    Google Scholar 

  11. MMPDS (2003) Metallic materials properties development and standardization (MMPDS-01). U.S. Department of Transportation

    Google Scholar 

  12. Kieboom O (2000) Fatigue crack initiation and early crack growth in glare at different temperatures. MSc thesis, Delft University of Technology, Delft

    Google Scholar 

  13. Beumler T (2004) Flying GLARE®, a contribution to aircraft certification issues on strengths properties in non-damaged and fatigue damaged GLARE® structures. PhD dissertation, Delft University of Technology

    Google Scholar 

  14. Homan JJ (2006) Fatigue initiation in fibre metal laminates. Int J Fatigue 28:366–374

    Article  Google Scholar 

  15. Alderliesten RC (2007) Analytical prediction model for fatigue crack propagation and delamination growth in Glare. Int J Fatigue 29(4):628–646

    Article  Google Scholar 

  16. Schijve J (2001) Fatigue of structures and materials. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  17. Bär H (1992) Verifikation und Ergänzung von Berechnungsmethoden fĂ¼r die statische und dynamische Auslegung von Glare-Strukturen. Diplomarbeit, Institut fĂ¼r Flugzeugbau der Universität Stuttgart

    Google Scholar 

  18. Beumler T (2010) Influence of frequency and variable temperature on the fatigue crack initiation and crack propagation behaviour of Standard-GLARE riveted joints. Airbus report L53D05006967

    Google Scholar 

  19. Rans CD, Alderliesten RC, Benedictus R (2011) Predicting the influence of temperature on fatigue crack propagation in Fibre Metal Laminates. Eng Fract Mech 78:2193–2201

    Article  Google Scholar 

  20. Vogelesang LB (1979) The effect of environment on the transition from tensile mode to shear mode during fatigue crack growth in aluminium alloys—a model for environmentally assisted crack growth, report LR-286. Delft University of Technology, Delft

    Google Scholar 

  21. Homan JJ (2001) Crack growth properties of thin aluminium sheets at various temperatures, report B2V-02-39. Delft University of Technology, Delft

    Google Scholar 

  22. Homan JJ (2001) Crack growth properties of thin aluminium sheets, report B2V-01-16 (issue 2). Delft University of Technology, Delft

    Google Scholar 

  23. van Kesteren R (2005) Elevated temperature and moisture absorption effects on delamination growth inn GLARE. Graduation report, Hogeschool INHOLLAND, Delft University of Technology, Delft

    Google Scholar 

  24. Schut JE (2006) Glare: delamination growth at low temperatures. Internship report, Delft University of Technology, Delft

    Google Scholar 

  25. Doevendans LP (2008) Delamination behaviour of adhesive films, Report B2v-07-03. Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  26. Pascoe JA, Rans CD, Benedictus R (2013) Characterizing fatigue delamination growth behaviour using specimens with multiple delaminations: The effect of unequal delamination lengths. Eng Fract Mech 109:150–160

    Article  Google Scholar 

  27. Alderliesten RC, Schijve J, Van der Zwaag S (2006) Application of the energy release rate approach for delamination growth in Glare. Eng Fract Mech 73:697–709

    Article  Google Scholar 

  28. Deutekom MJ (1994) The effect of frequency, moisture and temperature on the constant amplitude fatigue behaviour of Glare 3. Master’s thesis, Delft University of Technology, Delft

    Google Scholar 

  29. Schut JE, Alderliesten RC (2006) Delamination growth rate at low and elevated temperatures in GLARE. In: Proceedings of the 25th international congress of the aeronautical sciences, ICAS2006

    Google Scholar 

  30. van der Hoeven W (1984) Temperature effects on the fatigue crack growth behaviour of ARALL. NLR report TR-84048, NLR

    Google Scholar 

  31. Huijzer EL (1992) Durability of GLARE—The influence of water and temperature on the low-frequency behaviour of GLARE. MSc thesis, Delft University of Technology, Delft

    Google Scholar 

  32. Alderliesten RC (2001) Fatigue. In: Vlot A, Gunnink JW (eds) Fibre metal laminates—an introduction. Kluwer Academic Publishers, Dordrecht, the Netherlands

    Google Scholar 

  33. MĂ¼ller B, Hagenbeek M, Sinke J (2016) Thermal cycling of (heated) fibre metal laminates. Compos Struct 152:106–116

    Article  Google Scholar 

  34. MĂ¼ller B, Anisimov AG, Sinke J, Groves RM (2015) Analysis of thermal strains and stresses in heated fibre metal laminates. In: Proceedings of the 6th international conference on emerging technologies in non-destructive testing (ETNDT), pp 1–6

    Google Scholar 

  35. MĂ¼ller B, Teixeira De Freitas S, Sinke J (2015) Thermal cycling fiber metal laminates: Considerations, test setup and results. In: Proceedings of the 20th international conference on composite materials (ICCM), Copenhagen, Denmark, 2015, paper no. 4212-3,1-11

    Google Scholar 

  36. Li H, Hu Y, Liu C, Zheng X, Liu H, Tao J (2016) The effect of thermal fatigue on the mechanical properties of the novel fiber metal laminates based on aluminum–lithium alloy. Compos A 84:36–42

    Article  Google Scholar 

  37. Da Costa AA, Da Silva DFNR, Travessa DN, Botelho EC (2012) The effect of thermal cycles on the mechanical properties of fiber–metal laminates. Mater Des 42:434–440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Alderliesten .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alderliesten, R. (2017). Effect of Temperature. In: Fatigue and Fracture of Fibre Metal Laminates. Solid Mechanics and Its Applications, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-56227-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56227-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56226-1

  • Online ISBN: 978-3-319-56227-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics