Restorative Dental Glass-Ceramics: Current Status and Trends



Most restorative dental materials are inert and biocompatible and are used in the restoration and reconstruction of teeth. Among them, glass-ceramics (GCs) are of great importance because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth. However, research and development are still underway to further improve their mechanical properties and esthetics to enable them to compete with their current contenders (e.g., zirconia and hybrids) for posterior restorations. Throughout this chapter, we summarize the processing, properties, and applications of restorative dental glass-ceramics. Current commercial dental glass-ceramics are explained, and also selected papers that address promising types of dental glass-ceramics are reviewed. Finally, we include trends on relevant open issues and research possibilities.


Glass-ceramic Dental Mechanical properties Biomedical 



The authors are grateful to the São Paulo Research Foundation (FAPESP, # 2013/07793-6) for financial support of this work and for the postdoctoral fellowship granted to Maziar Montazerian (# 2015/13314-9).


  1. 1.
    Sakaguchi RL, Powers JM. Craig’s restorative dental materials. 13th ed. Netherland: Elsevier; 2011.Google Scholar
  2. 2.
    Zanotto ED. A bright future for glass-ceramics. Am Ceram Soc Bull. 2010;89(8):19–27.Google Scholar
  3. 3.
    Montazerian M, Singh SP, Zanotto ED. An analysis of glass-ceramic research and commercialization. Am Ceram Soc Bull. 2015;94(4):30–5.Google Scholar
  4. 4.
    Höland W. Biocompatible and bioactive glass-ceramics – state of the art and new directions. J Non-Cryst Solids. 1997;219:192–7.CrossRefGoogle Scholar
  5. 5.
    Höland W, Rheinberger V, Apel E, van’t Hoen C, Höland M, Dommann A, Obrecht M, Mauth C, Graf-Hausner U. Clinical applications of glass-ceramics in dentistry. J Mater Sci Mater Med. 2006;17(11):1037–42.CrossRefGoogle Scholar
  6. 6.
    Höland W, Rheinberger V. Dental glass-ceramics. In: Kokubo T, editor. Bioceramics and their clinical applications. Cambridge: Woodhead Publishing Limited; 2008. p. 548–68.CrossRefGoogle Scholar
  7. 7.
    Höland W, Rheinberger V. Bioengineering of glass-ceramics and ceramics for dental restoration. In: Garcia A, Durand C, editors. Bioengineering: principles, methodologies and applications. Hauppauge: Nova Science Publishers; 2010. p. 169–78.Google Scholar
  8. 8.
    Pollington S. Novel glass-ceramics for dental restorations. J Contemp Dent Pract. 2011;12(1):60–7.CrossRefGoogle Scholar
  9. 9.
    Johnson A, Sinthuprasirt P, Fathi H, Pollington S. Current glass-ceramic systems used in dentistry. In: Nandyala SH, Santos JD, editors. Current trends on glass and ceramic materials. Sharjah: Bentham Science Publishers Ltd.; 2013. p. 49–72.CrossRefGoogle Scholar
  10. 10.
    Saint-Jean SJ. Dental glasses and glass-ceramics. In: Shen JZ, editor. Advanced ceramics for dentistry. Netherland: Elsevier; 2014. p. 255–77.CrossRefGoogle Scholar
  11. 11.
    Montazerian M, Zanotto ED. History and trends of bioactive glass-ceramics. J Biomed Mater Res A. 2016;104(5):1231–49.CrossRefGoogle Scholar
  12. 12.
    Montazerian M, Zanotto ED. Bioactive glass-ceramics: processing, properties and applications. In: Boccaccini AR, Brauer DS, Hupa L, editors. Bioactive glasses: fundamentals, technology and applications. London: Royal Society of Chemistry; 2016. p. 27–33.CrossRefGoogle Scholar
  13. 13.
    Montazerian M, Zanotto ED. Bioactive and inert dental glass-ceramics. J Biomed Mater Res A. n.d. doi: 10.1002/jbm.a.35923, 2017;105(2):619–39.Google Scholar
  14. 14.
    Höland W, Beall G. Glass-ceramic technology. 2nd ed. Westerville: The American Ceramic Society & Wiley; 2012.CrossRefGoogle Scholar
  15. 15.
    ISO 6872. Dentistry – ceramic materials. 2015.Google Scholar
  16. 16.
    Denry IL, Lejus AM, Théry J, Masse M. Preparation and characterization of a new lithium-containing glass-ceramic. Mater Res Bull. 1999;34(10–11):1615–27.CrossRefGoogle Scholar
  17. 17.
    Denry IL, Holloway JA. Effect of magnesium content on the microstructure and crystalline phases of fluoramphibole glass-ceramics. J Biomed Mater Res. 2000;53(4):289–96.CrossRefGoogle Scholar
  18. 18.
    Denry IL, Holloway JA. Effect of sodium content on the crystallization behavior of fluoramphibole glass-ceramics. J Biomed Mater Res. 2002;63(1):48–52.CrossRefGoogle Scholar
  19. 19.
    Denry IL, Holloway AJ. Elastic constants, Vickers hardness, and fracture toughness of fluorrichterite-based glass-ceramics. Dent Mater. 2004;20(3):213–9.CrossRefGoogle Scholar
  20. 20.
    Uno T, Kasuga T, Nakajima K. High-strength mica-containing glass-ceramics. J Am Ceram Soc. 1991;74(12):3139–41.CrossRefGoogle Scholar
  21. 21.
    Qin F, Zheng S, Luo Z, Li Y, Guo L, Zhao Y, Fu Q. Evaluation of machinability and flexural strength of a novel dental machinable glass-ceramic. J Dent. 2009;37(10):776–80.CrossRefGoogle Scholar
  22. 22.
    Cheng K, Wan J, Liang K. Hot-pressed mica glass-ceramics with high strength and toughness. J Am Ceram Soc. 1999;82(6):1633–4.CrossRefGoogle Scholar
  23. 23.
    Cheng K, Wan J, Liang K. Enhanced mechanical properties of orientated mica glass-ceramics. Mater Lett. 1999;39(6):350–3.CrossRefGoogle Scholar
  24. 24.
    Habelitz S, Carl G, Rüssel C. Processing, microstructure and mechanical properties of extruded mica glass-ceramics. Mater Sci Eng A. 2001;307(1–2):1–14.CrossRefGoogle Scholar
  25. 25.
    Denry IL, Baranta G, Holloway JA, Gupta PK. Effect of processing variables on texture development in a mica-based glass-ceramic. J Biomed Mater Res B. 2003;64(2):70–7.CrossRefGoogle Scholar
  26. 26.
    Denry IL, Holloway JA. Effect of heat pressing on the mechanical properties of a mica-based glass-ceramic. J Biomed Mater Res B. 2004;70(1):37–42.CrossRefGoogle Scholar
  27. 27.
    Uno T, Kasuga T, Nakayama S, Ikushima AJ. Microstructure of mica-based nanocomposite glass-ceramics. J Am Ceram Soc. 1993;76(2):539–41.CrossRefGoogle Scholar
  28. 28.
    Bürke H, Durschang B, Meinhardt J, Müller G. Nucleation and crystal growth kinetics in ZrO2-strengthened mica-glass-ceramics for dental application. Glass Sci Technol Glastechnische Ber. 2000;73(1):270–7.Google Scholar
  29. 29.
    Li H, You D, Zhou C, Ran J. Study on machinable glass-ceramic containing fluorophlogopite for dental CAD/CAM system. J Mater Sci Mater Med. 2006;17(11):1133–7.CrossRefGoogle Scholar
  30. 30.
    Montazerian M, Alizadeh P, Eftekhari Yekta B. Pressureless sintering and mechanical properties of mica glass-ceramic/Y-PSZ composite. J Eur Ceram Soc. 2008;28(14):2687–92.CrossRefGoogle Scholar
  31. 31.
    Montazerian M, Alizadeh P, Eftekhari Yekta B. Processing and properties of a mica-apatite glass-ceramic reinforced with Y-PSZ particles. J Eur Ceram Soc. 2008;28(14):2693–9.CrossRefGoogle Scholar
  32. 32.
    Serbena FC, Mathias I, Foerster CE, Zanotto ED. Crystallization toughening of a model glass-ceramic. Acta Mater. 2015;86:216–28.CrossRefGoogle Scholar
  33. 33.
    Höland W, Rheinberger V, Wegner S, Frank M. Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry. J Mater Sci Mater Med. 2000;11(1):11–7.CrossRefGoogle Scholar
  34. 34.
    Szabó I, Nagy B, Völksch G, Höland W. Structure, chemical durability and microhardness of glass-ceramics containing apatite and leucite crystals. J Non-Cryst Solids. 2000;272(2–3):191–9.CrossRefGoogle Scholar
  35. 35.
    Michel K, Pantano CG, Ritzberger C, Rheinberger V, Höland W. Coatings on glass-ceramic granules for dental restorative biomaterials. Int J Appl Glas Sci. 2011;2(1):30–8.CrossRefGoogle Scholar
  36. 36.
    Theocharopoulos A, Chen X, Wilson RM, Hill RG, Cattell MJ. Crystallization of high-strength nano-scale leucite glass-ceramics. Dent Mater. 2013;29(11):1149–57.CrossRefGoogle Scholar
  37. 37.
    Aurélio IL, Fraga S, Dorneles LS, Bottino MA, May LG. Extended glaze firing improves flexural strength of a glass ceramic. Dent Mater. 2015;31(12):e316–24.CrossRefGoogle Scholar
  38. 38.
    Ritzberger C, Apel E, Höland W, Peschke A, Rheinberger VM. Properties and clinical application of three types of dental glass-ceramics and ceramics for CAD-CAM technologies. Dent Mater. 2010;3(6):3700–13.Google Scholar
  39. 39.
    Cattell MJ, Chadwick TC, Knowles JC, Clarke RL, Lynch E. Flexural strength optimization of a leucite reinforced glass ceramic. Dent Mater. 2001;17(1):21–33.CrossRefGoogle Scholar
  40. 40.
    Cattell MJ, Chadwick TC, Knowles JC, Clarke RL, Samarawickrama DYD. The nucleation and crystallization of fine grained leucite glass-ceramics for dental applications. Dent Mater. 2006;22(10):925–33.CrossRefGoogle Scholar
  41. 41.
    Cattell MJ, Chadwick TC, Knowles JC, Clarke RL. Development and testing of glaze materials for application to the fit surface of dental ceramic restorations. Dent Mater. 2009;25(4):431–41.CrossRefGoogle Scholar
  42. 42.
    Chen XI, Chadwick TC, Wilson RM, Hill R, Cattell MJ. Crystallization of high strength-fine-sized leucite glass-ceramics. J Dent Res. 2010;89:1510–6.CrossRefGoogle Scholar
  43. 43.
    Chen XI, Chadwick TC, Wilson RM, Hill R, Cattell MJ. Crystallization and flexural strength optimization of fine-grained leucite glass-ceramics for dentistry. Dent Mater. 2011;27(11):1153–61.CrossRefGoogle Scholar
  44. 44.
    Theocharopoulos A, Chen X, Hill R, Cattell MJ. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics. J Dent. 2013;41(6):561–8.CrossRefGoogle Scholar
  45. 45.
    Chung K-H, Liao J-H, Duh J-G, Chan DC-N. The effects of repeated heat-pressing on properties of pressable glass-ceramic. J Oral Rehabil. 2009;36(2):132–41.CrossRefGoogle Scholar
  46. 46.
    Lien W, Roberts HW, Platt JA, Vandewalle KS, Hill TJ, Chu TG. Microstructural evolution and physical behavior of a lithium disilicate glass-ceramic. Dent Mater. 2015;31(8):928–40.CrossRefGoogle Scholar
  47. 47.
    Al Mansour F, Karpukhina N, Grasso S, Wilson RM, Reece MJ, Cattell MJ. The effect of spark plasma sintering on lithium disilicate glass-ceramics. Dent Mater. 2015;31(10):e226–35.CrossRefGoogle Scholar
  48. 48.
    Apel E, van’t Hoen C, Rheinberger V, Höland W. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. J Eur Ceram Soc. 2007;27(2–3):1571–7.CrossRefGoogle Scholar
  49. 49.
    Khalkhali Z, Eftekhari Yekta B, Marghussian VK. Mechanical and chemical properties of Zr and P-doped lithium disilicate glass ceramics in dental restorations. Int J Appl Ceram Technol. 2012;9(3):497–506.CrossRefGoogle Scholar
  50. 50.
    Belli R, Wendler M, Zorzin JI, da Silva LH, Petschelt A, Lohbauer U. Fracture toughness mode mixity at the connectors of monolithic 3Y-TZP and LS2 dental bridge constructs. J Eur Ceram Soc. 2015;35(13):3701–371.CrossRefGoogle Scholar
  51. 51.
    Schweiger M, Frank M, Clausbruch CV, Höland W, Rheinberger V. Microstructure and properties of a composite system for dental applications composed of glass-ceramics in the SiO2–Li2O–ZrO2–P2O5 system and ZrO2-ceramic (TZP). J Mater Sci. 1999;34(18):4563–72.CrossRefGoogle Scholar
  52. 52.
    Morimoto S, Rebello de Sampaio FBW, Braga MM, Sesma N, Özcan M. Survival rate of resin and ceramic inlays, onlays, and overlays: a systematic review and meta-analysis. J Dent Res. 2016;95(5):985–94.CrossRefGoogle Scholar
  53. 53.
    Fradeani M, Redemagni M. An 11-year clinical evaluation of leucite-reinforced glass-ceramic crowns: a retrospective study. Quintessence Int. 2002;33(7):503–10.Google Scholar
  54. 54.
    Gehrt M, Wolfart S, Rafai N, Reich S, Edelhoff D. Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig. 2013;17(1):275–84.CrossRefGoogle Scholar
  55. 55.
    Solá-Ruiz MF, Lagos-Flores E, Román-Rodriguez JL, Highsmith JR, Fons-Font A, Granell-Ruiz M. Survival rates of a lithium disilicate-based core ceramic for three-unit esthetic fixed partial dentures: a 10-year prospective study. Int J Prosthodont. 2013;26(2):175–80.CrossRefGoogle Scholar
  56. 56.
    Makarouna M, Ullmann K, Lazarek K, Boening KW. Six-year clinical performance of lithium disilicate fixed partial dentures. Int J Prosthodont. 2011;24(3):204–6.Google Scholar
  57. 57.
    Belli R, Petschelt A, Hofner B, Hajtó J, Scherrer SS, Lohbauer U. Fracture rates and lifetime estimation of CAD/CAM all-ceramic restorations. J Dent Res. 2016;95(1):67–73.CrossRefGoogle Scholar
  58. 58.
    Denry IL, Holloway JA. Effect of crystallization heat treatment on the microstructure and biaxial strength of fluorrichterite glass-ceramics. J Biomed Mater Res B Appl Biomater. 2007;80(2):454–9.CrossRefGoogle Scholar
  59. 59.
    Tulyaganov DU, Agathopoulos S, Fernandes HR, Ventura JM, Ferreira JMF. Preparation and crystallization of glasses in the system tetrasilicic mica-fluorapatite-diopside. J Eur Ceram Soc. 2004;24(13):3521–8.CrossRefGoogle Scholar
  60. 60.
    Alizadeh P, Eftekhari Yekta B, Javadi T. Sintering behavior and mechanical properties of the mica-diopside machinable glass-ceramics. J Eur Ceram Soc. 2008;28(8):1569–73.CrossRefGoogle Scholar
  61. 61.
    Faeghi-Nia A, Marghussian VK, Taheri-Nassaj E, Pascual MJ, Durán A. Pressureless sintering of apatite/wollastonite-phlogopite glass-ceramics. J Am Ceram Soc. 2009;92(7):1514–8.CrossRefGoogle Scholar
  62. 62.
    Almuhamadi J, Karpukhina N, Cattell M. Diopside glass-ceramics for dental and biomedical applications. Adv Sci Technol. 2014;96:15–20.CrossRefGoogle Scholar
  63. 63.
    Sinthuprasirt P, van Noort R, Moorehead R, Pollington S. Evaluation of a novel multiple phase veneering ceramic. Dent Mater. 2015;31(4):443–52.CrossRefGoogle Scholar
  64. 64.
    Johnson A, Shareef MY, van Noort R, Walsh JM. Effect of furnace type and ceramming heat treatment conditions on the biaxial flexural strength of a canasite glass-ceramic. Dent Mater. 2000;16(4):280–4.CrossRefGoogle Scholar
  65. 65.
    van Noort R, Shareef MY, Johnson A, James PF. Properties of a canasite-based castable glass-ceramic. J Dent Res. 1997;76(21):61–61.Google Scholar
  66. 66.
    Johnson A, Van Noort R, Hatton PV, Walsh JM. The effect of investment material and ceramming regime on the surface roughness of two castable glass-ceramic material. Dent Mater. 2003;19(3):218–25.CrossRefGoogle Scholar
  67. 67.
    Anusavice KJ, Zhang N-Z. Chemical durability of dicor and fluorocanasite-based glass-ceramics. J Dent Res. 1998;77(7):1553–9.CrossRefGoogle Scholar
  68. 68.
    Zhang N-Z, Anusavice KJ. Effect of alumina on the strength, fracture toughness, and crystal structure of fluorcanasite glass-ceramics. J Am Ceram Soc. 1999;82(9):2509–13.CrossRefGoogle Scholar
  69. 69.
    Bubb NL, Wood DJ, Streit P. Reduction of the solubility of fluorcanasite based glass ceramics by additions of SiO2 and AlPO4. Glass Technol. 2004;45(2):91–3.Google Scholar
  70. 70.
    Stokes CW, Van Noort R, Hand R. Investigation of the chemical solubility of mixed-alkali fluorcanasite forming glasses. J Non-Cryst Solids. 2006;352(2):142–9.CrossRefGoogle Scholar
  71. 71.
    Pollington S, van Noort R. Manufacture, characterisation and properties of novel fluorcanasite glass-ceramics. J Dent. 2012;40(11):1006–17.CrossRefGoogle Scholar
  72. 72.
    Pollingtona S, Fabianelli A, van Noort R. Microtensile bond strength of a resin cement to a novel fluorcanasite following different surface treatments. Dent Mater. 2010;26(9):864–72.CrossRefGoogle Scholar
  73. 73.
    Eilaghi M, Montazerian M, Eftekhari Yekta B. Effect of partial substitution of K2O for Na2O on sintering, crystallization and mechanical properties of SiO2−CaO−K2O−Na2O−CaF2 glass-ceramics. Trans Indian Ceram Soc. 2016;75(1):1–6.CrossRefGoogle Scholar
  74. 74.
    Hill RG, Wood DJ. Apatite-mullite glass ceramics. J Mater Sci Mater Med. 1995;6(6):311–8.CrossRefGoogle Scholar
  75. 75.
    Clifford A, Hill RG. Apatite-mullite glass-ceramics. J Non-Cryst Solids. 1996;196:346–52.CrossRefGoogle Scholar
  76. 76.
    Gorman CM, Hill RG. Heat-pressed ionomer glass-ceramics part I: an investigation of flow and microstructure. Dent Mater. 2003;19(4):320–6.CrossRefGoogle Scholar
  77. 77.
    Gorman CM, Hill RG. Heat-pressed ionomer glass-ceramics. Part II. Mechanical property evaluation. Dent Mater. 2004;20(3):252–61.CrossRefGoogle Scholar
  78. 78.
    Hill RG. Bioactive glass-ceramics. In: Ducheyne P, editor. Comprehensive biomaterials, Volume 1: metallic, ceramic and polymeric biomaterials; 2011. p. 181–6.CrossRefGoogle Scholar
  79. 79.
    Fathi H, Johnson A, van Noort R, Ward JM, Brook IM. The effect of calcium fluoride (CaF2) on the chemical solubility of an apatite-mullite glass-ceramic material. Dent Mater. 2005;21(6):551–6.CrossRefGoogle Scholar
  80. 80.
    Fathi H, Johnson A, van Noort R, Ward JM. The influence of calcium fluoride (CaF2) on biaxial flexural strength of apatite-mullite glass-ceramic materials. Dent Mater. 2005;21(9):846–51.CrossRefGoogle Scholar
  81. 81.
    Fathi HM, Miller C, Stokes C, Johnson A. The effect of ZrO2 and TiO2 on solubility and strength of apatite-mullite glass-ceramics for dental applications. J Mater Sci Mater Med. 2014;25(3):583–94.CrossRefGoogle Scholar
  82. 82.
    Fathi HM, Johnson A. The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dental use. Dent Mater. 2016;32(2):311–22.CrossRefGoogle Scholar
  83. 83.
    Mollazadeh S, Eftekhari Yekta B, Javadpour J, Yusefi A, Jafarzadeh TS. The role of TiO2, ZrO2, BaO and SiO2 on the mechanical properties and crystallization behavior of fluorapatite-mullite glass-ceramics. J Non-Cryst Solids. 2013;361(1):70–7.CrossRefGoogle Scholar
  84. 84.
    Mollazadeh S, Ajalli S, Kashi TSJ, Eftekhari Yekta B, Javadpour J, Jafari S, Youssefi A, Fazel A. The effect of aqueous media on the mechanical properties of fluorapatite-mullite glass-ceramics. Dent Mater. 2015;31(11):1370–6.CrossRefGoogle Scholar
  85. 85.
    Höland W, Rheinberger V, Apel E, Ritzberger C, Rothbrust F, Kappert H, Krumeich F, Nesper R. Future perspectives of biomaterials for dental restoration. J Eur Ceram Soc. 2009;29(7):1291–7.CrossRefGoogle Scholar
  86. 86.
    Persson C, Unosson E, Ajaxon I, Engstrand J, Engqvist H, Xia W. Nano grain sized zirconia-silica glass ceramics for dental applications. J Eur Ceram Soc. 2012;32(16):4105–10.CrossRefGoogle Scholar
  87. 87.
    Montazerian M, Schneider JF, Eftekhari Yekta B, Marghussian VK, Rodrigues AM, Zanotto ED. Sol-gel synthesis, structure, sintering and properties of bioactive and inert nano apatite-zirconia glass-ceramics. Ceram Int. 2015;41(9):11024–45.CrossRefGoogle Scholar
  88. 88.
    Mahmoud M, Folz D, Suchicital C, Clark D, Fathi Z. Variable frequency microwave (VFM) processing: a new tool to crystallize lithium disilicate glass. Ceram Eng Sci Proc. 2006;27(6):143–53.Google Scholar
  89. 89.
    Liu J, Zhang B, Yan C, Shi Y. The effect of processing parameters on characteristics of selective laser sintering dental glass-ceramic powder. Rapid Prototyp J. 2010;16(2):138–45.CrossRefGoogle Scholar
  90. 90.
    Cam P, Neuenschwander B, Schwaller P, Köhli B, Lüscher B, Senn F, Kounga A, Appert C. A novel laser-based method for controlled crystallization in dental prosthesis materials, progress in biomedical optics and imaging – proceedings of SPIE 9306. 2015. Article number 930607.Google Scholar
  91. 91.
    Fu L, Wu C, Grandfield K, Unosson E, Chang J, Engqvist H, Xia W. Transparent single crystalline ZrO2-SiO2 glass nanoceramic sintered by SPS. J Eur Ceram Soc. 2016;36(14):3487–94.CrossRefGoogle Scholar
  92. 92.
    Fu Q, Beall G, Smith C. Nature-inspired design of strong, tough glass-ceramics, MRS Bulletin, accepted. 2017.Google Scholar
  93. 93.
    Kawai K, Inoue M, Tsuchitani Y. Effect of ion-exchange treatment on mechanical properties of new dental ceramics. Am J Dent. 2003;16(5):347–50.Google Scholar
  94. 94.
    Fischer H, Marx R. Suppression of subcritical crack growth in a leucite-reinforced dental glass by ion exchange. J Biomed Mater Res A. 2003;66(4):885–9.CrossRefGoogle Scholar
  95. 95.
    Fischer H, Brehme M, Telle R, Marx R. Effect of ion exchange of glazed dental glass ceramics on strength parameters. J Biomed Mater Res A. 2005;72(2):175–9.CrossRefGoogle Scholar
  96. 96.
    Fischer H, De Souza RA, Wätjen AM, Richter S, Edelhoff D, Mayer J, Martin M, Telle R. Chemical strengthening of a dental lithium disilicate glass-ceramic material. J Biomed Mater Res Part A. 2008;87(3):582–7.CrossRefGoogle Scholar
  97. 97.
    Liu Y, Tan Y, Lei T, Xiang Q, Han Y, Huang B. Effect of porous glass–ceramic fillers on mechanical properties of light-cured dental resin composites. Dent Mater. 2009;25(6):709–15.CrossRefGoogle Scholar
  98. 98.
    Mollazadeh S, Javadpour J, Eftekhari Yekta B, Jafarzadeh TS, Youssefi A. Synthesis and characterisation of dental composite materials reinforced with fluoroapatite-mullite glass-ceramic particles. Adv Appl Ceram. 2013;112(5):294–300.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Materials Engineering (DEMa)Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar)São CarlosBrazil

Personalised recommendations