Advertisement

Semiconductor Laser Networks: Synchrony, Consistency, and Analogy of Synaptic Neurons

  • Junji Ohtsubo
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 111)

Abstract

Synchronization among coupled elements is universally observed in nonlinear systems, such as in food chain and coupled synaptic neurons as well as coupled semiconductor lasers. Using nonlinear elements showing similar characteristics of synaptic neurons, the behaviors of real neural networks can be effectively investigated and information processing that is similar to the human brain can be performed based on such systems. The typical features of neurons are excitability of the output from external stimuli, inhibition of conflicted inputs, spiking oscillations even including chaos, and synchronization among coupled neurons. As nonlinear dynamics point of view, semiconductor lasers have the similarity with synaptic neurons. Also, neuro-inspired information processing, which mimics the functions of the neuron dynamics, is discussed using nonlinear delay feedback systems such as a semiconductor lasers with optical feedback. The keys for common dynamics of such systems are the consistency of drive-response nonlinear systems and the synchronization properties between distant nonlinear elements. In this chapter, starting from a small number of coupled semiconductor lasers, we investigate the dynamics and synchronization properties of many coupled semiconductor laser networks. We also present a new type of information process and its application based on reservoir computing, in which a single semiconductor laser subjected to optical feedback is used as a reservoir in the neural networks.

Keywords

Semiconductor Laser Optical Feedback Chaos Synchronization Nonlinear Element Couple Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. L. Appeltant, M.C. Soriano, V. Van der Sande, J. Danckaert, S. Massa, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468–474 (2011)CrossRefGoogle Scholar
  2. L. Appeltant, Reservoir computing based on delay-dynamical systems. Joint Ph.D. Thesis, Vrije Universiteit Brussel and Universitat de les Illes Balears, (2012)Google Scholar
  3. L. Appeltant, G. Van der Sande, J. Danckaert, I. Fischer, Constructing optimized binary masks for reservoir computing with delay systems. Sci. Rep. 4, 3629–3633 (2014)CrossRefGoogle Scholar
  4. A. Argyris, M. Bourmpos, D. Syvridis, Experimental synchrony of semiconductor lasers in coupled networks. Opt. Express 24, 5600–5615 (2016)ADSCrossRefGoogle Scholar
  5. Y. Aviad, I. Reidler, M. Zigzag, M. Rosenbluh, I. Kanter, Synchronization in small networks of time-delay coupled chaotic diode lasers. Opt. Express 20, 4352–4359 (2012)ADSCrossRefGoogle Scholar
  6. M. Beierlein, J.R. Gibson, B.W. Connors, A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3, 904–910 (2000)CrossRefGoogle Scholar
  7. M. Bourmpos, A. Argyris, D. Syvridis, Sensitivity analysis of a star optical network based on mutually coupled semiconductor lasers. J. Lightwave Technol. 30, 2618–2624 (2012)ADSCrossRefGoogle Scholar
  8. M. Bourmpos, A. Argyris, D. Syvridis, Analysis of the bubbling effect in synchronized networks with semiconductor lasers. IEEE Photonic Technol. Lett. 25, 817–820 (2013)ADSCrossRefGoogle Scholar
  9. D. Brunner, M.C. Soriano, C.R. Mirasso, I. Fischer, Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364–1400 (2013)ADSCrossRefGoogle Scholar
  10. J.M. Buldú, M.C. Torrent, J. García-Ojalvo, Synchronization in semiconductor laser rings. J. Lightwave Technol. 25, 1549–1554 (2007)ADSCrossRefGoogle Scholar
  11. E. Cohen, E. Rosenbluh, I. Kanter, Phase transition in crowd synchrony of delay-coupled multilayer laser networks. Opt. Express 18, 19683–19689 (2012)ADSCrossRefGoogle Scholar
  12. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012)ADSCrossRefGoogle Scholar
  13. B. Eckhardt, E. Ott, S.H. Strogatz, D.M. Abrams, A. McRobie, Modeling walker synchronization on the Millennium Bridge. Phys. Rev. E 75, 021110-1–021110-10 (2007)ADSMathSciNetCrossRefGoogle Scholar
  14. M. Escalona-Moran, M.C. Soriano, I. Fischer, C.R. Mirasso, Electrocardiogram classification using reservoir computing with logistic regression. IEEE J. Biomed. Health Inf. 19, 892–898 (2015)CrossRefGoogle Scholar
  15. I. Fischer, R. Vicente, J.M. Buldú, M. Peil, C.R. Mirasso, M.C. Torrent, J. Garciá-Ojalvo, Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123902-1–123902-4 (2006)ADSGoogle Scholar
  16. T. Fukuda, T. Kosaka, W. Singer, R.A.W. Galuske, Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J. Neurosci. 26, 3434–3443 (2006)CrossRefGoogle Scholar
  17. C.M. González, C. Masoller, M.C. Torrent, J. García-Ojalvo, Synchronization via clustering in a small delay-coupled laser network. Europhys. Lett. 79, 64003-1–64003-6 (2007)ADSCrossRefGoogle Scholar
  18. R.W. Guillery, Review: observations of synaptic structures: origins of the neuron doctrine and its current status. Phil. Trans. Ray. Soc. B 360, 1281–1307 (2005)CrossRefGoogle Scholar
  19. D. Hansel, G. Mato, C. Meunier, Phase dynamics for weakly coupled Hodgkin-Huxley neurons. Europhys. Lett. 23, 367–372 (1993)ADSCrossRefGoogle Scholar
  20. T. Heil, I. Fischer, W. Elsäßer, J. Mulet, C.R. Mirasso, Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett. 86, 795–798 (2001)ADSCrossRefGoogle Scholar
  21. S. Heiligenthal, T. Dahms, S. Yanchuk, T. Jüngling, V. Flunkert, I. Kanter, E. Schöll, W. Kinzel, Strong and weak chaos in nonlinear networks with time-delayed couplings. Phys. Rev. Lett. 107, 234102-1–234102-5 (2011)ADSCrossRefGoogle Scholar
  22. S. Heiligenthal, T. Jüngling, O. D’Huys, D.A. Arroyo-Almanza, M.C. Soriano, I. Fischer, I. Kanter, W. Kinzel, Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings. Phys. Rev. E 88, 012902-1–012902-13 (2013)ADSCrossRefGoogle Scholar
  23. H. Hicke, M.A. Escalona-Morán, D. Brunner, M.C. Soriano, I. Fischer, C.R. Mirasso, Information processing using transient dynamics of semiconductor lasers subject to delayed feedback. IEEE J. Sel. Top. Quantum Electron. 19, 1501610-1–1501610-10 (2013)CrossRefGoogle Scholar
  24. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRefGoogle Scholar
  25. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)ADSMathSciNetCrossRefGoogle Scholar
  26. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)ADSCrossRefGoogle Scholar
  27. U. Huebner, N.B. Abraham, C.O. Weiss, Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Phys. Rev. A 40, 6354–6365 (1989)ADSCrossRefGoogle Scholar
  28. C. Huygens, Christiaan Huygens’ the Pendulum Clock, or, Geometrical Demonstrations Concerning the Motion of Pendula as Applied to Clocks (Iowa State Press, 1986)Google Scholar
  29. H. Jaeger, The ‘echo state’ approach to analyzing and training recurrent neural networks. Technical Report GMD Report 148, German National Research Center for Information Technology (2001)Google Scholar
  30. H. Jaeger, H. Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)ADSCrossRefGoogle Scholar
  31. I. Kanter, M. Zigzag, A. Englert, F. Geissler, W. Kinzel, Synchronization of unidirectional time delay chaotic networks and the greatest common divisor. Europhys. Lett. 93, 60003-1–60003-6 (2011a)ADSGoogle Scholar
  32. I. Kanter, E. Kopelowitz, R. Vardi, M. Zigzag, W. Kinzel, M. Abeles, D. Cohen, Nonlocal mechanism for cluster synchronization in neural circuits. Europhys. Lett. 93, 66001-1–66001-6 (2011b)ADSGoogle Scholar
  33. I. Kanter, E. Kopelowitz, R. Vardi, M. Zigzag, D. Cohen, W. Kinzel, Nonlocal mechanism for synchronization of time delay networks. J. Stat. Phys. 145, 713–733 (2011c)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. L. Larger, M.C. Soriano, D. Brunner, L. Appeltant, J.M. Gutierrez, L. Pesquera, C.R. Mirasso, I. Fischer, Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Opt. Express 5, 188–200 (2012)Google Scholar
  35. W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002)CrossRefzbMATHGoogle Scholar
  36. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: simple building blocks of complex networks. Science 298, 824–828 (2002)ADSCrossRefGoogle Scholar
  37. J. Mulet, C.R. Mirasso, T. Heil, I. Fischer, Synchronization scenario of two distant mutually coupled semiconductor lasers. J. Opt. B: Quantum Semiclass. Opt. 6, 97–105 (2004)ADSCrossRefGoogle Scholar
  38. J. Nakayama, K. Kanno, A. Uchida, Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal. Opt. Express 24, 8679–8692 (2016)ADSCrossRefGoogle Scholar
  39. M. Nixon, M. Friedman, E. Ronen, A.A. Friesem, N. Davidson, I. Kanter, Synchronized cluster formation in coupled laser networks. Phys. Rev. Lett. 106, 223901-1–223901-4 (2011)ADSGoogle Scholar
  40. M. Nixon, M. Friedman, E. Ronen, A.A. Friesem, N. Davidson, I. Kanter, Controlling synchronization in large laser networks. Phys. Rev. Lett. 108, 214101-1–214101-5 (2012)ADSCrossRefGoogle Scholar
  41. J. Ohtsubo, R. Ozawa, M. Nanbu, Synchronization of small nonlinear networks in chaotic semiconductor lasers. Jpn. J. Appl. Phys. 54, 072702-1–072702-6 (2015)ADSCrossRefGoogle Scholar
  42. Y. Paquot, F. Duport, F. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, Optoelectronic reservoir computing. Sci. Rep. 2, 287–292 (2012)ADSCrossRefGoogle Scholar
  43. T. Pérez, A. Uchida, Reliability and synchronization in a delay-coupled neuronal network with synaptic plasticity. Phys. Rev. E 83, 061915-1–061915-6 (2011)ADSCrossRefGoogle Scholar
  44. P.R. Prucnal, B.J. Shastri, T.F. de Lima, M.A. Nahmias, A.N. Tait, Recent progress in semiconductor excitable lasers for photonic spike processing. Adv. Opt. Photon. 8, 228–299 (2016)CrossRefGoogle Scholar
  45. D.P. Rosin, D. Rontani, D.J. Gauthier, E. Schöll, Control of synchronization patterns in neural-like Boolean networks. Phys. Rev. Lett. 110, 104102-1–104102-5 (2013)ADSCrossRefGoogle Scholar
  46. M.C. Soriano, J. Garcıá-Ojalvo, C.R. Mirasso, I. Fischer, Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013a)ADSCrossRefGoogle Scholar
  47. M.C. Soriano, S. Ortín, D. Brunner, L. Larger, C.R. Mirasso, I. Fischer, L. Pesquera, Optoelectronic reservoir computing: tackling noise-induced performance degradation. Opt. Express 21, 12–20 (2013b)ADSCrossRefGoogle Scholar
  48. S.H. Strogatz, I. Stewart, Coupled oscillators and biological synchronization. Sci. Am. 269, 102–109 (1993)CrossRefGoogle Scholar
  49. S.H. Strogatz, D.M. Abrams, A. McRobie, B. Eckhardt, E. Ott, Crowd synchrony on the Millennium Bridge. Nature 438, 43–44 (2005)ADSCrossRefGoogle Scholar
  50. R.D. Traub, M.A. Whittington, I.M. Stanford, J.G. Jefferys, A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996)ADSCrossRefGoogle Scholar
  51. A. Uchida, A. McAllister, R. Roy, Consistency of nonlinear system response to complex drive signals. Phys. Rev. Lett. 93, 244102-1–244102-4 (2004)ADSGoogle Scholar
  52. G. Van der Sande, M.C. Soriano, I. Fischer, C.R. Mirasso, Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators. Phys. Rev. E 77, 055202(R)-1–055202(R)-4 (2008)ADSGoogle Scholar
  53. R. Vardi, A. Wallach, E. Kopelowitz, M. Abeles, S. Marom, I. Kanter, Synthetic reverberating activity patterns embedded in networks of cortical neurons. Europhys. Lett. 97, 66002-1–66002-6 (2012)ADSCrossRefGoogle Scholar
  54. R. Vicente, L.L. Gollo, C.R. Mirasso, I. Fischer, G. Pipa, Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc. Natl. Acad. Sci. 105, 17157–17162 (2008)ADSCrossRefGoogle Scholar
  55. A.S. Weigend, N.A. Gershenfeld, Time series prediction: forecasting the future and understanding the past. http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html, 1993
  56. S.Y. Xiang, A.J. Wen, W. Pan, Synchronization regime of star-type laser network with heterogeneous coupling delays. IEEE Photonic Technol. Lett. 28, 1988–1991 (2016)ADSCrossRefGoogle Scholar
  57. J. Zamora-Munt, C. Masoller, J. García-Ojalvo, R. Roy, Crowd synchrony and quorum sensing in delay-coupled lasers. Phys. Rev. Lett. 105, 264101-1–264101-4 (2010)ADSCrossRefGoogle Scholar
  58. W.L. Zhang, W. Pan, B. Luo, X.H. Zou, M.Y. Wang, One-to-many and many-to-one optical chaos communications using semiconductor lasers. IEEE Photonic Technol. Lett. 20, 712–714 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Shizuoka UniversityShizuokaJapan

Personalised recommendations