Skip to main content

Geometric Modelling of the Human Cornea: A New Approach for the Study of Corneal Ectatic Disease. A Pilot Investigation

  • Conference paper
  • First Online:
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Abstract

Purpose: The aim of this study was to describe the application of a new bioengineering graphical technique based on geometric custom modelling capable to detect and to discriminate small variations in the morphology of the corneal surface.

Methods: A virtual 3D solid custom model of the cornea was obtained employing Computer Aided Geometric Design tools, using raw data from a discrete and finite set of spatial points representative of both sides of the corneal surface provided by a corneal topographer. Geometric reconstruction was performed using B-Spline functions, defining and calculating the representative geometric variables of the corneal morphology of patients under clinical diagnosis of keratoconus.

Results: At least four variables could be used in order to classify corneal abnormalities related to keratoconus disease: anterior corneal surface area (ROC 0.853; p < 0.0001), posterior corneal surface area (ROC 0.813; p < 0.0001), anterior apex deviation (ROC 0.742; p < 0.0001) and posterior apex deviation (ROC 0.899; p < 0.0001).

Conclusions: Custom geometric modelling enables an accurate characterization of the human cornea based on untreated raw data from the corneal topographer and the calculation of morphological variables of the cornea, which permits the clinical diagnosis of keratoconus disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinero, D.P., Alio, J.L., Barraquer, R.I., Michael, R., Jimenez, R.: Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. Invest. Ophthalmol. Vis. Sci. 51, 1948–1955 (2010)

    Article  Google Scholar 

  2. de Jong, T., Sheehan, M.T., Dubbelman, M., Koopmans, S.A., Jansonius, N.M.: Shape of the anterior cornea: comparison of height data from 4 corneal topographers. J. Cataract Refr. Surg. 39, 1570–1580 (2013)

    Article  Google Scholar 

  3. Klyce, S.D., Karon, M.D., Smolek, M.K.: Advantages and disadvantages of the Zernike expansion for representing wave aberration of the normal and aberrated eye. J. Refract. Surg. 20, S537–S541 (2004)

    Google Scholar 

  4. Ramos-Lopez, D., Martinez-Finkelshtein, A., Castro-Luna, G.M., Pinero, D., Alio, J.L.: Placido-based indices of corneal irregularity. Optom. Vis. Sci. 88, 1220–1231 (2011)

    Article  Google Scholar 

  5. Trevino, J.P., Gómez-Correa, J.E., Iskander, D.R., Chávez-Cerda, S.: Zernike vs. Bessel circular functions in visual optics. Ophthal. Physl. Opt. 33, 394–402 (2013)

    Article  Google Scholar 

  6. Lenarduzzi, L.: Compression of corneal maps of curvature. Appl. Math. Comput. 252, 77–87 (2015)

    MATH  MathSciNet  Google Scholar 

  7. Ares, M., Royo, S.: Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction. Appl. Opt. 45, 6954–6964 (2006)

    Article  Google Scholar 

  8. Gong, D.W., Chen, J.H., Yuan, C., Ge, R.K., Zhou, M.H.: A new method for reconstruction of corneal topography with Placido disk system. Adv. Mat. Res. 974, 373–378 (2014)

    Google Scholar 

  9. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on the GPU - past, present and future. Med. Image Anal. 17, 1073–1094 (2013)

    Article  Google Scholar 

  10. Sun, W., Darling, A., Starly, B., Nam, J.: Computer-aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39, 29–47 (2004)

    Article  Google Scholar 

  11. Farin, G.E., Hoschek, J., Kim, M.-S.: Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam (2002)

    MATH  Google Scholar 

  12. Pottmann, H., Leopoldseder, S., Hofer, M., Steiner, T., Wang, W.: Industrial geometry: recent advances and applications in CAD. CAD Comput. Aided Des. 37, 751–766 (2005)

    Article  Google Scholar 

  13. Cui, J., Tang, M., Liu, H.: Dynamic shape representation for product modeling in conceptual design. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/J. Comput.-Aided Des. Comput. Graph. 26, 1879–1885 (2014)

    Google Scholar 

  14. Lohfeld, S., Barron, V., McHugh, P.E.: Biomodels of bone: a review. Ann. Biomed. Eng. 33, 1295–1311 (2005)

    Article  Google Scholar 

  15. Almeida, H.A., Bártolo, P.J.: Computational technologies in tissue engineering. WIT Trans. Biomed. and Health 17, 117–129 (2013)

    Article  Google Scholar 

  16. Ovcharenko, E.A., Klyshnikov, K.U., Vlad, A.R., Sizova, I.N., Kokov, A.N., Nushtaev, D.V., Yuzhalin, A.E., Zhuravleva, I.U.: Computer-aided design of the human aortic root. Comput. Biol. Med. 54, 109–115 (2014)

    Article  Google Scholar 

  17. Chiang, I.-C., Shyh-Yuan, L., Ming-Chang, W., Sun, C.W., Jiang, C.P.: Finite element modelling of implant designs and cortical bone thickness on stress distribution in maxillary type IV bone. Comput. Methods Biomech. Biomed. Eng. 17, 516–526 (2014)

    Article  Google Scholar 

  18. Rocha, M., Pereira, J.P., De Castro, A.V.: 3D modeling mechanisms for educational resources in medical and health area. In: Proceedings of the 6th Iberian Conference on Information Systems and Technologies (CISTI 2011) (2011)

    Google Scholar 

  19. Schubert, C., van Langeveld, M.C., Donoso, L.A.: Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98, 159–161 (2014)

    Article  Google Scholar 

  20. Montalban, R., Alio, J.L., Javaloy, J., Pinero, D.P.: Correlation of anterior and posterior corneal shape in keratoconus. Cornea 32, 916–921 (2013)

    Article  Google Scholar 

  21. Montalban, R., Pinero, D.P., Javaloy, J., Alio, J.L.: Correlation of the corneal toricity between anterior and posterior corneal surfaces in the normal human eye. Cornea 32, 791–798 (2013)

    Article  Google Scholar 

  22. Ariza-Gracia, M.A., Zurita, J.F., Pinero, D.P., Rodriguez-Matas, J.F., Calvo, B.: Coupled biomechanical response of the cornea assessed by non-contact tonometry. Simulation study. PLoS One 10, e0121486 (2015)

    Article  Google Scholar 

  23. Cavas-Martinez, F., Fernandez-Pacheco, D.G., De la Cruz-Sanchez, E., Nieto Martinez, J., Fernandez Canavate, F.J., Vega-Estrada, A., Plaza-Puche, A.B., Alio, J.L.: Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia. PLoS ONE 9, e110249 (2014)

    Article  Google Scholar 

  24. Anayol, M.A., Guler, E., Yagci, R., Sekeroglu, M.A., Ylmazoglu, M., Trhs, H., Kulak, A.E., Ylmazbas, P.: Comparison of central corneal thickness, thinnest corneal thickness, anterior chamber depth, and simulated keratometry using galilei, Pentacam, and Sirius devices. Cornea 33, 582–586 (2014)

    Article  Google Scholar 

  25. Hernandez-Camarena, J.C., Chirinos-Saldana, P., Navas, A., Ramirez-Miranda, A., de la Mota, A., Jimenez-Corona, A., Graue-Hernindez, E.O.: Repeatability, reproducibility, and agreement between three different Scheimpflug systems in measuring corneal and anterior segment biometry. J. Refract. Surg. 30, 616–621 (2014)

    Article  Google Scholar 

  26. Savini, G., Carbonelli, M., Sbreglia, A., Barboni, P., Deluigi, G., Hoffer, K.J.: Comparison of anterior segment measurements by 3 Scheimpflug tomographers and 1 Placido corneal topographer. J. Cataract Refract. Surg. 37, 1679–1685 (2011)

    Article  Google Scholar 

  27. Shetty, R., Arora, V., Jayadev, C., Nuijts, R.M., Kumar, M., Puttaiah, N.K., Kummelil, M.K.: Repeatability and agreement of three Scheimpflug-based imaging systems for measuring anterior segment parameters in keratoconus. Invest. Ophthalmol. Vis. Sci. 55, 5263–5268 (2014)

    Article  Google Scholar 

  28. Simonini, I., Pandolfi, A.: Customized finite element modelling of the human cornea. PLoS ONE 10, e0130426 (2015)

    Article  Google Scholar 

  29. Ramos-Lopez, D., Martinez-Finkelshtein, A., Castro-Luna, G.M., Burguera-Gimenez, N., Vega-Estrada, A., Pinero, D., Alio, J.L.: Screening subclinical keratoconus with placido-based corneal indices. Optom. Vis. Sci. 90, 335–343 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Cavas-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cavas-Martínez, F., Fernández-Pacheco, D.G., Parras, D., Cañavate, F.J.F., Bataille, L., Alio, J.L. (2017). Geometric Modelling of the Human Cornea: A New Approach for the Study of Corneal Ectatic Disease. A Pilot Investigation. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics