Skip to main content

Advanced Joining and Welding Techniques: An Overview

  • Chapter
  • First Online:
Book cover Advanced Manufacturing Technologies

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Joining and welding is an essential component of manufacturing technology. New developments in joining and welding are evolved in order to acquire extraordinary benefits such as unique joint properties, synergistic mix of materials, cost reduction of component, increase productivity and quality, complex geometrical configurations, suitability and selection of material to manufacture new products. This chapter provides an update on recent developments of welding and joining to showcase above benefits. Theoretical background, process parameters, novel aspects, process capabilities, and process variants along with its application are presented in this chapter. Advanced welding and joining techniques are addressed under different headings of fastening and bonding processes, developments of arc welding processes, advanced beam welding techniques, sustainable welding processes, micro-nano joining and hybrid welding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bodjona K, Lessard L (2016) Hybrid bonded-fastened joints and their application in composite structures: A general review. J Reinf Plast Compos 35(9):764–781

    Article  Google Scholar 

  2. Moroni F, Pirondi A (2010) Technology of rivet: adhesive joints. In: Hybrid adhesive joints. Springer, pp 79–108

    Google Scholar 

  3. McGrath G, Jones I, Hilton P, Kellar E, Taylor A, Sallavanti P (2001) New advances in plastics joining for high speed production. SAE Technical Paper. doi:10.4271/2001-01-3398

    Google Scholar 

  4. Eshtayeh M, Hrairi M, Mohiuddin A (2016) Clinching process for joining dissimilar materials: state of the art. Int J Adv Manuf Technol 82(1–4):179–195

    Article  Google Scholar 

  5. Lambiase F (2015) Clinch joining of heat-treatable aluminum AA6082-T6 alloy under warm conditions. J Mater Process Technol 225:421–432

    Article  Google Scholar 

  6. Pirondi A, Moroni F (2010) Science of Clinch–adhesive joints. In: Hybrid adhesive joints. Springer, pp 109–147

    Google Scholar 

  7. Vidyarthy R, Dwivedi D (2016) Activating flux tungsten inert gas welding for enhanced weld penetration. J Manuf Process 22:211–228

    Article  Google Scholar 

  8. Chai G, Zhu Y (2010) Spectra and thermal analysis of the arc in activating flux plasma arc welding. Guang pu xue yu guang pu fen xi = Guang pu 30(4):1141–1145

    Google Scholar 

  9. Kuo M, Sun Z, Pan D (2013) Laser welding with activating flux. Sci Technol Weld Joining 6(1):17–22

    Article  Google Scholar 

  10. Huang H-Y (2010) Effects of activating flux on the welded joint characteristics in gas metal arc welding. Mater Des 31(5):2488–2495

    Article  Google Scholar 

  11. Delany F, Lucas W, Thomas W, Howse D, Abson D, Mulligan S, Bird C (2005) Advanced joining processes for repair in nuclear power plants. In: Proceedings of 2005, pp 54–69

    Google Scholar 

  12. Ma L, Hu S, Hu B, Shen J, Wang Y (2014) Activating flux design for laser welding of ferritic stainless steel. Trans Tianjin Univ 20:429–434

    Article  Google Scholar 

  13. Zhang H, Feng J, He P, Zhang B, Chen J, Wang L (2009) The arc characteristics and metal transfer behaviour of cold metal transfer and its use in joining aluminium to zinc-coated steel. Mater Sci Eng, A 499(1):111–113

    Article  Google Scholar 

  14. Pickin CG, Williams S, Lunt M (2011) Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding. J Mater Process Technol 211(3):496–502

    Article  Google Scholar 

  15. Xiurong Y (2006) CMT cold metal transfer process. Electric Welding Machine 6:005 (http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHJI200606005.htm)

  16. Almeida P, Williams S (2010) Innovative process model of Ti–6Al–4 V additive layer manufacturing using cold metal transfer (CMT). In: Proceedings of the twenty-first annual international solid freeform fabrication symposium, University of Texas at Austin, Austin, TX, USA, 2010

    Google Scholar 

  17. Zhang H, Feng J, He P (2008) Interfacial phenomena of cold metal transfer (CMT) welding of zinc coated steel and wrought aluminium. Mater Sci Technol 24(11):1346–1349

    Article  Google Scholar 

  18. Kadoi K, Murakami A, Shinozaki K, Yamamoto M, Matsumura H (2016) Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels. Mater Sci Eng: A 666:11–18

    Google Scholar 

  19. Ahmed N (2005) New developments in advanced welding. Elsevier, pp 1–269

    Google Scholar 

  20. Praveen P, Yarlagadda P, Kang M-J (2005) Advancements in pulse gas metal arc welding. J Mater Process Technol 164:1113–1119

    Article  Google Scholar 

  21. Palani P, Murugan N (2006) Selection of parameters of pulsed current gas metal arc welding. J Mater Process Technol 172(1):1–10

    Article  Google Scholar 

  22. Lu Y, Chen S, Shi Y, Li X, Chen J, Kvidahl L, Zhang YM (2014) Double-electrode arc welding process: principle, variants, control and developments. J Manuf Process 16(1):93–108

    Article  Google Scholar 

  23. Li K, Zhang Y (2008) Consumable double-electrode GMAW-Part 1: The process. Welding J-New York 87(1):11

    MathSciNet  Google Scholar 

  24. Henon B (2011) Advances in automatic hot wire GTAW (TIG) welding. Arc Machines Inc

    Google Scholar 

  25. Nakamura T, Hiraoka K (2013) Ultranarrow GMAW process with newly developed wire melting control system. Sci Technol Weld Joining 6(6):355–362

    Article  Google Scholar 

  26. Elmesalamy A, Li L, Francis J, Sezer H (2013) Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels. Int J Adv Manuf Technol 68(1–4):1–17

    Article  Google Scholar 

  27. Feng J, Guo W, Francis J, Irvine N, Li L (2016) Narrow gap laser welding for potential nuclear pressure vessel manufacture. J Laser Appl 28(2):022421

    Article  Google Scholar 

  28. Li R, Yue J, Sun R, Mi G, Wang C, Shao X (2016) A study of droplet transfer behavior in ultra-narrow gap laser arc hybrid welding. Int J Adv Manuf Technol:1–12, doi: 10.1007/s00170-016-8699-9

  29. Klein R (2012) Laser welding of plastics. Wiley, pp 1–243

    Google Scholar 

  30. Jin Y, Y-l Li, Zhang H (2016) Microstructure and mechanical properties of pulsed laser welded Al/steel dissimilar joint. Trans Nonferrous Metals Soc China 26(4):994–1002

    Article  Google Scholar 

  31. Wang P, Chen X, Pan Q, Madigan B, Long J (2016) Laser welding dissimilar materials of aluminum to steel: an overview. Int J Adv Manuf Technol:1–10. doi: 10.1007/s00170-016-8725-y

  32. Mai T, Spowage A (2004) Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium. Mater Sci Eng, A 374(1):224–233

    Article  Google Scholar 

  33. Borrego L, Pires J, Costa J, Ferreira J (2009) Mould steels repaired by laser welding. Eng Fail Anal 16(2):596–607

    Article  Google Scholar 

  34. Vedani M, Previtali B, Vimercati G, Sanvito A, Somaschini G (2007) Problems in laser repair-welding a surface-treated tool steel. Surf Coat Technol 201(8):4518–4525

    Article  Google Scholar 

  35. Díaz E, Tobar M, Yáñez A, García J, Taibo J (2010) Laser Powder Welding with a Co-based alloy for repairing steam circuit components in thermal power stations. Phys Proc 5:349–358

    Article  Google Scholar 

  36. Peng W, Jiguo S, Shiqing Z, Gang W (2016) Control of wire transfer behaviors in hot wire laser welding. Int J Adv Manuf Technol 83(9–12):2091–2100

    Article  Google Scholar 

  37. Węglowski MS, Błacha S, Phillips A (2016) Electron beam welding–Techniques and trends–Review. Vacuum 130:72–92

    Article  Google Scholar 

  38. Mishra RS, De PS, Kumar N (2014) Fundamentals of the friction stir process. In: Friction stir welding and processing. Springer, pp 13–58

    Google Scholar 

  39. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng: R: Rep 50(1–2):1–78. doi:10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  40. Mehta KP, Badheka VJ (2016) A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater Manuf Process 31(3):233–254. doi:10.1080/10426914.2015.1025971

    Article  Google Scholar 

  41. Mehta KP, Badheka VJ (2015) Influence of tool design and process parameters on dissimilar friction stir welding of copper to AA6061-T651 joint. Int J Adv Manuf Technol 80:2073–2082. doi:10.1007/s00170-015-7176-1

    Article  Google Scholar 

  42. Mehta KP, Badheka VJ (2014) Effects of tilt angle on properties of dissimilar friction stir welding copper to aluminum. Mater Manuf Process 31:255–263. doi:10.1080/10426914.2014.994754

    Article  Google Scholar 

  43. Mehta KP, Badheka VJ (2016) Effects of tool pin design on formation of defects in dissimilar friction stir welding. Proc Technol 23:513–518

    Article  Google Scholar 

  44. Mehta KP, Badheka V (2016) Experimental investigation of process parameters on defects generation in Copper to AA6061-T651 friction stir Welding. Int J Adv Mech Autom Eng (IJAMAE) 3(1):55–58. doi:10.15242/IJAMAE.E0316007

    Google Scholar 

  45. Gerlich AP, North TH (2010) Friction stir spot welding. Innov Mater Manuf Fabric Environ Safety:193

    Google Scholar 

  46. Evans WT, Gibson BT, Reynolds JT, Strauss AM, Cook GE (2015) Friction Stir Extrusion: A new process for joining dissimilar materials. Manuf Lett 5:25–28

    Article  Google Scholar 

  47. Besler FA, Schindele P, Grant RJ, Stegmüller MJ (2016) Friction crush welding of aluminium, copper and steel sheetmetals with flanged edges. J Mater Process Technol 234:72–83

    Article  Google Scholar 

  48. Garg A, Panda B, Shankhwar K (2016) Investigation of the joint length of weldment of environmental-friendly magnetic pulse welding process. Int J Adv Manuf Technol:1–12. doi: 10.1007/s00170-016-8634-0

  49. Hahn M, Weddeling C, Lueg-Althoff J, Tekkaya AE (2016) Analytical approach for magnetic pulse welding of sheet connections. J Mater Process Technol 230:131–142

    Article  Google Scholar 

  50. Shanthala K, Sreenivasa T (2016) Review on electromagnetic welding of dissimilar materials. Front Mech Eng:1–11, doi: 10.1007/s11465-016-0375-0

  51. Matheny M (2014) EWI, Columbus, OH, USA Note: This chapter is a revised and updated version of Chapter 9 “Ultrasonic metal welding” by K. Graff, originally published in New Developments in Advanced Welding, ed. N. Ahmed, Woodhead Publishing Limited, 2005, ISBN: 978-1-85573-970-3. Power Ultrasonics: Applications of High-Intensity Ultrasound:259

    Google Scholar 

  52. YEH H (2013) Ultrasonic welding of medical plastics. Joining and assembly of medical materials and devices, p 296

    Google Scholar 

  53. Benatar A (2015) 12—Ultrasonic welding of plastics and polymeric composites. In: Power ultrasonics. Woodhead Publishing, Oxford, pp 295-312. doi:http://dx.doi.org/10.1016/B978-1-78242-028-6.00012-0

  54. Zhang Y, Li Y, Luo Z, Yuan T, Bi J, Wang ZM, Wang ZP, Chao YJ (2016) Feasibility study of dissimilar joining of aluminum alloy 5052 to pure copper via thermo-compensated resistance spot welding. Mater Des 106:235–246

    Article  Google Scholar 

  55. Zhou YN (2008) Microjoining and nanojoining. Elsevier, pp 1–786

    Google Scholar 

  56. Sithole K, Rao VV (2016) Recent developments in micro friction stir welding: a review. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012036

    Google Scholar 

  57. Sackmann J, Burlage K, Gerhardy C, Memering B, Liao S, Schomburg W (2015) Review on ultrasonic fabrication of polymer micro devices. Ultrasonics 56:189–200

    Article  Google Scholar 

  58. Lee C-M, Woo W-S, Kim D-H, Oh W-J, Oh N-S (2016) Laser-assisted hybrid processes: A review. Int J Precision Eng Manuf 17(2):257–267

    Article  Google Scholar 

  59. Prajapati P, Badheka VJ, Mehta KP (2016) Hybridization of filler wire in multi pass gas metal arc welding of SA516 Gr70 carbon steel. Mater Manuf Processes. doi:10.1080/10426914.2016.1244847

    Google Scholar 

  60. Padhy G, Wu C, Gao S (2015) Auxiliary energy assisted friction stir welding–status review. Sci Technol Weld Join 20(8):631–649

    Article  Google Scholar 

  61. Sabari SS, Malarvizhi S, Balasubramanian V (2016) Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints. J Mater Process Technol 237:286–300

    Article  Google Scholar 

  62. Mehta KP, Badheka VJ (2016) Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. J Mater Process Technol, Elsevier 239:336–345. doi:10.1016/j.jmatprotec.2016.08.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kush Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mehta, K. (2017). Advanced Joining and Welding Techniques: An Overview. In: Gupta, K. (eds) Advanced Manufacturing Technologies. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-56099-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56099-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56098-4

  • Online ISBN: 978-3-319-56099-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics