Advertisement

Physical Random Number Generations and Photonic Integrated Circuits for Chaotic Generators

  • Junji Ohtsubo
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 111)

Abstract

The strong demands for increased security in data exchange and communications in optical networks have directed a considerable part of research to physical layer data encryption techniques and, for such purpose, higher bit rates of random number generations have been expected. One of the methods based on the dynamics in semiconductor lasers is the use of chaotic time series to generate ultrafast random bit streams as a physical layer. Optical techniques are not only suitable for high-speed random number generations but also for having the good conformity for data transmission in existing optical channels. In this chapter, the principle and practice of physical random number generations based on chaotic dynamics in semiconductor lasers are discussed. The subjects related to the generations of high quality random bit sequences are also presented. For the implementation of the techniques in real systems, the miniaturization and integration of light sources as chaotic generators are essential to perform stable generations of random number bit sequences. Such systems are also expected as light sources in chaotic secure communications discussed in the preceding chapter. For this aim, deigns, and applications of all optical photonic integrated circuits for chaotic generators are presented. Finally, an application of the systems to random key distributions in quantum cryptographic systems is demonstrated.

Keywords

Random Number Generation Semiconductor Laser Optical Feedback Chaotic Signal Chaotic Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. C. Abellan, W. Amaya, D. Domenech, P. Muñoz, J. Capmany, S. Longhi, M.W. Mitchell, V. Pruneri, Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica 3, 989–994 (2016)CrossRefGoogle Scholar
  2. A. Argyris, M. Hamacher, K.E. Chlouverakis, A. Bogris, D. Syvridis, Photonic integrated device for chaos applications in communications. Phys. Rev. Lett. 100, 14101-1–14101-4 (2008)CrossRefzbMATHGoogle Scholar
  3. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, D. Syvridis, Chaos-on-a-chip secures data transmission in optical fiber links. Opt. Express 18, 5188–5198 (2010a)ADSCrossRefGoogle Scholar
  4. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, D. Syvridis, Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. Opt. Express 18, 18763–18768 (2010b)ADSCrossRefGoogle Scholar
  5. S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H.J. Wünsche, F. Henneberger, Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys. Rev. E 69, 016206-1–016206-10 (2004)ADSCrossRefGoogle Scholar
  6. M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, M. Varanonuovo, A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans. Comput. 52, 403–409 (2003)CrossRefGoogle Scholar
  7. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRefGoogle Scholar
  8. T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, A. Uchida, Fast nondeterministic random-bit generation using on-chip chaos lasers. Phys. Rev. A 83, 031803(R)-1–031803(R)-4 (2011)ADSCrossRefGoogle Scholar
  9. S. Heiligenthal, T. Dahms, S. Yanchuk, T. Jüngling, V. Flunkert, I. Kanter, E. Schöll, W. Kinzel, Strong and weak chaos in nonlinear networks with time-delayed couplings. Phys. Rev. Lett. 107, 234102-1–234102-5 (2011)ADSCrossRefGoogle Scholar
  10. S. Heiligenthal, T. Jüngling, O. D’Huys, D.A. Arroyo-Almanza, M.C. Soriano, I. Fischer, I. Kanter, W. Kinzel, Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings. Phys. Rev. E 88, 012902-1–012902-13 (2013)ADSCrossRefGoogle Scholar
  11. K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, P. Davis, Characteristics of fast physical random bit generation using chaotic semiconductor lasers. IEEE J. Quantum Electron. 45, 1367–1378 (2009)ADSCrossRefGoogle Scholar
  12. K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, P. Davis, Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18, 5512–5524 (2010)ADSCrossRefGoogle Scholar
  13. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, Y. Tokura, Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. Opt. Express 17, 9053–9061 (2009)ADSCrossRefGoogle Scholar
  14. K. Huybrechts, G. Morthier, R. Baets, Fast all-optical flip-flop based on a single distributed feedback laser diode. Opt. Express 16, 11405–11410 (2008)ADSCrossRefGoogle Scholar
  15. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, An optical ultrafast random bit generator. Nat. Photon. 4, 58–61 (2010)ADSCrossRefGoogle Scholar
  16. H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes (Artech House, London, 1994)Google Scholar
  17. D. Knuth, The Art of Computer Programming, Seminumerical Algorithms, vol. 2, 3rd edn. (Addison-Wesley, Boston, 1996)zbMATHGoogle Scholar
  18. P. Li, Y.C. Wang, J.Z. Zhang, All-optical fast random number generator. Opt. Express 18, 20360–20369 (2010)ADSCrossRefGoogle Scholar
  19. X. Li, A.B. Cohen, T.E. Murphy, R. Roy, Scalable parallel physical random number generator based on a superluminescent LED. Opt. Lett. 36, 1020–1022 (2011)ADSCrossRefGoogle Scholar
  20. G. Marsaglia, Diehard: a battery of tests of randomness. (1995) http://www.stat.fsu.edu/pub/diehard/
  21. G. Marsaglia, A. Zaman, W.W. Tsang, Toward a universal random number generator. Stat. Probab. Lett. 9, 35–39 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Y.Q. Nie, L. Huang, Y. Liu, F. Payne, J. Zhang, J.W. Pan, The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 86, 063105-1–063105-6 (2015)ADSCrossRefGoogle Scholar
  23. B. Qi, Y.M. Chi, H.K. Lo, L. Qian, High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt. Lett. 35, 312–314 (2010)ADSCrossRefGoogle Scholar
  24. I. Reidler, Y. Aviad, M. Rosenbluh, I. Kanter, Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103, 024102-1–024102-4 (2009)ADSCrossRefGoogle Scholar
  25. D. Rontani, A. Locquet, M. Sciamanna, D.S. Citrin, Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 32, 2960–2962 (2007)ADSCrossRefGoogle Scholar
  26. D. Rontani, A. Locquet, M. Sciamanna, D.S. Citrin, S. Ortin, Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view. IEEE J. Quantum Electron. 45, 879–891 (2009)ADSCrossRefGoogle Scholar
  27. A. Rukhin, J. Soto, J. Nechvatal, M. Smid , E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, A statistical test suite for random and pseudorandom number generators for cryptographic applications. Nat. Inst. Stand. Technol. (Special Publication) 800–22 Revision 1a (2010)Google Scholar
  28. R. Sakuraba, K. Iwakawa, K. Kanno, A. Uchida, Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express 23, 1470–1490 (2015)ADSCrossRefGoogle Scholar
  29. M.C. Soriano, J. Garcıá-Ojalvo, C.R. Mirasso, I. Fischer, Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)ADSCrossRefGoogle Scholar
  30. D.R. Stinson, Cryptography: Theory and Practice (CRC Press, Boca Raton, 1995)zbMATHGoogle Scholar
  31. T. Symul, S.M. Assad, P.K. Lamb, Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 98, 231103-1–231103-3 (2011)ADSCrossRefGoogle Scholar
  32. V.Z. Tronciu, C.R. Mirasso, P. Colet, M. Hamacher, M. Benedetti, V. Vercesi, V. Annovazzi-Lodi, Chaos generation and synchronization using an integrated source with an air gap. IEEE J. Quantum Electron. 46, 1840–1846 (2010)ADSCrossRefGoogle Scholar
  33. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photon. 2, 728–732 (2008)ADSCrossRefGoogle Scholar
  34. A. Uchida, Review on ultra-fast physical number generators based on optical random phenomena. Rev. Laser Eng. 39, 508–514 (2011). (in Japanese)CrossRefGoogle Scholar
  35. A. Uchida, Optical Communication with Chaotic Lasers (Wiley-VCH Weinheim, 2012)Google Scholar
  36. G. Van der Sande, M.C. Soriano, I. Fischer, C.R. Mirasso, Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators. Phys. Rev. E 77, 055202(R)-1–055202(R)-4 (2008)ADSGoogle Scholar
  37. J. Wang, K. Petermann, Noise analysis of semiconductor lasers within the coherence collapse regime. IEEE J. Quantum Electron. 27, 3–9 (1991)ADSCrossRefGoogle Scholar
  38. Y. Wang, P. Li, J. Zhang, Fast random bit generation in optical domain with ultrawide bandwidth chaotic laser. IEEE Photonics Technol. Lett. 22, 1680–1682 (2010)Google Scholar
  39. C.R.S. Williams, J.C. Salevan, X. Li, R. Roy, T.E. Murphy, Fast physical random number generator using amplified spontaneous emission. Opt. Express 23, 23584–23597 (2010)ADSCrossRefGoogle Scholar
  40. J.G. Wu, G.Q. Xia, Z.M. Wu, Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Opt. Express 17, 20124–20133 (2009)ADSCrossRefGoogle Scholar
  41. J.G. Wu, G.Q. Xia, X. Tang, X.D. Lin, T. Deng, L. Fan, Z.M. Wu, Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser. Opt. Express 18, 6661–6666 (2010)ADSCrossRefGoogle Scholar
  42. J.G. Wu, Z.M. Wu, X. Tang, X.D. Lin, T. Deng, G.Q. Xia, G.Y. Feng, Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers. IEEE Photonics Technol. Lett. 23, 759–781 (2011)ADSGoogle Scholar
  43. H.J. Wünsche, S. Bauer, K. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, I. Fischer, Synchronization of delay-coupled oscillators: a study of semiconductor lasers. Phys. Rev. Lett. 94, 163901-1–163901-4 (2005)ADSCrossRefGoogle Scholar
  44. K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, A. Uchida, Secure key distribution using correlated randomness in lasers driven by common random light. Phys. Rev. Lett. 108, 070602-1–070602-5 (2012)ADSCrossRefGoogle Scholar
  45. Y. Yousefi, Y. Barbarin, S. Beri, E.A.J.M. Bente, M.K. Smit, R. Nötzel, D. Lenstra, New role for nonlinear dynamics and chaos in integrated semiconductor laser technology. Phys. Rev. Lett. 98, 044101-1–044101-4 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Shizuoka UniversityShizuokaJapan

Personalised recommendations