Skip to main content

Immunology of the Oral Mucosa

  • Chapter
  • First Online:
Oral Mucosa in Health and Disease

Abstract

The oral mucosa is defined as a mucous membrane that is continuous with the skin at the lips, and more importantly continuous with the pharyngeal mucosa and the gastrointestinal mucosa. While the oral mucosa shares many features with the skin and gastrointestinal mucosa it has many unique features that enable this sophisticated tissue to act as a gatekeeper controlling the effects of both inhaled and ingested antigens and the levels of inflammation and immune responses that are permitted in a normal healthy oral cavity. The purpose of this chapter is to introduce the concept of the oral immune system, to describe the functions of immune cells within the oral cavity and to place this highly sophisticated network in the context of health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. J Control Release. 2014;190:580–92.

    Article  PubMed  Google Scholar 

  2. Mestecky J, McGhee JR, Arnold RR, Michalek SM, Prince SJ, Babb JL. Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J Clin Invest. 1978a;61(3):731–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mestecky J, McGhee JR, Michalek SM, Arnold RR, Crago SS, Babb JL. Concept of the local and common mucosal immune response. Adv Exp Med Biol. 1978b;107:185–92.

    Article  PubMed  Google Scholar 

  4. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(4 Suppl):S45–53.

    Article  PubMed  Google Scholar 

  5. Mestecky J, Moldoveanu Z, Elson CO. Immune response versus mucosal tolerance to mucosally administered antigens. Vaccine. 2005;23(15):1800–3.

    Article  PubMed  Google Scholar 

  6. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    Article  PubMed  Google Scholar 

  7. Sahingur SE, Yeudall WA. Chemokine function in periodontal disease and oral cavity cancer. Front Immunol. 2015;6:214.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu Z, Lee S, Abrams W, Weissman D, Malamud D. The N-terminal SRCR-SID domain of gp-340 interacts with HIV type 1 gp120 sequences and inhibits viral infection. AIDS Res Hum Retrovir. 2006;22(6):508–15.

    Article  PubMed  Google Scholar 

  9. Stoddard E, Cannon G, Ni H, Kariko K, Capodici J, Malamud D, Weissman D. gp340 expressed on human genital epithelia binds HIV-1 envelope protein and facilitates viral transmission. J Immunol. 2007;179(5):3126–32.

    Article  PubMed  Google Scholar 

  10. Walker JA, Barlow JL, McKenzie AN. Innate lymphoid cells--how did we miss them? Nat Rev Immunol. 2013;13(2):75–87.

    Article  PubMed  Google Scholar 

  11. Lavelle EC, Murphy C, O'Neill LAJ, Creagh EM. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol. 2010;3(1):17–28.

    Article  PubMed  Google Scholar 

  12. Seoudi N, Bergmeier LA, Hagi-Pavli E, Bibby D, Curtis MA, Fortune F. The role of TLR2 and 4 in Behçet's disease pathogenesis. Innate Immun. 2014;20(4):412–22.

    Article  PubMed  Google Scholar 

  13. Sinon SH, Rich AM, Parachuru VP, Firth FA, Milne T, Seymour GJ. Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus. J Oral Pathol Med. 2016;45(1):28–34.

    Article  PubMed  Google Scholar 

  14. Allen F, Tong AA, Huang AY. Unique transcompartmental bridge: antigen-presenting cells sampling across endothelial and mucosal barriers. Front Immunol. 2016;7:231.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hussain LA, Lehner T. Comparative investigation of Langerhans' cells and potential receptors for HIV in oral, genitourinary and rectal epithelia. Immunology. 1995;85(3):475–84.

    PubMed  PubMed Central  Google Scholar 

  16. Lehner T, Bergmeier L, Wang Y, Tao L, Mitchell E. A rational basis for mucosal vaccination against HIV infection. Immunol Rev. 1999;170:183–96.

    Article  PubMed  Google Scholar 

  17. Hovav A-H. Dendritic cells of the oral mucosa. Mucosal Immunol. 2014;7(1):27–37.

    Article  PubMed  Google Scholar 

  18. Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev. 2009;227(1):221–33.

    Article  PubMed  Google Scholar 

  19. Boyle JO, Gümüs ZH, Kacker A, Choksi VL, Bocker JM, Zhou XK, Yantiss RK, Hughes DB, Du B, Judson BL, Subbaramaiah K, Dannenberg AJ. Effects of cigarette smoke on the human oral mucosal transcriptome. Cancer Prev Res (Phila). 2010;3(3):266–78.

    Article  Google Scholar 

  20. Cruchley AT, Williams DM, Farthing PM, Lesch CA, Squier CA. Regional variation in Langerhans cell distribution and density in normal human oral mucosa determined using monoclonal antibodies against CD1, HLADR, HLADQ and HLADP. J Oral Pathol Med. 1989;18(9):510–6.

    Article  PubMed  Google Scholar 

  21. Cruchley AT, Williams DM, Farthing PM, Speight PM, Lesch CA, Squier CA. Langerhans cell density in normal human oral mucosa and skin: relationship to age, smoking and alcohol consumption. J Oral Pathol Med. 1994;23(2):55–9.

    Article  PubMed  Google Scholar 

  22. Hasan MS, Ryan PL, Bergmeier LA, Fortune F. Circulating NK cells and their subsets in Behcet's disease. Clin Exp Immunol. 2017;188(2):311–22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lanier LL. Shades of grey--the blurring view of innate and adaptive immunity. Nat Rev Immunol. 2013;13(2):73–4.

    Article  PubMed  Google Scholar 

  24. Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013;13(2):118–32.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol. 2013;13(2):101–17.

    Article  PubMed  Google Scholar 

  26. Gold MC, Lewinsohn DM. Co-dependents: MR1-restricted MAIT cells and their antimicrobial function. Nat Rev Microbiol. 2013;11(1):14–9.

    Article  PubMed  Google Scholar 

  27. Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W, Tonegawa S. Homing of a gamma delta thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature. 1990;343(6260):754–7.

    Article  PubMed  Google Scholar 

  28. McCarthy NE, Bashir Z, Vossenkamper A, Hedin CR, Giles EM, Bhattacharjee S, Brown SG, Sanders TJ, Whelan K, MacDonald TT, Lindsay JO, Stagg AJ. Proinflammatory Vdelta2+ T cells populate the human intestinal mucosa and enhance IFN-gamma production by colonic alphabeta T cells. J Immunol. 2013;191(5):2752–63.

    Article  PubMed  Google Scholar 

  29. McCarthy NE, Hedin CR, Sanders TJ, Amon P, Hoti I, Ayada I, Baji V, Giles EM, Wildemann M, Bashir Z, Whelan K, Sanderson I, Lindsay JO, Stagg AJ. Azathioprine therapy selectively ablates human Vdelta2(+) T cells in Crohn's disease. J Clin Invest. 2015;125(8):3215–25.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Freysdottir J, Hussain L, Farmer I, Lau S-H, Fortune F. Diversity of gammadelta T cells in patients with Behcet's disease is indicative of polyclonal activation. Oral Dis. 2006;12(3):271–7.

    Article  PubMed  Google Scholar 

  31. Hasan A, Fortune F, Wilson A, Warr K, Shinnick T, Mizushima Y, van der Zee R, Stanford MR, Sanderson J, Lehner T. Role of gamma delta T cells in pathogenesis and diagnosis of Behcet's disease. Lancet. 1996;347(9004):789–94.

    Article  PubMed  Google Scholar 

  32. Hasan MS, Bergmeier LA, Petrushkin H, Fortune F. Gamma delta (gammadelta) T cells and their involvement in Behcet's disease. J Immunol Res. 2015;2015:705831.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bank I, Duvdevani M, Livneh A. Expansion of gammadelta T-cells in Behcet's disease: role of disease activity and microbial flora in oral ulcers. J Lab Clin Med. 2003;141(1):33–40.

    Article  PubMed  Google Scholar 

  34. Eberl M, Hintz M, Reichenberg A, Kollas AK, Wiesner J, Jomaa H. Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett. 2003;544(1-3):4–10.

    Article  PubMed  Google Scholar 

  35. Lehner T, Mitchell E, Bergmeier L, Singh M, Spallek R, Cranage M, Hall G, Dennis M, Villinger F, Wang Y. The role of gammadelta T cells in generating antiviral factors and beta-chemokines in protection against mucosal simian immunodeficiency virus infection. Eur J Immunol. 2000;30(8):2245–56.

    Article  PubMed  Google Scholar 

  36. Kosub DA, Durudas A, Lehrman G, Milush JM, Cano CA, Jain MK, Sodora DL. Gamma/delta T cell mRNA levels decrease at mucosal sites and increase at lymphoid sites following an oral SIV infection of macaques. Curr HIV Res. 2008;6(6):520–30.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Su D, Shen M, Li X, Sun L. Roles of γδ T cells in the pathogenesis of autoimmune diseases. Clin Dev Immunol. 2013;2013:985753.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013;13(2):88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Conti HR, Bruno VM, Childs EE, Daugherty S, Hunter JP, Mengesha BG, Saevig DL, Hendricks MR, Coleman BM, Brane L, Solis N, Cruz JA, Verma AH, Garg AV, Hise AG, Richardson JP, Naglik JR, Filler SG, Kolls JK, Sinha S, Gaffen SL. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe. 2016;20(5):606–17.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dutzan N, Konkel JE, Greenwell-Wild T, Moutsopoulos NM. Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol. 2016;9(5):1163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517(7534):293–301.

    Article  PubMed  Google Scholar 

  42. Tait Wojno ED, Artis D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe. 2012;12(4):445–57.

    Article  PubMed  Google Scholar 

  43. Hazenberg MD, Spits H. Human innate lymphoid cells. Blood. 2014;124(5):700–9.

    Article  PubMed  Google Scholar 

  44. McKenzie AN, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity. 2014;41(3):366–74.

    Article  PubMed  Google Scholar 

  45. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17(7):765–74.

    Article  PubMed  Google Scholar 

  46. Simmerman E, Qin X, Marshall B, Perry L, Cai L, Wang T, Yu J, Akbari O, Baban B. Innate lymphoid cells: a paradigm for low SSI in cleft lip repair. J Surg Res. 2016;205(2):312–7.

    Article  PubMed  Google Scholar 

  47. Russell MW, Bergmeier LA, Zanders ED, Lehner T. Protein antigens of Streptococcus Mutans: purification and properties of a double antigen and its protease-resistant component. Infect Immun. 1980a;28(2):486–93.

    PubMed  PubMed Central  Google Scholar 

  48. Russell MW, Zanders ED, Bergmeier LA, Lehner T. Affinity purification and characterization of protease-susceptible antigen I of Streptococcus Mutans. Infect Immun. 1980b;29(3):999–1006.

    PubMed  PubMed Central  Google Scholar 

  49. Challacombe SJ, Bergmeier LA, Czerkinsky C, Rees AS. Natural antibodies in man to Streptococcus Mutans: specificity and quantification. Immunology. 1984;52(1):143–50.

    PubMed  PubMed Central  Google Scholar 

  50. Challacombe SJ, Russell MW, Hawkes J. Passage of intact IgG from plasma to the oral cavity via crevicular fluid. Clin Exp Immunol. 1978a;34(3):417–22.

    PubMed  PubMed Central  Google Scholar 

  51. Challacombe SJ, Russell MW, Hawkes JE, Bergmeier LA, Lehner T. Passage of immunoglobulins from plasma to the oral cavity in rhesus monkeys. Immunology. 1978b;35(6):923–31.

    PubMed  PubMed Central  Google Scholar 

  52. Lehner T, Ma JK, Kelly CG. A mechanism of passive immunization with monoclonal antibodies to a 185,000 M(r) streptococcal antigen. Adv Exp Med Biol. 1992;327:151–63.

    Article  PubMed  Google Scholar 

  53. Ma JK, Hunjan M, Smith R, Kelly C, Lehner T. An investigation into the mechanism of protection by local passive immunization with monoclonal antibodies against Streptococcus Mutans. Infect Immun. 1990;58(10):3407–14.

    PubMed  PubMed Central  Google Scholar 

  54. Ma JK, Lehner T. Prevention of colonization of Streptococcus Mutans by topical application of monoclonal antibodies in human subjects. Arch Oral Biol. 1990;35(Suppl):115S–22S.

    Article  PubMed  Google Scholar 

  55. Booth V, Ashley FP, Lehner T. Passive immunization with monoclonal antibodies against Porphyromonas gingivalis in patients with periodontitis. Infect Immun. 1996;64(2):422–7.

    PubMed  PubMed Central  Google Scholar 

  56. Booth V, Lehner T. Characterization of the Porphyromonas gingivalis antigen recognized by a monoclonal antibody which prevents colonization by the organism. J Periodontal Res. 1997;32(1 Pt 1):54–60.

    Article  PubMed  Google Scholar 

  57. Kelly CG, Booth V, Kendal H, Slaney JM, Curtis MA, Lehner T. The relationship between colonization and haemagglutination inhibiting and B cell epitopes of Porphyromonas gingivalis. Clin Exp Immunol. 1997;110(2):285–91.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Curtis MA, Zenobia C, Darveau RP. The relationship of the oral microbiotia to periodontal health and disease. Cell Host Microbe. 2011;10(4):302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brandtzaeg P. Secretory immunity with special reference to the oral cavity. J Oral Microbiol. 2013;5.

    Google Scholar 

  61. Woof JM, Mestecky J. Mucosal immunoglobulins. Immunol Rev. 2005;206:64–82.

    Article  PubMed  Google Scholar 

  62. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136(7):2348–57.

    PubMed  Google Scholar 

  63. Amatya N, Garg AV, Gaffen SL. IL-17 signaling: the yin and the Yang. Trends Immunol. 2017;38(5):310–22.

    Article  PubMed  Google Scholar 

  64. Wadia P, Atre N, Pradhan T, Mistry R, Chiplunkar S. Heat shock protein induced TCR gammadelta gene rearrangements in patients with oral cancer. Oral Oncol. 2005;41(2):175–82.

    Article  PubMed  Google Scholar 

  65. Wu R-Q, Zhang D-F, Tu E, Chen Q-M, Chen W. The mucosal immune system in the oral cavity-an orchestra of T cell diversity. Int J Oral Sci. 2014a;6(3):125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jotwani R, Pulendran B, Agrawal S, Cutler CW. Human dendritic cells respond to Porphyromonas gingivalis LPS by promoting a Th2 effector response in vitro. Eur J Immunol. 2003;33(11):2980–6.

    Article  PubMed  Google Scholar 

  67. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol. 2001;167(9):5067–76.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pulendran B, Lingappa J, Kennedy MK, Smith J, Teepe M, Rudensky A, Maliszewski CR, Maraskovsky E. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol. 1997;159(5):2222–31.

    PubMed  Google Scholar 

  69. Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A. 1999;96(3):1036–41.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cutler CW, Jotwani R. Dendritic cells at the oral mucosal interface. J Dent Res. 2006;85(8):678–89.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bhingare AC, Ohno T, Tomura M, Zhang C, Aramaki O, Otsuki M, Tagami J, Azuma M. Dental pulp dendritic cells migrate to regional lymph nodes. J Dent Res. 2014;93(3):288–93.

    Article  PubMed  Google Scholar 

  72. Allam JP, Peng WM, Appel T, Wenghoefer M, Niederhagen B, Bieber T, Bergé S, Novak N. Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J Allergy Clin Immunol. 2008a;121(2):368–374.e361.

    Article  PubMed  Google Scholar 

  73. Allam JP, Stojanovski G, Friedrichs N, Peng W, Bieber T, Wenzel J, Novak N. Distribution of Langerhans cells and mast cells within the human oral mucosa: new application sites of allergens in sublingual immunotherapy? Allergy. 2008b;63(6):720–7.

    Article  PubMed  Google Scholar 

  74. Novak N, Bieber T, Allam J-P. Immunological mechanisms of sublingual allergen-specific immunotherapy. Allergy. 2011;66(6):733–9.

    Article  PubMed  Google Scholar 

  75. Novak N, Gros E, Bieber T, Allam J-P. Human skin and oral mucosal dendritic cells as 'good guys' and 'bad guys' in allergic immune responses. Clin Exp Immunol. 2010;161(1):28–33.

    PubMed  PubMed Central  Google Scholar 

  76. Novak N, Haberstok J, Bieber T, Allam JP. The immune privilege of the oral mucosa. Trends Mol Med. 2008;14(5):191–8.

    Article  PubMed  Google Scholar 

  77. Hamedi M, Bergmeier LA, Hagi-Pavli E, Vartoukian SR, Fortune F. Differential expression of suppressor of cytokine signalling proteins in Behçet's disease. Scand J Immunol. 2014;80(5):369–76.

    Article  PubMed  Google Scholar 

  78. Vartoukian SR, Tilakaratne WM, Seoudi N, Bombardieri M, Bergmeier L, Tappuni AR, Fortune F. Dysregulation of the suppressor of cytokine signalling 3-signal transducer and activator of transcription-3 pathway in the aetiopathogenesis of Sjogren's syndrome. Clin Exp Immunol. 2014;177(3):618–29.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Conti HR, Peterson AC, Brane L, Huppler AR, Hernández-Santos N, Whibley N, Garg AV, Simpson-Abelson MR, Gibson GA, Mamo AJ, Osborne LC, Bishu S, Ghilardi N, Siebenlist U, Watkins SC, Artis D, McGeachy MJ, Gaffen SL. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida Albicans infections. J Exp Med. 2014;211(10):2075–84.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW, Filler SG, Masso-Welch P, Edgerton M, Gaffen SL. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009;206(2):299–311.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bai J, Lin M, Zeng X, Zhang Y, Wang Z, Shen J, Jiang L, Gao F, Chen Q. Association of polymorphisms in the human IFN-gamma and IL-4 gene with oral lichen planus: a study in an ethnic Chinese cohort. J Interf Cytokine Res. 2008;28(6):351–8.

    Article  Google Scholar 

  82. Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11(4):275–88.

    Article  PubMed  Google Scholar 

  83. Zhang X, Jin J, Peng X, Ramgolam VS, Markovic-Plese S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J Immunol. 2008a;180(10):6988–96.

    Article  PubMed  Google Scholar 

  84. Zhang Y, Lin M, Zhang S, Wang Z, Jiang L, Shen J, Bai J, Gao F, Zhou M, Chen Q. NF-kappaB-dependent cytokines in saliva and serum from patients with oral lichen planus: a study in an ethnic Chinese population. Cytokine. 2008b;41(2):144–9.

    Article  PubMed  Google Scholar 

  85. Cochran DL. Inflammation and bone loss in periodontal disease. J Periodontol. 2008;79(8 Suppl):1569–76.

    Article  PubMed  Google Scholar 

  86. Gemmell E, Yamazaki K, Seymour GJ. Destructive periodontitis lesions are determined by the nature of the lymphocytic response. Crit Rev Oral Biol Med. 2002;13(1):17–34.

    Article  PubMed  Google Scholar 

  87. Wu RQ, Zhang DF, Tu E, Chen QM, Chen W. The mucosal immune system in the oral cavity-an orchestra of T cell diversity. Int J Oral Sci. 2014b;6(3):125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sun JB, Czerkinsky C, Holmgren J. Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Scand J Immunol. 2010;71(1):1–11.

    Article  PubMed  Google Scholar 

  89. Stanford M, Whittall T, Bergmeier LA, Lindblad M, Lundin S, Shinnick T, Mizushima Y, Holmgren J, Lehner T. Oral tolerization with peptide 336-351 linked to cholera toxin B subunit in preventing relapses of uveitis in Behcet's disease. Clin Exp Immunol. 2004;137(1):201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Novak N, Allam J-P. Mucosal dendritic cells in allergy and immunotherapy. Allergy. 2011;66(Suppl 95):22–4.

    Article  PubMed  Google Scholar 

  91. Mascarell L, Saint-Lu N, Moussu H, Zimmer A, Louise A, Lone Y, Ladant D, Leclerc C, Tourdot S, Van Overtvelt L, Moingeon P. Oral macrophage-like cells play a key role in tolerance induction following sublingual immunotherapy of asthmatic mice. Mucosal Immunol. 2011a;4(6):638–47.

    Article  PubMed  Google Scholar 

  92. Mascarell L, Zimmer A, Van Overtvelt L, Tourdot S, Moingeon P. Induction of allergen-specific tolerance via mucosal routes. Curr Top Microbiol Immunol. 2011b;352:85–105.

    PubMed  Google Scholar 

  93. Moingeon P, Mascarell L. Induction of tolerance via the sublingual route: mechanisms and applications. Clin Dev Immunol. 2012;2012:623474.

    Article  PubMed  Google Scholar 

  94. Yoshitomi T, Nakagami Y, Hirahara K, Taniguchi Y, Sakaguchi M, Yamashita M. Intraoral administration of a T-cell epitope peptide induces immunological tolerance in cry j 2-sensitized mice. J Pept Sci. 2007;13(8):499–503.

    Article  PubMed  Google Scholar 

  95. Coelho ED, Arrais JP, Matos S, Pereira C, Rosa N, Correia MJ, Barros M, Oliveira JL. Computational prediction of the human-microbial oral interactome. BMC Syst Biol. 2014;8(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Douglas CWI. Bacterial-protein interactions in the oral cavity. Adv Dent Res. 1994;8(2):254–62.

    Article  PubMed  Google Scholar 

  97. Salvucci E. Microbiome, holobiont and the net of life. Crit Rev Microbiol. 2016;42(3):485–94.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley Ann Bergmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bergmeier, L.A. (2018). Immunology of the Oral Mucosa. In: Bergmeier, L. (eds) Oral Mucosa in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-56065-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56065-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56064-9

  • Online ISBN: 978-3-319-56065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics