Skip to main content

Assembly of Gene Expression Networks Based on a Breast Cancer Signature

  • Conference paper
  • First Online:
  • 1826 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10209))

Abstract

The aim of this paper is to provide a snapshot of functional networks with central nodes (hubs) relying on the behavior of genes linked to a specific interaction network. Utilizing a ‘breast cancer signature’, a Bayesian approach is applied for the construction of gene interaction networks from different populations. We demonstrate that the hub genes of the differentiating network between cancer and control states can be regarded as potential markers for breast cancer. Furthermore, the differentiating subnetworks can be informative of the phenotype and provide new knowledge about the functional interactions and molecular pathways involved in breast cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    GEO: Gene Expression Omnibus; available at https://www.ncbi.nlm.nih.gov/geo/.

  2. 2.

    KEGG: Kyoto Encyclopedia of Genes and Genomes; available at http://www.genome.jp/kegg/.

  3. 3.

    Wikipathways; available at http://wikipathways.org/index.php/WikiPathways.

References

  1. Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    Article  Google Scholar 

  2. Korb, K.B., Nicholson, A.E.: Introducing Bayesian networks. In: Bayesian Artificial Intelligence, 2nd edn., pp. 29–54. Taylor and Francis Group, LLC (2011)

    Google Scholar 

  3. Oniésko, A., Lucas, P., Druzdzel, M.J.: Comparison of rule-based and Bayesian network approaches in medical diagnostic systems. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 283–292. Springer, Heidelberg (2001). doi:10.1007/3-540-48229-6_40

    Chapter  Google Scholar 

  4. Sfakianakis, S., Bei, E.S., Zervakis, M., Vassou, D., Kafetzopoulos, D.: On the identification of circulating tumor cells in breast cancer. IEEE J. Biomed. Health Inform. 18(3), 773–782 (2014). IEEE Press

    Article  Google Scholar 

  5. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Nat. Acad. Sci. 98(9), 5116–5121 (2001)

    Article  MATH  Google Scholar 

  6. Chlis, N.K., Sfakianakis, S., Bei, E.S., Zervakis, M.: A generic framework for the elicitation of stable and reliable gene expression signatures. Ιn: Proceedings of IEEE BIBE, Chania, Greece, pp. 1–4. IEEE Press (2013)

    Google Scholar 

  7. Needham, C.J., Bradford, J.R., Bulpitt, A.J., Westhead, D.R.: A primer on learning in Bayesian networks for computational biology. PLoS Comput. Biol. 3(8), e129 (2007)

    Article  Google Scholar 

  8. The biological general repository for interaction datasets. http://thebiogrid.org/

  9. Cytoscape: a software environment for integrated models of biomolecular interaction networks. http://www.cytoscape.org/

  10. Expression Atlas update - a database of gene and transcript expression from microarray and sequencing-based functional genomics experiments. Nucleic Acids Res. (2014). http://www.ebi.ac.uk/gxa

  11. Schummer, M., Green, A., Beatty, J.D., Karlan, B.Y., Karlan, S., Gross, J., Thornton, S., McIntosh, M., Urban, N.: Comparison of breast cancer to healthy control tissue discovers novel markers with potential for prognosis and early detection. PLoS ONE 5(2), e9122 (2010)

    Article  Google Scholar 

  12. Marko, N.F., Weil, R.J.: Non-Gaussian distributions affect identification of expression patterns, functional annotation, and prospective classification in human cancer genomes. PLoS ONE 7(10), e46935 (2012)

    Article  Google Scholar 

  13. Cowley, M., Ying, K.: LogTransform Documentation - a GenePattern module for applying a log transformation on GCT files (not published). Garvan Institute (2011)

    Google Scholar 

  14. Bouhamed, H., Masmoudi, A., Lecroq, T., Rebaï, A.: A new approach for Bayesian classifier learning structure via K2 Algorithm. In: Huang, D.-S., Gupta, P., Zhang, X., Premaratne, P. (eds.) ICIC 2012. CCIS, vol. 304, pp. 387–393. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31837-5_56

    Chapter  Google Scholar 

  15. Wei, Z., Xu, H., Li, W., Gui, X., Wu, X.: Improved Bayesian network structure learning with node ordering via K2 Algorithm. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS (LNAI), vol. 8589, pp. 44–55. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09339-0_5

    Google Scholar 

  16. Al-Akwaa, F.M., Alkhawlani, M.M.: Comparison of the Bayesian network structure learning algorithms. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(3), 404–408 (2012)

    Google Scholar 

  17. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  18. Gomez-Vela, F., Diaz, N.: Gene network biological validity based on gene-gene interaction relevance. Sci. World J. 2014(2014), 1–11 (2014)

    Article  Google Scholar 

  19. Zhuang, D.Y., Jiang, L., He, Q.Q., Zhou, P., Yue, T.: Identification of hub subnetwork based on topological features of genes in breast cancer. Int. J. Mol. Med. 35(3), 664–674 (2015)

    Article  Google Scholar 

  20. HIPPIE, Human Integrated Protein-Protein Interaction rEference. http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/

  21. The Genes-to-Systems Breast Cancer (G2SBC) Database. http://www.itb.cnr.it/breastcancer/

  22. Wang, J., Duncan, D., Shi, Z., Zhang, B.: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41(Web Server issue), W77–W83 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michalis Zervakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chalepakis Ntellis, D.A., S. Bei, E., Kafetzopoulos, D., Zervakis, M. (2017). Assembly of Gene Expression Networks Based on a Breast Cancer Signature. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics