Drusenoid Retinal Pigment Epithelial Detachment

  • Monika FleckensteinEmail author
  • Arno Philipp Göbel
  • Steffen Schmitz-Valckenberg
  • Frank Gerhard Holz


Drusenoid pigment epithelial detachments (PED) are most commonly associated with age-related macular degeneration (AMD) and primarily represent a feature of the non-neovascular stage. However, discrimination between drusenoid, serous, or vascularized PED is challenging albeit of high relevance since the clinical management and the course of disease differs.


  1. 1.
    Green WR, Enger C. Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture. Ophthalmology. 1993;100(10):1519–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Sarks SH. Council Lecture. Drusen and their relationship to senile macular degeneration. Aust J Ophthalmol. 1980;8(2):117–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson DH, Ozaki S, Nealon M, et al. Local cellular sources of apolipoprotein E in the human retina and retinal pigmented epithelium: implications for the process of drusen formation. Am J Ophthalmol. 2001;131(6):767–81.Google Scholar
  4. 4.
    Crabb JW, Miyagi M, Gu X, et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A. 2002;99(23):14682–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lengyel I, Flinn JM, Peto T, et al. High concentration of zinc in sub-retinal pigment epithelial deposits. Exp Eye Res. 2007;84(4):772–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Li CM, Chung BH, Presley JB, et al. Lipoprotein-like particles and cholesteryl esters in human Bruch’s membrane: initial characterization. Invest Ophthalmol Vis Sci. 2005;46(7):2576–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Malek G, Li CM, Guidry C, Medeiros NE, Curcio CA. Apolipoprotein B in cholesterol-containing drusen and basal deposits of human eyes with age-related maculopathy. Am J Pathol. 2003;162(2):413–25.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mullins RF, Russell SR, Anderson DH, Hageman GS. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 2000;14(7):835–46.PubMedGoogle Scholar
  9. 9.
    Mullins RF, Hageman GS. Human ocular drusen possess novel core domains with a distinct carbohydrate composition. J Histochem Cytochem. 1999;47(12):1533–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Sarks JP, Sarks SH, Killingsworth MC. Evolution of soft drusen in age-related macular degeneration. Eye (Lond). 1994;8(Pt 3):269–83.CrossRefGoogle Scholar
  11. 11.
    Gamulescu MA, Helbig H, Wachtlin J. [Differential diagnosis and therapy of pigment epithelial detachment]. Ophthalmologe. 2014;111(1):79–90; quiz 91–2.Google Scholar
  12. 12.
    Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol. 1995;39(5):367–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Ferris FL, Davis MD, Clemons TE, et al. A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol. 2005;123(11):1570–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Seddon JM, Sharma S, Adelman RA. Evaluation of the clinical age-related maculopathy staging system. Ophthalmology. 2006;113(2):260–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Ferris III FL, Wilkinson CP, Bird A, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120(4):844–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Cukras C, Agron E, Klein ML, et al. Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: age-related eye disease study report no. 28. Ophthalmology. 2010;117(3):489–99.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mrejen S, Sarraf D, Mukkamala SK, Freund KB. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina. 2013;33(9):1735–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Bird A. Pathogenesis of retinal pigment epithelial detachment in the elderly: the relevance of Bruch’s membrane change. Eye (Lond). 1991;5(Doyne Lecture):1–12.Google Scholar
  19. 19.
    Roquet W, Roudot-Thoraval F, Coscas G, Soubrane G. Clinical features of drusenoid pigment epithelial detachment in age related macular degeneration. Br J Ophthalmol. 2004;88(5):638–42.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sikorski BL, Bukowska D, Kaluzny JJ, Szkulmowski M, Kowalczyk A, Wojtkowski M. Drusen with accompanying fluid underneath the sensory retina. Ophthalmology. 2011;118(1):82–92. doi:  10.1016/j.ophtha.2010.04.017.
  21. 21.
    Alexandre de Amorim Garcia Filho C, Yehoshua Z, Gregori G, Farah ME, Feuer W, Rosenfeld PJ. Spectral-domain optical coherence tomography imaging of drusenoid pigment epithelial detachments. Retina. 2013;33(8):1558–66.CrossRefPubMedGoogle Scholar
  22. 22.
    Ouyang Y, Heussen FM, Hariri A, Keane PA, Sadda SR. Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. Ophthalmology. 2013;120(12):2656–65.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Framme C, Wolf S, Wolf-Schnurrbusch U. Small dense particles in the retina observable by spectral-domain optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51(11):5965–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Clemens CR, Alten F, Heiduschka P, Eter N. Morphology score as a marker of retinal function in drusenoid pigment epithelial detachment. Retina. 2015;35:1351–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Karadimas P, Bouzas EA. Fundus autofluorescence imaging in serous and drusenoid pigment epithelial detachments associated with age-related macular degeneration. Am J Ophthalmol. 2005;140(6):1163–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Gobel AP, Fleckenstein M, Heeren TF, Holz FG, Schmitz-Valckenberg S. In-vivo mapping of drusen by fundus autofluorescence and spectral-domain optical coherence tomography imaging. Graefes Arch Clin Exp Ophthalmol. 2016;254:59–67.CrossRefPubMedGoogle Scholar
  27. 27.
    Cleasby GW, Nakanishi AS, Norris JL. Prophylactic photocoagulation of the fellow eye in exudative senile maculopathy. A preliminary report. Mod Probl Ophthalmol. 1979;20:141–7.PubMedGoogle Scholar
  28. 28.
    Wetzig PC. Treatment of drusen-related aging macular degeneration by photocoagulation. Trans Am Ophthalmol Soc. 1988;86:276–90.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Sigelman J. Foveal drusen resorption one year after perifoveal laser photocoagulation. Ophthalmology. 1991;98(9):1379–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Figueroa MS, Regueras A, Bertrand J. Laser photocoagulation to treat macular soft drusen in age-related macular degeneration. Retina. 1994;14(5):391–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Frennesson IC, Nilsson SE. Laser photocoagulation of soft drusen in early age-related maculopathy (ARM). The one-year results of a prospective, randomised trial. Eur J Ophthalmol. 1996;6(3):307–14.PubMedGoogle Scholar
  32. 32.
    Sarks SH, Arnold JJ, Sarks JP, Gilles MC, Walter CJ. Prophylactic perifoveal laser treatment of soft drusen. Aust N Z J Ophthalmol. 1996;24(1):15–26.CrossRefPubMedGoogle Scholar
  33. 33.
    Guymer RH, Gross-Jendroska M, Owens SL, Bird AC, Fitzke FW. Laser treatment in subjects with high-risk clinical features of age-related macular degeneration. Posterior pole appearance and retinal function. Arch Ophthalmol. 1997;115(5):595–603.CrossRefPubMedGoogle Scholar
  34. 34.
    Laser treatment in eyes with large drusen. Short-term effects seen in a pilot randomized clinical trial. Choroidal Neovascularization Prevention Trial Research Group. Ophthalmology. 1998;105(1):11–23.Google Scholar
  35. 35.
    Olk RJ, Friberg TR, Stickney KL, et al. Therapeutic benefits of infrared (810-nm) diode laser macular grid photocoagulation in prophylactic treatment of nonexudative age-related macular degeneration: two-year results of a randomized pilot study. Ophthalmology. 1999;106(11):2082–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Rodanant N, Friberg TR, Cheng L, et al. Predictors of drusen reduction after subthreshold infrared (810 nm) diode laser macular grid photocoagulation for nonexudative age-related macular degeneration. Am J Ophthalmol. 2002;134(4):577–85.CrossRefPubMedGoogle Scholar
  37. 37.
    Little HL, Showman JM, Brown BW. A pilot randomized controlled study on the effect of laser photocoagulation of confluent soft macular drusen. Ophthalmology. 1997;104(4):623–31.CrossRefPubMedGoogle Scholar
  38. 38.
    Group CoA-RMDPTR. Laser treatment in patients with bilateral large drusen: the complications of age-related macular degeneration prevention trial. Ophthalmology. 2006;113(11):1974–86.CrossRefGoogle Scholar
  39. 39.
    Guymer RH, Brassington KH, Dimitrov P, et al. Nanosecond-laser application in intermediate AMD: 12-month results of fundus appearance and macular function. Clin Experiment Ophthalmol. 2014;42(5):466–79.CrossRefPubMedGoogle Scholar
  40. 40.
    Jobling AI, Guymer RH, Vessey KA, et al. Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage. FASEB J. 2015;29(2):696–710.CrossRefPubMedGoogle Scholar
  41. 41.
    Saksens NT, Fleckenstein M, Schmitz-Valckenberg S, et al. Macular dystrophies mimicking age-related macular degeneration. Prog Retin Eye Res. 2014;39:23–57.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Monika Fleckenstein
    • 1
    Email author
  • Arno Philipp Göbel
    • 1
  • Steffen Schmitz-Valckenberg
    • 1
  • Frank Gerhard Holz
    • 1
  1. 1.Department of OphthalmologyUniversity of BonnBonnGermany

Personalised recommendations