Skip to main content

Experimental Investigation of Frequency Chaos Game Representation for in Silico and Accurate Classification of Viral Pathogens from Genomic Sequences

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Abstract

This paper presents an experimental investigation to determine the efficacy and the appropriate order of Frequency Chaos Game Representation (FCGR) for accurate and in silico classification of pathogenic viruses. For this study, we curated genomic sequences of selected viral pathogens from the virus pathogen database and analysis resource corpus. The viral genomes were encoded using the first to seventh order FCGRs so as to produce training and testing genomic data features. Thereafter, four different kernels of naïve Bayes classifier were experimentally trained and tested with the generated FCGR genomic features. The performance result with the highest average classification accuracy of 98% was returned by the third and fourth order FCGRs. However, due to consideration for memory utilization, computational efficiency vis-à-vis classification accuracy, the third order FCGR is deemed suitable for accurate classification of viral pathogens from genome sequences. This provides a promising foundation for developing genomic based diagnostic toolkit that could be used to promptly address the global incidence of epidemics from pathogenic viruses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adetiba, E., Olugbara, O.O., Taiwo, T.B.: Identification of pathogenic viruses using genomic cepstral coefficients with radial basis function neural network. In: Pillay, N., Engelbrecht, A.P., Abraham, A., du Plessis, M.C., Snášel, V., Muda, A.K. (eds.) Advances in Nature and Biologically Inspired Computing. AISC, vol. 419, pp. 281–291. Springer, Cham (2016). doi:10.1007/978-3-319-27400-3_25

    Chapter  Google Scholar 

  2. Hoang, T., Yin, C., Yau, S.S.T.: Numerical encoding of DNA sequences by chaos game representation with application in similarity comparison. Genomics 108(3), 134–142 (2016)

    Article  Google Scholar 

  3. Huang, G., Zhou, H., Li, Y., Xu, L.: Alignment-free comparison of genome sequences by a new numerical characterization. J. Theor. Biol. 281(1), 107–112 (2011)

    Article  Google Scholar 

  4. Qi, Z.H., Du, M.H., Qi, X.Q., Zheng, L.J.: Gene comparison based on the repetition of single-nucleotide structure patterns. Comput. Biol. Med. 42(10), 975–981 (2012)

    Article  Google Scholar 

  5. Karamichalis, R., Kari, L., Konstantinidis, S., Kopecki, S.: An investigation into inter-and intragenomic variations of graphic genomic signatures. BMC Bioinform. 16(1), 1 (2015)

    Article  Google Scholar 

  6. Swain, M.T.: Fast comparison of microbial genomes using the Chaos games representation for metagenomic applications. Procedia Comput. Sci. 18, 1372–1381 (2013)

    Article  Google Scholar 

  7. Deschavanne, P.J., Giron, A., Vilain, J., Fagot, G., Fertil, B.: Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol. Biol. Evol. 16(10), 1391–1399 (1999)

    Article  Google Scholar 

  8. Almeida, J.S., Carrico, J.A., Maretzek, A., Noble, P.A., Fletcher, M.: Analysis of genomic sequences by chaos game representation. Bioinformatics 17(5), 429–437 (2001)

    Article  Google Scholar 

  9. Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18, 2163–2170 (1990)

    Article  Google Scholar 

  10. Wang, Y., Hill, K., Singh, S., Kari, L.: The spectrum of genomic signatures: from dinucleotides to chaos game representation. Gene 14(346), 173–178 (2005)

    Article  Google Scholar 

  11. Messaoudi, I., Oueslati, A.E., Lachiri, Z.: Wavelet analysis of frequency chaos game signal: a time-frequency signature of the C. elegans DNA. EURASIP J. Bioinform. Syst. Biol. 2014(1), 1 (2014)

    Article  Google Scholar 

  12. Kari, L., Hill, K.A., Sayem, A.S., Karamichalis, R., Bryans, N., Davis, K., Dattani, N.S.: Mapping the space of genomic signatures. PLoS one 10(5), e0119815 (2015)

    Article  Google Scholar 

  13. Tanchotsrinon, W., Lursinsap, C., Poovorawan, Y.: A high performance prediction of HPV genotypes by chaos game representation and singular value decomposition. BMC Bioinform. 16(1), 1 (2015)

    Article  Google Scholar 

  14. Stan, C., Cristescu, C.P., Scarlat, E.I.: Similarity analysis for DNA sequences based on chaos game representation. Case study: the albumin. J. Theoret. Biol. 267(4), 513–518 (2010)

    Article  MathSciNet  Google Scholar 

  15. Sandberg, R., Winberg, G., Bränden, C.I., Kaske, A., Ernberg, I., Cöster, J.: Capturing whole-genome characteristics in short sequences using a naive Bayesian classifier. Genome Res. 11(8), 1404–1409 (2001)

    Article  Google Scholar 

  16. Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R.: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16), 5261–5267 (2007)

    Article  Google Scholar 

  17. Janecek, A., Gansterer, W.N., Demel, M., Ecker, G.: On the relationship between feature selection and classification accuracy. In: FSDM, pp. 90–105, 15 September 2008

    Google Scholar 

  18. Vijayan, K., Nair, V.V., Gopinath, D.P.: Classification of organisms using frequency-chaos game representation of genomic sequences and ANN. In: 10th National Conference on Technological Trends (NCTT 2009), pp. 6–7, November 2009

    Google Scholar 

  19. Nair, V.V., Nair, A.S.: Combined classifier for unknown genome classification using chaos game representation features. In: Proceedings of the International Symposium on Biocomputing, p. 35. ACM (2010)

    Google Scholar 

  20. Yang, L., Tan, Z., Wang, D., Xue, L., Guan, M.X., Huang, T., Li, R.: Species identification through mitochondrial rRNA genetic analysis. Sci. Rep. 4(4089), 1–11 (2014)

    Google Scholar 

  21. Adetiba, E., Olugbara, O.O.: Classification of eukaryotic organisms through cepstral analysis of mitochondrial DNA. In: Mansouri, A., Nouboud, F., Chalifour, A., Mammass, D., Meunier, J., ElMoataz, A. (eds.) ICISP 2016. LNCS, vol. 9680, pp. 243–252. Springer, Cham (2016). doi:10.1007/978-3-319-33618-3_25

    Google Scholar 

Download references

Acknowledgement

The publication of this study is supported and funded by the Covenant University Centre for Research, Innovation and Development (CUCRID), Covenant University, Canaanland, Ota, Ogun State, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Adetiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Adetiba, E., Badejo, J.A., Thakur, S., Matthews, V.O., Adebiyi, M.O., Adebiyi, E.F. (2017). Experimental Investigation of Frequency Chaos Game Representation for in Silico and Accurate Classification of Viral Pathogens from Genomic Sequences. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics