Advertisement

Instability and Chaos in Various Laser Structures

  • Junji Ohtsubo
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 111)

Abstract

Narrow-stripe edge-emitting structure is not the only one for semiconductor lasers. Other than these, various kinds of laser structures of semiconductor lasers have been proposed and some of them are now in practical use. For example, vertical-cavity surface-emitting semiconductor lasers (VCSELs) are expected as the next generation laser light sources for optical communications and optical memory systems, and broad-area semiconductor lasers are promising light sources for high power laser applications. Quantum-dot semiconductor laser is a new laser structure expected as a light source for highly coherent beam emission. The region of light emission from the laser is well confined in a certain spatial point in the active area, namely a quantum dot, and the energy levels related to light emission are perfectly quantized by a quantum-dot structure. Another example of recent semiconductor laser is quantum-cascade laser, which is a THz light source. Though a quantum-cascade laser is one of the semiconductor lasers, the laser structure and light emission process are completely different from other semiconductor lasers based on inter-band optical transitions. Such a laser also shows different dynamics from conventional semiconductor lasers. They have their own unique characteristic properties. Here, we do not discuss the details of each device structure and its characteristics, but we introduce the rate equations for such lasers and present their dynamic properties. These new laser structures have extra degrees of freedom and show instabilities and chaotic dynamics without any introduction of external perturbations. In this chapter, we discuss the dynamics of these new lasers both for solitary oscillations and external perturbations.

Keywords

Semiconductor Laser Optical Feedback Polarization Switching Laser Oscillation Optical Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. H. Acachihara, O. Hess, E. Abraham, Spatiotemporal chaos in broad-area semiconductor lasers. J. Opt. Soc. Am. B 10, 658–665 (1993)ADSCrossRefGoogle Scholar
  2. G.P. Agrawal, N.K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993)Google Scholar
  3. M. Ahamed, M. Yamada, Influence of instantaneous mode competition on the dynamics of semiconductor lasers. IEEE J. Quantum Electron. 38, 682–693 (2002)ADSCrossRefGoogle Scholar
  4. J.B. Altés, I. Gatare, K. Panajotov, H. Thienpont, M. Sciamanna, Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 42, 198–207 (2006)ADSCrossRefGoogle Scholar
  5. H. Aoyama, S. Tomida, R. Shogenji, J. Ohtsubo, Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback. Opt. Commun. 284, 1405–1411 (2011)ADSCrossRefGoogle Scholar
  6. M.A. Arteaga, H.J. Unold, J.M. Ostermann, R. Michalzik, H. Thienpont, K. Panajotov, Investigation of polarization properties of VCSELs subject to optical feedback from an extremely short external cavity—part II: experiments. IEEE J. Quantum Electron. 42, 102–107 (2006)ADSCrossRefGoogle Scholar
  7. T. Asatuma, Y. Takiguchi, S. Frederico, A. Furukawa, S. Hirata, Successive phase change and stability of near-field patterns for broad-area laser diodes. SPIE Proc. 6104, 105–111 (2006)ADSGoogle Scholar
  8. A. Barchanski, T. Gensty, C. Degen, I. Fischer, W. Elsäßer, Picosecond emission dynamics of vertical-cavity surface-emitting lasers: spatial, spectral, and polarization-resolved characterization. IEEE J. Quantum Electron. 39, 850–858 (2003)ADSCrossRefGoogle Scholar
  9. P. Besnard, F. Robert, M.L. Charès, G.M. Stéphan, Theoretical modeling of vertical-cavity surface-emitting lasers with polarized optical feedback. Phys. Rev. A 56, 3191–3205 (1997)ADSCrossRefGoogle Scholar
  10. P. Besnard, M.L. Charès, G. Stéphan, F. Robert, Switching between polarized modes of a vertical-cavity surface-emitting laser by isotropic optical feedback. J. Opt. Soc. Am. B 16, 1059–1064 (1999)ADSCrossRefGoogle Scholar
  11. T. Burkhard, M.O. Ziegler, I. Fischer, W. Elsäßer, Spatio-temporal dynamics of broad area semiconductor lasers and its characterization. Chaos, Solitons Fractals 10, 845–850 (1999)CrossRefGoogle Scholar
  12. T.W. Carr, T. Erneux, Dimensionless rate equations and simple conditions for self-pulsing in laser diodes. IEEE J. Quantum Electron. 37, 1171–1177 (2001)ADSCrossRefGoogle Scholar
  13. C.J. Chang-Hasnain, J.P. Harbison, G. Hasnain, A.C. Von Lehmen, L.T. Florez, N.G. Stoffel, Dynamics, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers. IEEE J. Quantum Electron. 27, 1402–1409 (1991)ADSCrossRefGoogle Scholar
  14. W.W. Chow, H. Amano, Analysis of lateral-mode behavior in broad-area InGaN quantum-well lasers. IEEE J. Quantum Electron. 37, 265–273 (2001)ADSCrossRefGoogle Scholar
  15. J. Danckaerta, B. Naglera, J. Alberta, K. Panajotova, I. Veretennicoff, T. Erneux, Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers. Opt. Commun. 201, 129–137 (2002)ADSCrossRefGoogle Scholar
  16. C. Degen, I. Fischer, W. Elsäßer, Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects. Opt. Express 5, 38–47 (1999)ADSCrossRefGoogle Scholar
  17. D. Dhirhe, T.J. Slight, B.M. Holmes, D.C. Hutchings, C.N. Ironside, Quantum cascade lasers with an integrated polarization mode converter. Opt. Express 23, 25711–25717 (2012)ADSCrossRefGoogle Scholar
  18. R. Diehl, High-power Diode Laser, Fundamentals, Technology, Applications (Springer, Berlin, 2000)Google Scholar
  19. K. Donovan, P. Harrison, R.W. Kelsall, Self-consistent solutions to the intersubband rate equations in quantum cascade lasers: analysis of a GaAs/AlxGa1−xAs device. J. Appl. Phys. 89, 3084–3090 (2001)ADSCrossRefGoogle Scholar
  20. T. Erneux, E.A. Viktorov, P. Mandel, Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819-1–023819-7 (2007)ADSCrossRefGoogle Scholar
  21. T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35, 937–939 (2010)ADSCrossRefGoogle Scholar
  22. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553–556 (1994)ADSCrossRefGoogle Scholar
  23. I. Fischer, O. Hess, W. Elsäßer, E. Göbel, Complex spatio-temporal dynamics in the near-field of broad-area semiconductor laser. Europhys. Lett. 35, 579–584 (1996)ADSCrossRefGoogle Scholar
  24. N. Fujiwara, J. Ohtsubo, Synchronization in chaotic vertical-cavity surface-emitting semiconductor lasers. SPIE Proc. 5349, 282–289 (2004)ADSCrossRefGoogle Scholar
  25. N. Fujiwara, Y. Takiguchi, J. Ohtsubo, Observation of low-frequency fluctuations in vertical-cavity surface-emitting lasers. Opt. Lett. 28, 896–898 (2003)ADSCrossRefGoogle Scholar
  26. T. Fukushima, Analysis of resonator eigenmodes in symmetric quasi-stadium laser diodes. J. Lightwave Technol. 18, 2208–2216 (2000)ADSCrossRefGoogle Scholar
  27. T. Fukushima, H. Miyazaki, T. Ando, T. Tanaka, T. Sakamoto, Nonlinear dynamics in directly modulated self-pulsating laser diodes with a highly doped saturable absorption layer. Jpn. J. Appl. Phys. 41 Part 1, 117–124 (2002)Google Scholar
  28. N. Gaciu, E. Gehrig, O. Hess, Control of broad-area laser dynamics with delayed optical feedback (Chap. 22), in Handbook of Chaos Control, ed. by E. Schöll, G. Schuster (Wiley-VCH, Weinheim, 2007)Google Scholar
  29. I. Gatare, M. Sciamanna, J. Buesa, H. Thienpont, K. Panajotov, Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection. Appl. Phys. Lett. 88, 101106-1–101106-3 (2006)ADSCrossRefGoogle Scholar
  30. E. Gehrig, O. Hess, Spatio-temporal Dynamics and Quantum Fluctuations in Semiconductor Lasers (Springer, Heidelberg, 2003)CrossRefGoogle Scholar
  31. T. Gensty, W. Elsäßer, Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers. Opt. Commun. 256, 171–183 (2005)ADSCrossRefGoogle Scholar
  32. M. Giudici, S. Balle, T. Ackemann, S. Barland, J.R. Tredicce, Polarization dynamics in vertical cavity surface-emitting lasers with optical feedback: experiment and model. J. Opt. Soc. Am. B 16, 2114–2123 (1999)ADSCrossRefGoogle Scholar
  33. C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533–1601 (2001)ADSCrossRefGoogle Scholar
  34. D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, G. Huyet, Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett. 98, 153903-1–153903-4 (2007)ADSCrossRefGoogle Scholar
  35. R.P. Green, J.H. Xu, L. Mahler, A. Tredicucci, F. Beltram, G. Giuliani, H.E. Beere, D.A. Ritchie, Linewidth enhancement factor of terahertz quantum cascade lasers. Appl. Phys. Lett. 92, 071106-1–071106-3 (2008)ADSGoogle Scholar
  36. F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, S. Loualiche, Spectral analysis of 1.55-μm InAs-InP(113)B quantum-dot lasers based on a multipopulation rate equations model. IEEE J. Quantum Electron. 45, 872–878 (2009)ADSCrossRefGoogle Scholar
  37. M.K. Haldar, A simplified analysis of direct intensity modulation of quantum cascade lasers. IEEE J. Quantum Electron. 41, 1349–1355 (2005)ADSCrossRefGoogle Scholar
  38. O. Hess, T. Kuhn, Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers. I theoretical formulation. Phys. Rev. A 54, 3347–3359 (1996a)ADSCrossRefGoogle Scholar
  39. O. Hess, T. Kuhn, Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers. II spatiotemporal dynamics. Phys. Rev. A 54, 3360–3368 (1996b)ADSCrossRefGoogle Scholar
  40. O. Hess, S.W. Koch, J.V. Moloney, Filamentation and beam propagation in broad-area semiconductor lasers. IEEE J. Quantum Electron. 31, 35–43 (1995)ADSCrossRefGoogle Scholar
  41. N. Hodgson, H. Weber, Optical Resonators (Springer, London, 1997)CrossRefGoogle Scholar
  42. Y. Hong, P.S. Spencer, K.A. Shore, Suppression of polarization switching in vertical-cavity surface-emitting lasers by use of optical feedback. Opt. Lett. 29, 2151–2153 (2004)ADSCrossRefGoogle Scholar
  43. Y. Hong, R. Ju, P.S. Spencer, K.A. Shore, Investigation of polarization bistability in vertical-cavity surface-emitting laser subjected to optical feedback. IEEE J. Quantum Electron. 41, 619–624 (2005)ADSCrossRefGoogle Scholar
  44. A. Hugi, R. Maulini, J. Faist, External cavity quantum cascade laser. Semicond. Sci. Technol. 25, 083001-1–083001-14 (2010)ADSCrossRefGoogle Scholar
  45. R. Hülsewede, J. Sebastian, H. Wenzel, G. Beister, A. Kanauer, G. Erbert, Beam quality of high power 800 nm broad-area laser diodes with 1 and 2 mm large optical cavity structure. Opt. Commun. 192, 69–75 (2001)ADSCrossRefGoogle Scholar
  46. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, M.J. Adams, Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm vertical-cavity surface-emitting lasers (VCSELs). Opt. Express 18, 9423–9428 (2010)ADSCrossRefGoogle Scholar
  47. G. Huyet, D. O’Brien, S.P. Hegarty, J.G. McInerney, A.V. Uskov, D. Bimberg, C. Ribbat, V.M. Ustinov, A.E. Zhukov, S.S. Mikhrin, A.R. Kovsh, J.K. White, K. Hinzer, A.J. SpringThorpe, Quantum dot semiconductor lasers with optical feedback. Phys. Stat. Sol. (a) 201, 345–352 (2004)ADSCrossRefGoogle Scholar
  48. Y. Ikuma, J. Ohtsubo, Dynamics in a compound cavity semiconductor laser induced by small external-cavity-length change. IEEE J. Quantum Electron. 34, 1240–1246 (1998)ADSCrossRefGoogle Scholar
  49. S. Jiang, Z. Pan, M. Dagenais, R.A. Morgan, K. Kojima, High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 63, 3545–3547 (1993)ADSCrossRefGoogle Scholar
  50. P. Janassek, S. Hartmann, A. Molitor, F. Michel, W. Elsäßer, Investigations of the polarization behavior of quantum cascade lasers by Stokes parameters. Opt. Lett. 41, 305–308 (2016)ADSCrossRefGoogle Scholar
  51. C. Jirauschek, T. Kubis, Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 1, 011307-1–011307-51 (2014)ADSCrossRefGoogle Scholar
  52. M. Jo, T. Mano, Y. Sakuma, K. Sakoda, Extremely high-density GaAs quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 100, 212113-1–212113-3 (2012)ADSCrossRefGoogle Scholar
  53. R.J. Jones, P. Rees, P.S. Spencer, K.A. Shore, Chaos and synchronization of self-pulsating laser diodes. J. Opt. Soc. Am. B 18, 166–172 (2001)ADSCrossRefGoogle Scholar
  54. C. Juang, M.R. Chen, J. Juang, Nonlinear dynamics of self-pulsating laser diodes under external drive. Opt. Lett. 24, 1346–1348 (1999)ADSCrossRefGoogle Scholar
  55. C. Juang, T.M. Hwang, J. Juang, W. Lin, A synchronization scheme using self-pulsating laser diodes in optical chaotic communication. IEEE J. Quantum Electron. 36, 300–304 (2000)ADSCrossRefGoogle Scholar
  56. M. Kuznetsov, D.Z. Tsang, J.N. Walpole, Z.L. Liau, E.P. Ippen, Chaotic pulsation of semiconductor lasers with proton-bombarded segment, in Optical Instabilities, vol. 4, ed. by R.W. Boyd, M.G. Raymer, L.M. Narducci (Cambridge University Press, Cambridge, 1986)Google Scholar
  57. J.Y. Law, Static, dynamic, and noise characteristics of vertical-cavity surface-emitting lasers. Ph.D. Thesis, University of Rochester, (1997)Google Scholar
  58. J.Y. Law, G.P. Agrawal, Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33, 462–468 (1997a)ADSCrossRefGoogle Scholar
  59. J.Y. Law, G.P. Agrawal, Mode-partition noise in vertical-cavity surface-emitting lasers. IEEE Photonics Technol. Lett. 9, 437–439 (1997b)ADSCrossRefGoogle Scholar
  60. J.Y. Law, G.P. Agrawal, Feedback-induced chaos and intensity-noise enhancement in vertical-cavity surface-emitting lasers. J. Opt. Soc. Am. B 15, 562–569 (1998)ADSCrossRefGoogle Scholar
  61. G. Levy, A.A. Hardy, Chaotic effects in flared lasers: a numerical analysis. IEEE J. Quantum Electron. 33, 26–32 (1997)ADSCrossRefGoogle Scholar
  62. H. Li, K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, Berlin, 2002)Google Scholar
  63. H. Li, T.L. Lucas, J.G. McInerney, M.W. Wright, R.A. Morgan, Injection locking dynamics of vertical cavity semiconductor lasers using conventional and phase conjugate injection. IEEE J. Quantum Electron. 32, 22–235 (1996)CrossRefGoogle Scholar
  64. Y.L. Lim, P. Dean, M. Nikolić, R. Kliese, S.P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E.H. Linfield, A.G. Davies, S.J. Wilson, A.D. Rakić, Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers. Appl. Phys. Lett. 99, 081108-1–081108-3 (2011)ADSGoogle Scholar
  65. K. Lüdge, Modeling quantum dot based Laser devices (Chap 1), in Nonlinear Laser Dynamics, ed. by K. Lüdge. (Wiley-VCH, Weinheim, 2011)Google Scholar
  66. K. Lüdge, E. Schöll, Quantum-dot lasers-desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45, 1396–1401 (2009)CrossRefGoogle Scholar
  67. K. Lüdge, M.J.P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, E. Schöll, Turn-on dynamics and modulation response in semiconductor quantum dot lasers. Phys. Rev. B 78, 035316-1–035316-11 (2008)ADSCrossRefGoogle Scholar
  68. K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, Large-signal response of semiconductor quantum-dot lasers. IEEE J. Quantum Electron. 46, 1755–1762 (2010)ADSCrossRefGoogle Scholar
  69. G.P. Luo, C. Peng, H.Q. Le, S.S. Pei, W.Y. Hwang, B. Ishaug, J. Um, J.N. Baillargeon, C.H. Lin, Grating-tuned external-cavity quantum-cascade semiconductor lasers. Appl. Phys. Lett. 78, 2834–2836 (2001)ADSCrossRefGoogle Scholar
  70. J.R. Marciante, G.P. Agrawal, Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers. IEEE J. Quantum Electron. 33, 1174–1179 (1997)ADSCrossRefGoogle Scholar
  71. J.R. Marciante, G.P. Agrawal, Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers: experimental results. IEEE Photonics Technol. Lett. 10, 54–56 (1998)ADSCrossRefGoogle Scholar
  72. J. Martin-Regalado, Polarization properties of vertical-cavity surface-emitting lasers. Ph.D. Thesis, Universitat de les Illes Balears, (1997)Google Scholar
  73. J. Martín-Regalado, G.H.M. van Tartwijk, S. Balle, Mode control and pattern stabilization in broad-area lasers by optical feedback. Phys. Rev. A 54, 5386–5393 (1996a)ADSCrossRefGoogle Scholar
  74. J. Martín-Regalado, S. Balle, N.B. Abraham, Modeling spatio-temporal dynamics of gain-guided multistripe and broad-area lasers. IEE Proc.: Optoelectron. 143, 17–23 (1996b)Google Scholar
  75. J. Martín-Regalado, J.F. Prati, N.B. Abraham, Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33, 765–783 (1997)ADSCrossRefGoogle Scholar
  76. C. Masoller, N.B. Abraham, Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback. Phys. Rev. A 59, 3021–3031 (1999a)ADSCrossRefGoogle Scholar
  77. C. Masoller, N.B. Abraham, Polarization dynamics in vertical-cavity surface-emitting lasers with optical feedback through a quarter-wave plate. Appl. Phys. Lett. 74, 1078–1080 (1999b)ADSCrossRefGoogle Scholar
  78. C. Masoller, M.S. Torre, P. Mandel, Influence of the injection current sweep rate on the polarization switching of vertical-cavity surface-emitting lasers. J. Appl. Phys. 99, 026108-1–026108-3 (2006)ADSCrossRefGoogle Scholar
  79. B. Meng, Q.J. Wang, Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers. Opt. Express 20, 1450–1464 (2012)ADSCrossRefGoogle Scholar
  80. D. Merbach, O. Hess, H. Herzel, E. Schöll, Injection induced bifurcations of transverse spatiotemporal patterns in semiconductor arrays. Phys. Rev. E 52, 1571–1578 (1995)ADSCrossRefGoogle Scholar
  81. C.R. Mirasso, G.H.M. van Tartwijk, E. Hernández-García, D. Lenstra, S. Lynch, P. Landais, P. Phelan, J. O’Gorman, W. Elsäßer, Self-pulsating semiconductor lasers: theory and experiment. IEEE J. Quantum Electron. 35, 764–770 (1999)ADSCrossRefGoogle Scholar
  82. J. Mulet, S. Balle, Spatio-temporal modeling of the optical properties of VCSELs in the presence of polarization effects. IEEE J. Quantum Electron. 38, 291–305 (2002)ADSCrossRefGoogle Scholar
  83. M. Münkel, F. Kaiser, O. Hess, Spatio-temporal dynamics of multi-stripe semiconductor lasers with delayed optical feedback. Phys. Lett. A 222, 67–75 (1996)ADSCrossRefGoogle Scholar
  84. A.V. Naumenko, N.A. Loiko, M. Sondermann, T. Ackemann, Description and analysis of low-frequency fluctuations in vertical-cavity surface-emitting lasers with isotropic optical feedback by a distant reflector. Phys. Rev. A 68, 033805-1–033805-16 (2003)ADSCrossRefGoogle Scholar
  85. D. O’Brien, S.P. Hegarty, G. Huyet, Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt. Lett. 29, 1072–1074 (2004)ADSCrossRefGoogle Scholar
  86. C. Otto, Dynamics of Quantum Dot Lasers: Effects of Optical Feedback and External Optical Injection (Springer Science & Business Media, 2014)Google Scholar
  87. C. Otto, K. Lüdge, E. Schöll, Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios. Phys. Stat. Sol. (b) 247, 829–845 (2010)Google Scholar
  88. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, 1988)CrossRefGoogle Scholar
  89. Y. Petitjean, F. Destic, J.C. Mollier, C. Sirtori, Dynamic modeling of terahertz quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 17, 22–29 (2011)CrossRefGoogle Scholar
  90. L. Rahman, H. Winful, Nonlinear dynamics of semiconductor arrays: a mean field model. IEEE J. Quantum Electron. 30, 1405–1406 (1994)ADSCrossRefGoogle Scholar
  91. F. Rana, R.J. Ram, Current noise and photon noise in quantum cascade lasers. Phys. Rev. B 65, 125313-1–125313-29 (2002)ADSCrossRefGoogle Scholar
  92. M. Razeghi, Q.Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, S. Slivken, Quantum cascade lasers: from tool to product. Opt. Express 23, 8462–8475 (2015)ADSCrossRefGoogle Scholar
  93. A. Ryan, G.P. Agrawal, G.R. Gray, E.C. Gage, Optical feedback-induced chaos and its control in multimode semiconductor lasers. IEEE J. Quantum Electron. 30, 668–679 (1994)ADSCrossRefGoogle Scholar
  94. B.S. Ryvkinn, K. Panajotov, E.A. Avrutin, I. Veretennicoff, H. Thienpont, Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers. J. Appl. Phys. 96, 6002–6007 (2004)ADSCrossRefGoogle Scholar
  95. M. San Miguel, Q. Feng, J.V. Moloney, Light polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 52, 1729–1740 (1995)ADSCrossRefGoogle Scholar
  96. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, J. Faist, THz and sub-THz quantum cascade lasers. Laser Photon Rev. 3, 45–66 (2009)CrossRefGoogle Scholar
  97. D. Scholz, H. Braun, U.T. Schwarz, S. Brüninghoff, D. Queren, A. Lell, U. Strauss, Measurement and simulation of filamentation in (Al,In)GaN laser diodes. Opt. Express 16, 6846–6859 (2008)ADSCrossRefGoogle Scholar
  98. M. Sciamanna, K. Panajotov, Two-mode injection locking in vertical-cavity surface-emitting lasers. Opt. Lett. 30, 2903–2905 (2005)ADSCrossRefGoogle Scholar
  99. M. Sciamanna, K. Panajotov, Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers. Phys. Rev. A 73, 023811-1–023811-17 (2006)ADSCrossRefGoogle Scholar
  100. M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Mégret, M. Blondel, Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers. Phys. Rev. A 65, 041801-1–041801-4 (2002a)ADSCrossRefGoogle Scholar
  101. M. Sciamanna, F. Rogister, O. Deparis, P. Mégret, M. Blondel, T. Erneux, Bifurcation to polarization self-modulation in vertical-cavity surface-emitting lasers. Opt. Lett. 27, 261–263 (2002b)ADSCrossRefGoogle Scholar
  102. M. Sciamanna, C. Masoller, N.B. Abraham, F. Rogister, P. Mégret, M. Blondel, Different regimes of low-frequency fluctuations in vertical-cavity surface-emitting lasers. J. Opt. Soc. Am. B 20, 37–39 (2003a)ADSCrossRefGoogle Scholar
  103. M. Sciamanna, C. Masoller, F. Rogister, P. Mégret, N.B. Abraham, M. Blondel, Fast pulsing dynamics of a vertical-cavity surface-emitting laser operating in the low-frequency fluctuation regime. Phys. Rev. A 68, 015805-1–015805-4 (2003b)ADSCrossRefGoogle Scholar
  104. M. Sciamanna, A. Valle, P. Mégret, M. Blondel, K. Panajotov, Nonlinear polarization dynamics in directly modulated vertical-cavity surface-emitting lasers. Phys. Rev. E 68, 016207-1–016207-4 (2003c)ADSCrossRefGoogle Scholar
  105. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, H. Ishikawa, Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer. IEEE J. Sel. Top. Quantum Electron. 3, 188–195 (1997)CrossRefGoogle Scholar
  106. C. Simmendinger, D. Preißer, O. Hess, Stabilization of chaotic spatiotemporal filamentation in large broad area lasers by spatially structured optical feedback. Opt. Express 5, 48–54 (1999)ADSCrossRefGoogle Scholar
  107. M. Sondermann, H. Bohnet, T. Ackemann, Low-frequency fluctuations and polarization dynamics in vertical-cavity surface-emitting lasers with isotropic feedback. Phys. Rev. A 67, 021802-1–021802-4 (2003)ADSCrossRefGoogle Scholar
  108. N. Stelmakh, M. Flowers, Measurement of spatial modes of broad-area diode lasers with 1-GHz resolution grating spectrometer. IEEE Photonics Technol. Lett. 18, 1618–1620 (2006)ADSCrossRefGoogle Scholar
  109. M. Sugawara, Self-assembled InGaAs/GaAs Quantum Dots (Academic Press, San Diego, 1999)Google Scholar
  110. A. Tabaka, M. Peil, M. Sciamanna, I. Fischer, W. Elsäßer, H. Thienpont, I. Veretennicoff, K. Panajotov, Dynamics of vertical-cavity surface-emitting lasers in the short external cavity regime: pulse packages and polarization mode competition. Phys. Rev. A 73, 013810-1–013810-14 (2006)ADSCrossRefGoogle Scholar
  111. T. Tachikawa, S. Takimoto, R. Shogenji, J. Ohtsubo, Dynamics of broad-area semiconductor lasers with short optical feedback. IEEE J. Quantum Electron. 46, 140–149 (2010)ADSCrossRefGoogle Scholar
  112. Y. Takiguchi, T. Asatsuma, S. Hirata, Effect of the threshold reduction on a catastrophic optical mirror damage in broad-area semiconductor lasers with optical feedback. SPIE Proc. 6104, 61040X (2006)ADSCrossRefGoogle Scholar
  113. S. Takimoto, T. Tachikawa, R. Shogenji, J. Ohtsubo, Control of spatio-temporal dynamics of broad-area semiconductor lasers by strong optical injection. IEEE Photonics Technol. Lett. 21, 1051–1053 (2009)ADSCrossRefGoogle Scholar
  114. X. Tang, J.P. van der Ziel, B. Chang, R. Johnson, J.A. Tatum, Observation of bistability in GaAs quantum-well vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33, 927–932 (1997)ADSCrossRefGoogle Scholar
  115. M.S. Torre, A. Gavrielides, C. Masoller, Numerical characterization of transient polarization square-wave switching in two orthogonally coupled VCSELs. Opt. Express 19, 20269–20278 (2011)ADSCrossRefGoogle Scholar
  116. G. Totschnig, F. Winter, V. Pustogov, J. Faist, A. Müller, Mid-infrared external-cavity quantum-cascade laser. Opt. Lett. 27, 1788–1800 (2002)ADSCrossRefGoogle Scholar
  117. V.Z. Tronciu, M. Yamada, T. Ohno, S. Ito, T. Kawakami, M. Taneya, Self-pulsation in an InGaN laser—theory and experiment. IEEE J. Quantum Electron. 39, 1509–1514 (2003)ADSCrossRefGoogle Scholar
  118. A. Valle, J. Sarma, K.A. Shore, Spatial hole-burning effects on the dynamics of vertical-cavity surface-emitting laser diodes. IEEE J. Quantum Electron. 31, 1423–1431 (1995a)ADSCrossRefGoogle Scholar
  119. A. Valle, J. Sarma, K.A. Shore, Dynamics of transverse competition in vertical cavity surface-emitting laser diodes. Opt. Commun. 115, 297–302 (1995b)ADSCrossRefGoogle Scholar
  120. A. Valle, I. Gatare, K. Panajotov, M. Sciamanna, Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection. IEEE J. Quantum Electron. 43, 322–333 (2007)ADSCrossRefGoogle Scholar
  121. G.H.M. van Tartwijk, M. San Miguel, Optical feedback on self-pulsating semiconductor lasers. IEEE J. Quantum Electron. 32, 1191–1202 (1996)ADSCrossRefGoogle Scholar
  122. E.A. Viktorov, P. Mandel, I. O’Driscoll, O. Carroll, G. Huyet, J. Houlihan, Y. Tanguy, Low-frequency fluctuations in two-state quantum dot lasers. Opt. Lett. 31, 2302–2304 (2006)ADSCrossRefGoogle Scholar
  123. M.S. Vitiello, S. Scalari, B. Williams, P. De Natale, Quantum cascade lasers: 20 years of challenges. Opt. Express 23, 5167–5182 (2015)ADSCrossRefGoogle Scholar
  124. J. von Staden, T. Gensty, W. Elsäßer, G. Giuliani, C. Mann, Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique. Opt. Lett. 31, 2574–2576 (2006)ADSCrossRefGoogle Scholar
  125. A.K. Wójcik, A. Belyanin, N. Yu, L. Diehl, F. Capasso, Nonlinear coupling of transverse modes in quantum cascade lasers. Opt. Eng. 49, 111114-1–111114-10 (2010)ADSzbMATHGoogle Scholar
  126. A.K. Wójcik, N. Yu, F. Capasso, A. Belyanin, Nonlinear optical interactions of laser modes in quantum cascade lasers. J. Mod. Opt. 58, 727–742 (2011a)ADSzbMATHCrossRefGoogle Scholar
  127. A.K. Wójcik, N. Yu, L. Diehl, F. Capasso, A. Belyanin, Self-synchronization of laser modes and multistability in quantum cascade lasers. Phys. Rev. Lett. 106, 133902-1–133902-4 (2011b)ADSCrossRefGoogle Scholar
  128. H.G. Winful, Instability threshold for an array of coupled semiconductor lasers. Phys. Rev. A 46, 6093–6094 (1992)ADSCrossRefGoogle Scholar
  129. H.G. Winful, L. Rahman, Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers. Phys. Rev. Lett. 65, 1575–1578 (1990)ADSCrossRefGoogle Scholar
  130. H.G. Winful, Y.C. Chen, J.M. Liu, Frequency locking, quasi-periodicity, and chaos in modulated self-pulsating semiconductor lasers. Appl. Phys. Lett. 48, 616–618 (1986)ADSCrossRefGoogle Scholar
  131. M. Yamada, A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers. IEEE J. Quantum Electron. 29, 1330–1336 (1993)ADSCrossRefGoogle Scholar
  132. M. Yamada, Theoretical analysis of noise-reduction effects in semiconductor lasers with help of self-sustained pulsation phenomena. J. Appl. Phys. 79, 61–71 (1996)ADSCrossRefGoogle Scholar
  133. M. Yamada, Computer simulation of feedback induced noise in semiconductor lasers operating with self-sustained pulsation. IEICE Trans. Electron. E81-C, 768–780 (1998a)Google Scholar
  134. M. Yamada, A theoretical analysis of quantum noise in semiconductor leasers operating with self-sustained pulsation. IEICE Trans. Electron. E81-C, 290–298 (1998b)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Shizuoka UniversityShizuokaJapan

Personalised recommendations