Skip to main content

Ultrasonic Spot Welding—Low Energy Manufacturing for Lightweight Fuel Efficient Transport Applications

  • Chapter
  • First Online:
  • 2916 Accesses

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

High power ultrasonic spot welding is an alternative manufacturing process which recently has been developed for joining automotive bodies. This technique is a very low energy process and forms effective welds in less than a second. The present chapter covers different aspects of High Power Ultrasonic Spot Welding HPUSW technology towards lightweighting for automotive applications. The chapter will include but not limited to similar and dissimilar bonding, mechanism of bonding, interfacial reaction, grain structure, texture development and process model of high power ultrasonic spot welding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Das S, Graziano D, Upadhyayula VKK, Masanet E, Riddle M, Cresko J (2016) Vehicle lightweighting energy use impacts in U.S. light-duty vehicle fleet. Sustain Mater Technol 8:5–13. doi:10.1016/j.susmat.2016.04.001

    Google Scholar 

  2. Singh H, Kabeer B, Jansohn W, Davies J, Kan C-D, Kramer D, Marzougui D, Morgan RM, Quong S, Wood I (2012) Mass reduction for light-duty vehicles for model years 2017–2025. Department of Transportation, Washington, DC

    Google Scholar 

  3. Heuss R, Müller N, Sintern Wv, Starke A, Tschiesner A (2012) Lightweight, heavy impact. McKinsey & Company. www.autoassembly.mckinsey.com/html/resources/publications.asp

  4. Council AC (2015) Implementing plastic and polymer composite lightweighting solutions to meet 2025 corporate average fuel economy standards. (PLASTICS DIVISION)

    Google Scholar 

  5. Haddadi F, Tsivoulas D (2016) Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding. Mater Charact 118:340–351. doi:10.1016/j.matchar.2016.06.004

    Article  Google Scholar 

  6. Haddadi F (2016) Microstructure reaction control of dissimilar automotive aluminium to galvanized steel sheets ultrasonic spot welding. Mater Sci Eng, A 678:72–84. doi:10.1016/j.msea.2016.09.093

    Article  Google Scholar 

  7. Haddadi F, Abu-Farha F (2015) Microstructural and mechanical performance of aluminium to steel high power ultrasonic spot welding. J Mater Process Technol 225:262–274. doi:10.1016/j.jmatprotec.2015.06.019

    Article  Google Scholar 

  8. Qiu R, Yu X, Zhang H, Zhang K (2011) Joining Phenomena of Resistance Spot Welded joint between titanium and aluminium alloy. Adv Mater Res 230–232:982–986. doi:10.4028/www.scientific.net/AMR.230-232.982

    Article  Google Scholar 

  9. Abe Y, Kato T, Mori K (2009) Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die. J Mater Process Technol 209(8):3914–3922

    Article  Google Scholar 

  10. Hsieh M-J, Lee R-T, Chiou Y-C (2017) Friction stir spot fusion welding of low-carbon steel to aluminum alloy. J Mater Process Technol 240:118–125. doi:10.1016/j.jmatprotec.2016.08.034

    Article  Google Scholar 

  11. Zhang CQ, Robson JD, Prangnell PB (2016) Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4. J Mater Process Technol 231:382–388. doi:10.1016/j.jmatprotec.2016.01.008

    Article  Google Scholar 

  12. Chen YC, Bakavos D, Gholinia A, Prangnell PB (2012) HAZ development and accelerated post-weld natural ageing in ultrasonic spot welding aluminium 6111-T4 automotive sheet. Acta Mater 60(6–7):2816–2828. doi:10.1016/j.actamat.2012.01.047

    Article  Google Scholar 

  13. Chen Y, Haddadi F, Prangnell P (2010) Feasibility study of short cycle time friction stir spot welding thin sheet Al to ungalvanised and galvanized steel. Paper presented at the 8th international friction stir welding symposium, Germany, 18–20 May 2010

    Google Scholar 

  14. Bakavos D, Prangnell PB (2009) Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet. Sci Technol Weld Join 14(5):443–456. doi:10.1179/136217109x427494

    Article  Google Scholar 

  15. Harthoon JL (1978) Ultrasonice metal welding, vol 1

    Google Scholar 

  16. Jahn R, Cooper R, Wilkosz D (2007) The effect of anvil geometry and welding energy on microstructures in ultrasonic spot welds of AA6111-T4. Metallurg Mater Trans A 38(3):570–583. doi:10.1007/s11661-006-9087-0

    Article  Google Scholar 

  17. Kenik E, Jahn R (2003) Microstructure of ultrasonic welded aluminum by orientation imaging microscopy. Microscopy Microanal 9 (Suppl S02):720–721

    Google Scholar 

  18. Bakavos D, Prangnell PB (2010) Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet. Mater Sci Eng, A 527(23):6320–6334. doi:10.1016/j.msea.2010.06.038

    Article  Google Scholar 

  19. Panteli A, Chen Y-C, Strong D, Zhang X, Prangnell PB (2011) Optimisation of aluminium to magnesium ultrasonic spot welding. JOM 64(3):2012. doi:10.1007/s11837-012-0268-6

  20. Robson JD, Panteli A, Iqbal N, Prangnell PB (2012) modeling intermetallic phase formation in dissimilar metal solid state welding of aluminium and magnesium alloy. Mater Sci Eng: A

    Google Scholar 

  21. Panteli A, Robson JD, Chen Y-C, Prangnell PB (2013) The effectiveness of surface coatings on preventing interfacial reaction during ultrasonic welding of aluminum to magnesium. Metallurg Mater Trans A 44(13):5773–5781. doi:10.1007/s11661-013-1928-z

    Article  Google Scholar 

  22. Haddadi F, Abu-Farha F (2016) The effect of interface reaction on vibration evolution and performance of aluminium to steel high power ultrasonic spot joints. Mater Des 89:50–57. doi:10.1016/j.matdes.2015.09.121

    Article  Google Scholar 

  23. Daniels HPC (1965) Ultrasonic welding. Ultrasonics 3(4):190–196. doi:10.1016/0041-624x(65)90169-1

    Article  Google Scholar 

  24. Matheny MP, Graff KF (2015) 11—Ultrasonic welding of metals. In: Power ultrasonics. Woodhead Publishing, Oxford, pp 259–293. doi:http://dx.doi.org/10.1016/B978-1-78242-028-6.00011-9

  25. Staff PDL (1997) Chapter 5—Ultrasonic welding. Handbook of plastics joining. William Andrew Publishing, Norwich, NY, pp 35–43b

    Chapter  Google Scholar 

  26. Hetrick T, Baer JR, Zhu W, Reatherford LV, Grima AJ, SCHOll DJ, Wilkosz DE, Fatima S, Ward SM (2009) Ultrasonic metal welding process robustness in aluminum automotive body construction applications. Welding J 88 (7):149–158

    Google Scholar 

  27. Tsujino J, Hongoh M, Yoshikuni M, Miura H, Ueoka T (2005) Welding characteristics and temperature rises of various frequency ultrasonic plastic welding. In: 2005 IEEE ultrasonics symposium, 18–21 Sept 2005, pp 707–712

    Google Scholar 

  28. Watanabe T, Sakuyama H, Yanagisawa A (2009) Ultrasonic welding between mild steel sheet and Al-Mg alloy sheet. J Mater Process Technol 209(15–16):5475–5480. doi:10.1016/j.jmatprotec.2009.05.006

    Article  Google Scholar 

  29. Zhu Z, Lee K, Wang X (2011) Ultrasonic welding of dissimilar metals, AA6061 and Ti6Al4 V. Int J Adv Manuf Technol:1–6. doi:10.1007/s00170-011-3534-9

  30. Balle F, Wagner G, Eifler D (2009) Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites. Adv Eng Mater 11(1–2):35–39. doi:10.1002/adem.200800271

    Article  Google Scholar 

  31. Wagner G, Balle F, Eifler D (2012) Ultrasonic welding of hybrid joints. JOM 64(3):401–406. doi:10.1007/s11837-012-0269-5

    Article  Google Scholar 

  32. Vries ED (2004) Mechanics and mechanisms of ultrasonic metal welding. Dissertation, The Ohio State University

    Google Scholar 

  33. Cheng X, Li X (2007) Investigation of heat generation in ultrasonic metal welding using micro sensor arrays. J Micromech Microeng 17:273–282. doi:10.1088/0960-1317/17/2/013

    Article  Google Scholar 

  34. Prangnell PB, Bakavos D (2010) Novel approaches to friction spot welding thin aluminium automotive sheet. Mater Sci Forum 638–642:6. doi:10.4028/www.scientific.net/MSF.638-642.1237

    Google Scholar 

  35. Shawn Lee S, Shao C, Hyung Kim T, Jack Hu S, Kannatey-Asibu E, Cai WW, Patrick Spicer J, Abell JA (2014) Characterization of ultrasonic metal welding by correlating online sensor signals with weld attributes. J Manuf Sci Eng 136 (5):051019–051019. doi:10.1115/1.4028059

  36. Harman G, Albers J (1977) The ultrasonic welding mechanism as applied to aluminum-and gold-wire bonding in microelectronics. IEEE Trans Parts Hybrids Packag 13(4):406–412

    Article  Google Scholar 

  37. Siddiq A, Ghassemieh E (2009) Theoretical and FE analysis of ultrasonic welding of aluminum alloy 3003. J Manuf Sci Eng 131(4):041007–041011

    Article  Google Scholar 

  38. Mariani E, Ghassemieh E (2010) Microstructure evolution of 6061 O Al alloy during ultrasonic consolidation: An insight from electron backscatter diffraction. Acta Mater 58(7):2492–2503. doi:10.1016/j.actamat.2009.12.035

    Article  Google Scholar 

  39. Allameh SM, Mercer C, Popoola D, Soboyejo WO (2005) Microstructural characterization of ultrasonically welded aluminum. J Eng Mater Technol 127(1):65–74

    Article  Google Scholar 

  40. Borrisutthekul R, Yachi T, Miyashita Y, Mutoh Y (2007) Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy. Mater Sci Eng, A 467(1–2):108–113. doi:10.1016/j.msea.2007.03.049

    Article  Google Scholar 

  41. Sun Z, Karppi R (1996) The application of electron beam welding for the joining of dissimilar metals: an overview. J Mater Process Technol 59(3):257–267. doi:10.1016/0924-0136(95)02150-7

    Article  Google Scholar 

  42. Barnes TA, Pashby IR (2000) Joining techniques for aluminium spaceframes used in automobiles: Part I—solid and liquid phase welding. J Mater Process Technol 99(1–3):62–71. doi:10.1016/s0924-0136(99)00367-2

    Article  Google Scholar 

  43. Haddadi F (2015) Rapid intermetallic growth under high strain rate deformation during high power ultrasonic spot welding of aluminium to steel. Mater Des 66, Part B:459–472. doi:http://dx.doi.org/10.1016/j.matdes.2014.07.001

  44. Xu L, Wang L, Chen Y-C, Robson JD, Prangnell PB (2016) Effect of interfacial reaction on the mechanical performance of steel to aluminum dissimilar ultrasonic spot welds. Metallurg Mater Trans A 47(1):334–346. doi:10.1007/s11661-015-3179-7

    Article  Google Scholar 

  45. Haddadi F, Strong D, Prangnell PB (2012) Effect of zinc coatings on joint properties and interfacial reactions in aluminum to steel ultrasonic spot welding. JOM 64(3):407–413. doi:10.1007/s11837-012-0265-9

    Article  Google Scholar 

  46. Siddiq A, Ghassemieh E (2008) Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects. Mech Mater 40(12):982–1000. doi:10.1016/j.mechmat.2008.06.004

    Article  Google Scholar 

  47. Jedrasiak P, Shercliff HR, Chen YC, Wang L, Prangnell P, Robson J (2015) Modeling of the thermal field in dissimilar alloy ultrasonic welding. J Mater Eng Perform 24(2):799–807. doi:10.1007/s11665-014-1342-8

    Article  Google Scholar 

  48. Kim W, Argento A, Grima A, Scholl D, Ward S (2011) Thermo-mechanical analysis of frictional heating in ultrasonic spot welding of aluminium plates. Proc Inst Mech Eng, Part B: J Eng Manuf 225(7):1093–1103. doi:10.1177/2041297510393664

    Article  Google Scholar 

  49. Zhang C, Li L (2010) Effect of substrate dimensions on dynamics of ultrasonic consolidation. Ultrasonics 50(8):811–823. doi:10.1016/j.ultras.2010.04.005

    Article  Google Scholar 

  50. Zhang C, Li L (2009) A coupled thermal-mechanical analysis of ultrasonic bonding mechanism. Metallurg Mater Trans B 40(2):196–207. doi:10.1007/s11663-008-9224-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Haddadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Haddadi, F. (2017). Ultrasonic Spot Welding—Low Energy Manufacturing for Lightweight Fuel Efficient Transport Applications. In: Gupta, K. (eds) Advanced Manufacturing Technologies. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-56099-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56099-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56098-4

  • Online ISBN: 978-3-319-56099-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics