MASS Studio: A Novel Software Utility to Simplify LC-MS Analyses of Large Sets of Samples for Metabolomics

  • Germán Martínez
  • Víctor González-Menéndez
  • Jesús Martín
  • Fernando Reyes
  • Olga Genilloud
  • José R. TormoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10208)


The success of metabolomic analyses relies on the detection method used to analyze the samples and the management of the chemical data. To interrogate the information with biological hypotheses, scientists require a user friendly and manageable way of processing Big Data. Microbial Natural Products Drug Discovery is getting benefits from these techniques that can be applied for a detailed evaluation of the changes in the chemical diversity of the metabolites that a different treatment can induce in a given producer strain. Liquid Chromatography in tandem with Mass Spectrometry (LC-MS) is considered the best cost/effective technique to analyze biological samples that contain metabolites. Simplifying the complexity of these LC-MS sources in a user friendly way can help with the interrogation of the information for a correct use of statistics and scientific hypothesis testing. We describe herein MASS Studio 1.0, a new generation software utility that simplifies LC-MS traces to allow metabolomics analysis on large sets of microbial Natural Products samples in a Drug Discovery Project environment.


Metabolomics Microbial natural products Mass spectrometry 



This work was carried out as part of the Master and PhD. Programs from the School of Master Degrees of the University of Granada.


  1. 1.
    Garcia, J.B., Tormo, J.R.: HPLC studio: a novel software utility to perform HPLC chromatogram comparison for screening purposes. J. Biomol. Scr. 8, 305–315 (2003)CrossRefGoogle Scholar
  2. 2.
    Tormo, J.R., et al.: A method for the selection of production media for actinomycete strains based on their metabolite HPLC profiles. J. Ind. Microbiol. Biotechnol. 30, 582–588 (2003)CrossRefGoogle Scholar
  3. 3.
    Tormo, J.R., Garcia, J.B.: Automated analyses of HPLC profiles of microbial extracts - a new tool for drug discovery screening. In: Zhang, L., Demain, A.L. (eds.) Nature Product: Drug Discovery and Therapeutic Medicine, pp. 57–75. Humana Press Inc., Totowa (2005)CrossRefGoogle Scholar
  4. 4.
    Gonzalez-Menendez, V., et al.: Differential induction of secondary metabolite profiles in endophyte fungi by the addition of epigenetic modifiers. Planta Med. 81, 924 (2015)CrossRefGoogle Scholar
  5. 5.
    Perez-Victoria, I., Martin, J., Reyes, F.: Combined LC/UV/MS and NMR strategies for the dereplication of marine natural products. Planta Med. 82, 857–871 (2016)CrossRefGoogle Scholar
  6. 6.
    Hur, M., Campbell, A.A., Almeida-de-Macedo, M., Li, L., Ransom, N., Jose, A., Wurtele, E.S.: A global approach to analysis and interpretation of metabolic data for plant natural product discovery. Nat. Prod. Rep. 30, 565–583 (2013)CrossRefGoogle Scholar
  7. 7.
    González-Menéndez, V., Pérez-Bonilla, M., Pérez-Victoria, I., Martín, J., Muñoz, F., Reyes, F., Tormo, J.R., Genilloud, O.: Multicomponent analysis of the differential induction of secondary metabolite profiles in fungal endophytes. Molecules 21, 234–250 (2016)CrossRefGoogle Scholar
  8. 8.
    Ríos Peces, S., Díaz Navarro, C., Márquez López, C., Caba, O., Jiménez-Luna, C., Mel-guizo, C., Prados, J.C., Genilloud, O., Vicente Pérez, F., Pérez Del Palacio, J.: Untargeted LC-HRMS-based metabolomics for searching new biomarkers of pancreatic ductal adenocarcinoma: a pilot study. J. Biomol. Screen 21 (2016). doi: 10.1177/1087057116671490
  9. 9.
    Ito, T., Odake, T., Katoh, H., Yamaguchi, Y., Aoki, M.: High-throughput profiling of microbial extracts. J. Nat. Prod. 74(5), 983–988 (2011)CrossRefGoogle Scholar
  10. 10.
    Gonzalez-Menendez, V., Martin, J., Siles, J.A., Gonzalez-Tejero, R., Reyes, F., Platas, G., Tormo J.R., Genilloud, O.: Biodiversity and chemotaxonomy of Preussia isolates from the Iberian Peninsula. Two new species discovered. Mycol. Progress (2017, submitted)Google Scholar
  11. 11.
    Osada, H., Nogawa, T.: Systematic isolation of microbial metabolites for natural products depository (NPDepo). Pure Appl. Chem. 84(6), 1407–1420 (2012)Google Scholar
  12. 12.
    Lim, C.L., Nogawa, T., Uramoto, M., Okano, A., Hongo, Y., Nakamura, T., Koshino, H., Takahashi, S., Ibrahim, D., Osada, H.: RK-1355A and B, novel quinomycin derivatives isolated from a microbial metabolites fraction library based on NP-Plot screening. J. Antibiot. 67, 323–329 (2014)CrossRefGoogle Scholar
  13. 13.
    Stadler, M.: Importance of secondary metabolites in the Xylariaceae as parameters for assessment of their taxonomy, phylogeny, and functional biodiversity. Curr. Res. Environ. Appl. Mycol. J. Fungal Biol. 1, 75–133 (2011)CrossRefGoogle Scholar
  14. 14.
    Stadler, M., Læssøe, T., Fournier, J., Decock, C., Schmieschek, B., Tichy, H.-V., Peršoh, D.: A polyphasic taxonomy of Daldinia (Xylariaceae). Stud. Mycol. 77(1), 1–143 (2014)CrossRefGoogle Scholar
  15. 15.
    Kim, W., Peever, T.L., Park, J.J., Park, C.M., Gang, D.R., Xian, M., Davidson, J.A., Infantino, A., Kaiser, W.J., Chen, W.: Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera. Sci. Rep. 6, 20192 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Germán Martínez
    • 1
  • Víctor González-Menéndez
    • 1
  • Jesús Martín
    • 1
  • Fernando Reyes
    • 1
  • Olga Genilloud
    • 1
  • José R. Tormo
    • 1
    Email author
  1. 1.Fundación MEDINA, Parque Tecnológico de la Salud (PTS)Armilla, GranadaSpain

Personalised recommendations