Skip to main content

Stem Cell Transplant Immunology

  • Chapter
  • First Online:
Book cover Cardiac Regeneration

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 4))

Abstract

Stem cell transplantation is quickly developing as an attractive therapeutic option for regenerating tissues injured by cardiovascular disease. From embryonic to induced pluripotent stem cells, from injection of stem cells to differentiation of cardiac cell lineages, researchers continue to push the boundaries of how stem cells can be used in treatments. The major hurdle in the way of creating effective methods for tissue regeneration is immune rejection of transplanted materials; even undifferentiated stem cells can be recognized by the transplant recipients’ immune system, limiting their survival and overall beneficial potential. Posttransplant rejection of cellular materials does not always follow the same immunological progression, and as such, different types of stem cells can be rejected through distinct immune pathways. Therefore, a strong understanding of the known mechanisms behind stem cell immunogenicity—including specific cases of embryonic and patient-specific stem cell rejection—is pivotal for researchers to develop more efficient therapeutics. The future of stem cell transplantation research lies in developing techniques that prevent immune recognition of transplanted cells or tissues and in generating ready-to-use stem cell lines that can be quickly and easily prepared for transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ES:

Embryonic stem

HLA:

Human leukocyte antigen

IFN:

Interferon

iPS:

Induced pluripotent

MHC:

Major histocompatibility complex

miHA:

Minor histocompatibility antigen

NK:

Natural killer

NT-ESC:

Nuclear transfer embryonic stem cell

TCR:

T cell receptor

SCNT:

Somatic cell nuclear transfer

SNPs:

Single nucleotide polymorphisms

References

  • de Almeida PE et al (2014) Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun 5:3903

    Article  PubMed  CAS  Google Scholar 

  • Ardehali R et al (2013) Prospective isolation of human embryonic stem cell-derived cardiovascular progenitors that integrate into human fetal heart tissue. Proc Natl Acad Sci U S A 110(9):3405–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum B, Benvenisty N (2008) The Tumorigenicity of human embryonic stem cells. Adv Cancer Res 100(08):133–158

    Article  PubMed  Google Scholar 

  • Carpenter L et al (2012) Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 21(6):977–986

    Article  CAS  PubMed  Google Scholar 

  • Chiou S-H et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444

    Article  CAS  PubMed  Google Scholar 

  • Deuse T et al (2011) Human leukocyte antigen I knockdown human embryonic stem cells induce host ignorance and achieve prolonged xenogeneic survival. Circulation 124(11 Suppl):S3–S9

    PubMed  Google Scholar 

  • Deuse T et al (2015) SCNT-derived ESCs with mismatched mitochondria trigger an immune response in allogeneic hosts. Cell Stem Cell 16(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Drukker M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99(15):9864–9869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzierzak-Mietla M et al (2012) Occurrence and impact of minor histocompatibility antigens’ disparities on outcomes of hematopoietic stem cell transplantation from HLA-matched sibling donors. Bone Marrow Res 2012:257086

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulmy E et al (1976) Alloimmunity to human H-Y. Lancet 2(7996):1206

    Article  CAS  PubMed  Google Scholar 

  • Guleria I, Sayegh MH (2007) Maternal acceptance of the fetus: true human tolerance. J Immunol 178(6):3345–3351

    Article  CAS  PubMed  Google Scholar 

  • He J-Q et al (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Horton R et al (2004) Gene map of the extended human MHC. Nat Rev Genet 5(12):889–899

    Article  CAS  PubMed  Google Scholar 

  • Hsu DC et al (2008) Long-term management of patients taking immunosuppressive drugs. Aust Prescr 32(3):68–71

    Article  Google Scholar 

  • Kambayashi T et al (2001) Purified MHC class I molecules inhibit activated NK cells in a cell-free system in vitro. Eur J Immunol 31(3):869–875

    Article  CAS  PubMed  Google Scholar 

  • Karlhofer FM, Ribaudo RK, Yokoyama WM (1992) MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358(6381):66–70

    Article  CAS  PubMed  Google Scholar 

  • Khurana A, Brennan DC (2011) Pathology of solid organ transplantation. Springer-Verlag, Berlin, pp 11–31

    Google Scholar 

  • Laflamme MA et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22(4):448–456

    Article  CAS  PubMed  Google Scholar 

  • Ma M et al (2011) Major histocompatibility complex-I expression on embryonic stem cell-derived vascular progenitor cells is critical for syngeneic transplant survival. Stem Cells 28(9):1465–1475

    Article  CAS  Google Scholar 

  • Macedo C et al (2009) Contribution of naïve and memory t-cell populations to the human alloimmune response. Am J Transpl 9(9):2057–2066

    Article  CAS  Google Scholar 

  • Makkar R et al (2014) Abstract 20536: allogeneic heart stem cells to achieve myocardial regeneration (ALLSTAR): the one year phase I results. Circulation 130(Suppl 2):A20536–A20536

    Google Scholar 

  • Makkar RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Messina E (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921

    Article  CAS  PubMed  Google Scholar 

  • Mummery C et al (2002) Cardiomyocyte differentiation of mouse and human embryonic stem cells*. J Anat 200(3):233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neefjes J et al (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836

    Article  CAS  PubMed  Google Scholar 

  • Nelson TJ et al (2009) Repair of acute myocardial infarction with iPS induced by human stemness factors. Circulation 120(5):408

    Article  PubMed  PubMed Central  Google Scholar 

  • Nussbaum J et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SD et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SD et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516

    Article  PubMed  Google Scholar 

  • Spierings E (2014) Minor histocompatibility antigens: past, present, and future. Tissue Antigens 84(4):374–360

    Article  PubMed  CAS  Google Scholar 

  • Starr TK, Jameson SC, Hogquist KA (2003) Positive and negativeselection of T cells. Ann Rev Immunol 21(1):139–176

    Article  CAS  Google Scholar 

  • Streilein JW (2003) Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3(11):879–889

    Article  CAS  PubMed  Google Scholar 

  • Swijnenburg R-J, Schrepfer S, Govaert JA et al (2008a) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A 105(35):12991–12996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swijnenburg R-J, Schrepfer S, Cao F et al (2008b) In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev 17:1023–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153(6):1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Taylor CJ et al (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient hla types. Cell Stem Cell 11(2):147–152

    Article  CAS  PubMed  Google Scholar 

  • Templin C et al (2012) Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iod. Circulation 126(4):430–439

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Vogt MH et al (2000) DFFRY codes for a new human male-specific minor transplantation antigen involved in bone marrow graft rejection. Blood 95(3):1100–1105

    Article  CAS  PubMed  Google Scholar 

  • Xu C et al (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91(6):501–508

    Article  CAS  PubMed  Google Scholar 

  • Yang Y et al (2002) VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. J Appl Physiol 93(3):1140–1151

    Article  CAS  PubMed  Google Scholar 

  • Zerrahn J, Held W, Raulet DH (1997) The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88(5):627–636

    Article  CAS  PubMed  Google Scholar 

  • Zhao T et al (2015) Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell 17(3):1–7

    Article  CAS  Google Scholar 

  • Zhao T et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215

    Article  CAS  PubMed  Google Scholar 

  • Zwi-Dantsis L et al (2013) Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. Eur Heart J 34(21):1575–1586

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Schrepfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Miller, K.K., Schrepfer, S. (2017). Stem Cell Transplant Immunology. In: Ieda, M., Zimmermann, WH. (eds) Cardiac Regeneration. Cardiac and Vascular Biology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-56106-6_12

Download citation

Publish with us

Policies and ethics