Advertisement

Effect of Temperature

  • René Alderliesten
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 236)

Abstract

The influence of the environmental temperature is first discussed with respect to the residual stresses and thermal properties. The second part of the chapter explains how the temperature influences the mechanical and fatigue initiation properties, the delamination and crack growth resistance. It is illustrated how the relation between ambient temperature and constituent properties explains the FML behaviour.

Keywords

Residual Stress Fatigue Crack Crack Growth Rate Fatigue Crack Growth Delamination Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Laliberté J, Mahendran M, Djokic D, Li C, Kratz J (2007) Effect of process-induced residual stresses on mechanical properties and fatigue initiation in fibre metal laminates. In: Proceedings of the 24th ICAF symposium, Napels, ItalyGoogle Scholar
  2. 2.
    Mensink JLM (1994) Thermal properties and possibilities for space applications for fibre metal laminates. Master’s thesis, Delft University of Technology, DelftGoogle Scholar
  3. 3.
    Graafmans GMH (1995) Thermal behaviour of fibre metal laminates. MSc thesis, Delft University of Technology, DelftGoogle Scholar
  4. 4.
    Verolme JL (1996) Thermal behavior of fibre metal laminates, report TD-R-95-024 (issue 2). Structural Laminates Company, DelftGoogle Scholar
  5. 5.
    Sjöström J (2012) Thermal properties of GLARE: heat capacity, anisotropic thermal conductivity, and thermogravimetric analysis—Benchmark material WP1. Report NMP3-LA-2010-246037 Project FIRE-RESISTGoogle Scholar
  6. 6.
    Horst P (1995) Methods fibre metal laminates (subtask 5.1), brite/euram-2040. Technical report MBB TN-TK536-5/95, DBAAGoogle Scholar
  7. 7.
    Boertien MFHC (1996) Strength of GLARE after exposure to moisture. Master’s thesis, Delft University of Technology, DelftGoogle Scholar
  8. 8.
    van der Hoeven W, Schra L (1999) Interim report, qualification testing for the Glare panel in the A310p/F MSN 484 aircraft. Results of tests on non-exposed specimens. Technical report NLR-CR-99269, National Aerospace Laboratory NLRGoogle Scholar
  9. 9.
    van der Hoeven W, Schra L (2000) Final report Glare durability program, Results of tests carried out at NLR. Technical report NLR-CR-2000-237, National Aerospace Laboratory NLRGoogle Scholar
  10. 10.
    Hagenbeek M (2005) Characterisation of fibre metal laminates under thermo-mechanical loadings. PhD dissertation, Delft University of Technology, DelftGoogle Scholar
  11. 11.
    MMPDS (2003) Metallic materials properties development and standardization (MMPDS-01). U.S. Department of TransportationGoogle Scholar
  12. 12.
    Kieboom O (2000) Fatigue crack initiation and early crack growth in glare at different temperatures. MSc thesis, Delft University of Technology, DelftGoogle Scholar
  13. 13.
    Beumler T (2004) Flying GLARE®, a contribution to aircraft certification issues on strengths properties in non-damaged and fatigue damaged GLARE® structures. PhD dissertation, Delft University of TechnologyGoogle Scholar
  14. 14.
    Homan JJ (2006) Fatigue initiation in fibre metal laminates. Int J Fatigue 28:366–374CrossRefGoogle Scholar
  15. 15.
    Alderliesten RC (2007) Analytical prediction model for fatigue crack propagation and delamination growth in Glare. Int J Fatigue 29(4):628–646CrossRefGoogle Scholar
  16. 16.
    Schijve J (2001) Fatigue of structures and materials. Kluwer Academic Publishers, DordrechtGoogle Scholar
  17. 17.
    Bär H (1992) Verifikation und Ergänzung von Berechnungsmethoden für die statische und dynamische Auslegung von Glare-Strukturen. Diplomarbeit, Institut für Flugzeugbau der Universität StuttgartGoogle Scholar
  18. 18.
    Beumler T (2010) Influence of frequency and variable temperature on the fatigue crack initiation and crack propagation behaviour of Standard-GLARE riveted joints. Airbus report L53D05006967Google Scholar
  19. 19.
    Rans CD, Alderliesten RC, Benedictus R (2011) Predicting the influence of temperature on fatigue crack propagation in Fibre Metal Laminates. Eng Fract Mech 78:2193–2201CrossRefGoogle Scholar
  20. 20.
    Vogelesang LB (1979) The effect of environment on the transition from tensile mode to shear mode during fatigue crack growth in aluminium alloys—a model for environmentally assisted crack growth, report LR-286. Delft University of Technology, DelftGoogle Scholar
  21. 21.
    Homan JJ (2001) Crack growth properties of thin aluminium sheets at various temperatures, report B2V-02-39. Delft University of Technology, DelftGoogle Scholar
  22. 22.
    Homan JJ (2001) Crack growth properties of thin aluminium sheets, report B2V-01-16 (issue 2). Delft University of Technology, DelftGoogle Scholar
  23. 23.
    van Kesteren R (2005) Elevated temperature and moisture absorption effects on delamination growth inn GLARE. Graduation report, Hogeschool INHOLLAND, Delft University of Technology, DelftGoogle Scholar
  24. 24.
    Schut JE (2006) Glare: delamination growth at low temperatures. Internship report, Delft University of Technology, DelftGoogle Scholar
  25. 25.
    Doevendans LP (2008) Delamination behaviour of adhesive films, Report B2v-07-03. Delft University of Technology, Delft, The NetherlandsGoogle Scholar
  26. 26.
    Pascoe JA, Rans CD, Benedictus R (2013) Characterizing fatigue delamination growth behaviour using specimens with multiple delaminations: The effect of unequal delamination lengths. Eng Fract Mech 109:150–160CrossRefGoogle Scholar
  27. 27.
    Alderliesten RC, Schijve J, Van der Zwaag S (2006) Application of the energy release rate approach for delamination growth in Glare. Eng Fract Mech 73:697–709CrossRefGoogle Scholar
  28. 28.
    Deutekom MJ (1994) The effect of frequency, moisture and temperature on the constant amplitude fatigue behaviour of Glare 3. Master’s thesis, Delft University of Technology, DelftGoogle Scholar
  29. 29.
    Schut JE, Alderliesten RC (2006) Delamination growth rate at low and elevated temperatures in GLARE. In: Proceedings of the 25th international congress of the aeronautical sciences, ICAS2006Google Scholar
  30. 30.
    van der Hoeven W (1984) Temperature effects on the fatigue crack growth behaviour of ARALL. NLR report TR-84048, NLRGoogle Scholar
  31. 31.
    Huijzer EL (1992) Durability of GLARE—The influence of water and temperature on the low-frequency behaviour of GLARE. MSc thesis, Delft University of Technology, DelftGoogle Scholar
  32. 32.
    Alderliesten RC (2001) Fatigue. In: Vlot A, Gunnink JW (eds) Fibre metal laminates—an introduction. Kluwer Academic Publishers, Dordrecht, the NetherlandsGoogle Scholar
  33. 33.
    Müller B, Hagenbeek M, Sinke J (2016) Thermal cycling of (heated) fibre metal laminates. Compos Struct 152:106–116CrossRefGoogle Scholar
  34. 34.
    Müller B, Anisimov AG, Sinke J, Groves RM (2015) Analysis of thermal strains and stresses in heated fibre metal laminates. In: Proceedings of the 6th international conference on emerging technologies in non-destructive testing (ETNDT), pp 1–6Google Scholar
  35. 35.
    Müller B, Teixeira De Freitas S, Sinke J (2015) Thermal cycling fiber metal laminates: Considerations, test setup and results. In: Proceedings of the 20th international conference on composite materials (ICCM), Copenhagen, Denmark, 2015, paper no. 4212-3,1-11Google Scholar
  36. 36.
    Li H, Hu Y, Liu C, Zheng X, Liu H, Tao J (2016) The effect of thermal fatigue on the mechanical properties of the novel fiber metal laminates based on aluminum–lithium alloy. Compos A 84:36–42CrossRefGoogle Scholar
  37. 37.
    Da Costa AA, Da Silva DFNR, Travessa DN, Botelho EC (2012) The effect of thermal cycles on the mechanical properties of fiber–metal laminates. Mater Des 42:434–440CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations