Synthesis and Functionalization of Mesoporous Bioactive Glasses for Drug Delivery

Chapter

Abstract

Recently Mesoporous bioactive glasses were synthesized for which outstanding applications in the biomedical field are expected. It is nowadays recognized, in fact, that microporous and mesoporous inorganic and hybrid organic-inorganic bioactive matrices and scaffolds can be produced with controlled rates of resorption and controlled surface chemistries. The type and concentration of released inorganic and organic species and their release sequence can be tuned; this is a vital requirement in stimulating cell proliferation and enhancing subsequent cell differentiation. The ability to bond to living tissues and the high pore volume allow to exploit mesoporous bioactive materials also simply for local drug delivery allowing to overcome the limitations of systemic delivery: therapeutic concentrations at the site of infection, but for short periods of time, forcing repeated dosing for longer periods.

The chapter is organized in four sections. The first one deals with synthesis and mechanism of formation of mesoporous bioactive glasses. The second one analyses the bioactive behavior. The third one is devoted to understand the specificity of bioactive response induced by the mesoporous structure. The fourth one deals with drug delivery from mesoporous bioactive glasses. In a first subparagraph the advantages of using bioactive glasses for local derivery and the construction of tissue engineering scaffolds are analysed. In the second one the complexity of therapeutics delivery from mesoporous bioactive glasses is analysed.

Keywords

Mesoporous particlesBioactivityScaffoldsTissue engineeringDrug delivery 

References

  1. 1.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.CrossRefGoogle Scholar
  2. 2.
    Andersson OH, Karlsson KH, Kangasniemi K. Calcium phosphate formation at the surface of bioactive glass in vivo. J Non Cryst Solids. 1990;119:290–6.CrossRefGoogle Scholar
  3. 3.
    Branda F. The Sol-Gel route to nanocomposites. In: Boreddy SR, editor. Advances in nanocomposites – synthesis, characterization and industrial applications. Reddy, INTECH open access publisher; 2011. Available online: (http://www.intechopen.com/articles/show/title/the-sol-gel-route-to-nanocomposites).
  4. 4.
    Branda F, Arcobello-Varlese F, Costantini A, Luciani G. Effect of the substitution of M2O3 (M=La,Y,In,Ga,Al) for CaO on the bioactivity of 2.5CaO _ 2SiO2 glass. Biomaterials. 2002;23:711–6.CrossRefGoogle Scholar
  5. 5.
    Bretcanu O, Misra S, Roy I, Renghini C, Fiori F, Boccaccini AR, Salih V. In vitro biocompatibility of 45S5 bioglass-derived glass–ceramic scaffolds coated with poly(3-hydroxybutyrate). J Tissue Eng Regen Med. 2009;3:139–48.CrossRefGoogle Scholar
  6. 6.
    Brinker CJ, Sherer W. Sol-gel science: the physics and chemistry of Sol-gel processing. San Diego: Academic Press; 1990.Google Scholar
  7. 7.
    Brinker JC, Lu Y, Sellinger A, Fan H. Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater. 1999;11(7):579–85.CrossRefGoogle Scholar
  8. 8.
    Bruinsma PJ, Kim AY, Liu J, Baskaran S. Chem Mater. 1997;9:2507.CrossRefGoogle Scholar
  9. 9.
    Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167(3916):279–80.CrossRefGoogle Scholar
  10. 10.
    Carlisle E. Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int. 1981;33(1):27–34.CrossRefGoogle Scholar
  11. 11.
    Chatzistavrou X, Tsigkou O, Amin HD, Paraskevopoulos KM, Salih V, Boccaccini AR. Sol–gel based fabrication and characterization of new bioactive glass–ceramic composites for dental applications. J Eur Ceram Soc. 2012;32:3051.CrossRefGoogle Scholar
  12. 12.
    Chen QZ, Boccaccini AR. Poly(D,L-lactic acid) coated 45S5 bioglass®-based scaffolds: processing and characterization. J Biomed Mater Res A. 2006;77A:445–57.CrossRefGoogle Scholar
  13. 13.
    Chen Q, Roether JA, Boccaccini AR. Chapter 6: Tissue engineering scaffolds from bioactive glass and composite materials. In: Ashammakhi N, Reis R, Chiellini F, editors. Topics in tissue engineering, vol. 4. 2008. http://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol4/
  14. 14.
    Chiola V, Ritsko JE, Vanderpool CD, US Patent 3556725, 1971.Google Scholar
  15. 15.
    Ciesla U, Schüth F. Ordered mesoporous materials – review. Microporous Mesoporous Mater. 1999;27:131–49.CrossRefGoogle Scholar
  16. 16.
    Damen JJM, Ten Cate JM. Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation. J Dent Res. 1992;71(3):453–7.CrossRefGoogle Scholar
  17. 17.
    Di Renzo F, Cambon H, Dudartre R. A 28 years old synthesis of micelle templated mesoporous silica. Microporous Mater. 1997;10:283–6.CrossRefGoogle Scholar
  18. 18.
    Duchène P. Stimulation of biological function with bioactive glass. MRS Bull. 1998;23(11):43–9.CrossRefGoogle Scholar
  19. 19.
    Dzondo-Gadet M, Mayap-Nzietchueng R, Hess K, Nabet P, Belleville F, Dousset B. Action of boron at the molecular level. Biol Trace Elem Res. 2002;85(1):23–33.CrossRefGoogle Scholar
  20. 20.
    Finney L, Vogt S, Fukai T, Glesne D. Copper and angiogenesis: unraveling a relationship key to cancer progression. Clin Exp Pharmacol Physiol. 2009;36(1):88–94.CrossRefGoogle Scholar
  21. 21.
    Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinki JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF. Science. 1995;267:1138.CrossRefGoogle Scholar
  22. 22.
    Fu Q, Saiz E, Tomsia AP. Bioinspired strong and highly porous glass scaffolds. Adv Funct Mater. 2011;21:1058–63.CrossRefGoogle Scholar
  23. 23.
    Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C. 2011;31:1245–56.CrossRefGoogle Scholar
  24. 24.
    Fu Q, Saiz E, Tomsia AP. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and re generation. Acta Biomater. 2011;7:3547–54.CrossRefGoogle Scholar
  25. 25.
    Garcıa A, Cicuéndez M, Izquierdo-Barba I, Arcos D, Vallet-Régı M. Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2-CaO-P2O5 mesoporous bioactive glasses. Chem Mater. 2009;21:5474–84.CrossRefGoogle Scholar
  26. 26.
    Gérard C, Bordeleau L-J, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824–31.CrossRefGoogle Scholar
  27. 27.
    Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010;3:3867–910.CrossRefGoogle Scholar
  28. 28.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–510.CrossRefGoogle Scholar
  29. 29.
    Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.CrossRefGoogle Scholar
  30. 30.
    Hench LL, Splint RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971;2(Part 1):117–41.CrossRefGoogle Scholar
  31. 31.
    Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.CrossRefGoogle Scholar
  32. 32.
    Hu GF. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem. 1998;69(3):326–35.CrossRefGoogle Scholar
  33. 33.
    Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prosthesis. J Biomed Mater Res. 1970;4:433–56.CrossRefGoogle Scholar
  34. 34.
    Hum J, Boccaccini AR. Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J Mater Sci Mater Med. 2012;23:2317–33.CrossRefGoogle Scholar
  35. 35.
    Huo Q, Margolese DI, Clesia U, Feng P, Gier TE, Sieger P, Leon R, Petroff PM, Schüth F, Stucky GD. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature. 1994a;368:317–21.CrossRefGoogle Scholar
  36. 36.
    Huo Q, Margolese DI, Ciesra U, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schuth F, Stucky GD. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater. 1994b;6:1176–91.CrossRefGoogle Scholar
  37. 37.
    Huo Q, Feng J, Schüth F, Stucky GD. Preparation of hard mesoporous silica spheres. Chem Mater. 1997;9:14–7.CrossRefGoogle Scholar
  38. 38.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.CrossRefGoogle Scholar
  39. 39.
    Iler RK, US Patent 2663650, 1953.Google Scholar
  40. 40.
    Iler RK. The chemistry of silica. New York: Wiley; 1971. p. 562.Google Scholar
  41. 41.
    Izquierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, Lopez-Noriega A, Vallet-Régı M. High-performance mesoporous bioceramics mimicking bone mineralization. Chem Mater. 2008;20:3191–8.CrossRefGoogle Scholar
  42. 42.
    Jarcho M, Bolen CH, Thomas MB, Bobick J, Kayand JF, Doremus RH. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci. 1976;11:2027.CrossRefGoogle Scholar
  43. 43.
    Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86.CrossRefGoogle Scholar
  44. 44.
    Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.CrossRefGoogle Scholar
  45. 45.
    Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham offspring cohort. J Bone Miner Res. 2004;19(2):297–307.CrossRefGoogle Scholar
  46. 46.
    Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF, Wittrant Y, Masson M, Weiss P, Beck L, Magne D, Guicheux J. Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res. 2009;24(11):1856–68.CrossRefGoogle Scholar
  47. 47.
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.CrossRefGoogle Scholar
  48. 48.
    Katiyar A, Yadav S, Smirniotis PG, Pinto NG. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J Chromatogr A. 2006;1122:13–20.CrossRefGoogle Scholar
  49. 49.
    Klein C, Patka P, der Hollander W. Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation. Biomaterials. 1989;10:59–62.CrossRefGoogle Scholar
  50. 50.
    Kokubo T. Surface chemistry of bioactive glass-ceramics. J Non Cryst Solids. 1990;120:138–51.CrossRefGoogle Scholar
  51. 51.
    Kokubo T. Novel bioactive materials derived from glasses, proceedings of the XVI international congress on glass, Madrid, vol. 1. Bol Soc Esp Ceram Vid. 1992;31-C(1):119–37.Google Scholar
  52. 52.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.CrossRefGoogle Scholar
  53. 53.
    Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T. Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application. J Mater Sci. 1985;20:2001–4.CrossRefGoogle Scholar
  54. 54.
    Kosuge K, Singh PS. Rapid synthesis of Al-containing mesoporous silica hard spheres of 30-50 μm diameter. Chem Mater. 2001;13:2476–82.Google Scholar
  55. 55.
    Kosuge K, Murakami T, Kikukawa N, Takemori M. Direct synthesis of porous pure and thiol-functional silica spheres through the S+X-I+ assembly pathway. Chem Mater. 2003;15:3184–9.Google Scholar
  56. 56.
    Kosuge K, Kikukawa N, Takemori M. One-step preparation of porous silica spheres from sodium silicate using triblock copolymer templating. Chem Mater. 2004;16:4181–6.CrossRefGoogle Scholar
  57. 57.
    Kosuge K, Sato T, Kikukawa N, Takemori M. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem Mater. 2004;16:899–905.CrossRefGoogle Scholar
  58. 58.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.CrossRefGoogle Scholar
  59. 59.
    Kwun I-S, Cho Y-E, Lomeda R-AR, Shin H-I, Choi J-Y, Kang Y-H, Beattie JH. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone. 2010;46(3):732–41.CrossRefGoogle Scholar
  60. 60.
    Lebedev OI, Van Tendeloo G, Collart O, Cool P, Vansant EF. Structure and microstructure of nanoscale mesoporous silica sphere. Solid State Sci. 2004;6:489–98.CrossRefGoogle Scholar
  61. 61.
    LeGeros RZ. Biologically relevant calcium phosphates: preparation and characterization. In: Myers H, editor. Calcium phosphates in oral biology and medicine, monographs in oral sciences. Basel: Karger; 1991.Google Scholar
  62. 62.
    Liu X, Rahaman MN, Fu QA. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response. Acta Biomater. 2011;7:406–16.CrossRefGoogle Scholar
  63. 63.
    Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet-Régı M. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater. 2006;18:3137–44.CrossRefGoogle Scholar
  64. 64.
    Lu Y, Ganguli R, Celeste A, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature. 1997;389:364–8.CrossRefGoogle Scholar
  65. 65.
    Ma Y, Qi L, Ma J, Wu Y, Liu O, Cheng H. Large-pore mesoporous silica spheres: synthesis and application in HPLC. Colloids Surf A. 2003;229:1–8.CrossRefGoogle Scholar
  66. 66.
    Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26(23):4847–55.CrossRefGoogle Scholar
  67. 67.
    Marie PJ. Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone. 2006;38(2, Suppl. 1):10–4.CrossRefGoogle Scholar
  68. 68.
    Marie PJ. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone. 2010;46(3):571–6.CrossRefGoogle Scholar
  69. 69.
    Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69(3):121–9.CrossRefGoogle Scholar
  70. 70.
    Meunier PJ, Slosman DO, Delmas PD, Sebert JL, Brandi ML, Albanese C, Lorenc R, Pors-Nielsen S, De Vernejoul MC, Roces A, Reginster JY. Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis: a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab. 2002;87(5):2060–6.Google Scholar
  71. 71.
    Moon DS, Lee JK. Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure. Langmuir. 2012;28:12341–7.CrossRefGoogle Scholar
  72. 72.
    Mourino V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J Roy Soc. 2010;7(43):209–27.CrossRefGoogle Scholar
  73. 73.
    Mourino V, Newby P, Boccaccini AR. Preparation and characterization of gallium releasing 3-D alginate coated 45S5 bioglass based scaffolds for bone tissue engineering. Adv Eng Mater. 2010;12:B283–91.CrossRefGoogle Scholar
  74. 74.
    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003. www.nature.com/naturematerials CrossRefGoogle Scholar
  75. 75.
    Nakamura T, Mizutani M, Nozaki H, Suzuki N, Yano K. Formation mechanism for monodispersed mesoporous silica spheres and its application to the synthesis of Core/Shell particles. J Phys Chem C. 2007;111:1093–100.CrossRefGoogle Scholar
  76. 76.
    Newby CP, Boccaccini AR. Bioactive glass and glass ceramic scaffolds for bone tissue engineering. In: Bioactive glasses – materials properties and applications, a volume in Woodhead publishing series in biomaterials. 2011. p. 107–28.Google Scholar
  77. 77.
    Nielsen FH. Is boron nutritionally relevant? Nutr Rev. 2008;66(4):183–91.CrossRefGoogle Scholar
  78. 78.
    Ogawa M. Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. J Am Chem SOC. 1994;116:7941–2.CrossRefGoogle Scholar
  79. 79.
    Ogawa M. A simple sol-gel route for the preparation of silica-surfactant mesostructured. Mater Chem Commun. 1996: 1149–50.Google Scholar
  80. 80.
    Ogino M, Ohuchi F, Hench LL. Compositional dependence of the formation of calcium phosphate films on bioglass. J Biomed Mater Res. 1980;14:55–64.CrossRefGoogle Scholar
  81. 81.
    Pan W, Ye J, Ning G, Lin Y, Wang J. A novel synthesis of micrometer silica hollow sphere. Mater Res Bull. 2009;44:280–3.CrossRefGoogle Scholar
  82. 82.
    Pauwels B, Van Tendeloo G, Thoelen C, Van Rhijn W, Jacobs PA. Structure determination of spherical MCM-41 particles. Adv Mater. 2001;13(17):1317–20.CrossRefGoogle Scholar
  83. 83.
    Peltola T, Jokinen M, Rahiala H, Levanen E, Rosenholm JB, Kangasniemi I, Yli-Urpo A. Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2 substrates in vitro. J Biomed Mater Res. 1999;44:12–21.CrossRefGoogle Scholar
  84. 84.
    Polshettiwar V, Cha D, Zhang X, Basset JM. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew Chem Int Ed. 2010;49:9652–6.CrossRefGoogle Scholar
  85. 85.
    Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.CrossRefGoogle Scholar
  86. 86.
    Rawson H. Inorganic glass-forming system. London: Academic Press; 1967.Google Scholar
  87. 87.
    Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127–35.CrossRefGoogle Scholar
  88. 88.
    Rodríguez JP, Ríos S, González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem. 2002;85(1):92–100.CrossRefGoogle Scholar
  89. 89.
    Ruiz-Hernández E, Baeza A, Vallet-Regí M. Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano. 2011;5:1259–66.CrossRefGoogle Scholar
  90. 90.
    Salinas AJ, Vallet-Regı M. Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv. 2013;3:11116–31.CrossRefGoogle Scholar
  91. 91.
    Schepers EJG, Ducheyne P. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1–24 month experiment with several materials and particle sizes and size ranges. J Oral Rehabil. 1997;24:171–81.CrossRefGoogle Scholar
  92. 92.
    Schumacher K, Ravikovitch PI, Du Chesne A, Neimark AV, Unger KK. Characterization of MCM-48 materials. Langmuir. 2000;16:4648–54.CrossRefGoogle Scholar
  93. 93.
    Sing KSW, Everett DH, Haul RHV, Moscou L, Pierotti RA, Rouquerol J, Siemieniewsk T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57(4):603–19.CrossRefGoogle Scholar
  94. 94.
    Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.CrossRefGoogle Scholar
  95. 95.
    Tan B, Rankin SE. Interfacial alignment mechanism of forming spherical silica with radially oriented nanopores. J Phys Chem B. 2004;108:20122–9.CrossRefGoogle Scholar
  96. 96.
    Tendeloo GV, Lebedev OI, Collart O, Cool P, Vansant EF. Structure of nanoscale mesoporous silica spheres? J Phys Condens Matter. 2003;15:S3037–46. Online at: stacks.iop.org/JPhysCM/15/S3037Google Scholar
  97. 97.
    Tolbert SH, Schaffer TE, Feng J, Hansma PK, Stucky GD. A new phase of oriented mesoporous silicate thin films. Chem Mater. 1997;9:1962–7.CrossRefGoogle Scholar
  98. 98.
    Tolli H, Kujala S, Levonen K, Jamsa T, Jalovaara P. Bioglass as a carrier for reindeer bone protein extract in the healing of rat femur defect. J Mater Sci Mater Med. 2010;21(5):1677–84.CrossRefGoogle Scholar
  99. 99.
    Uysal T, Ustdal A, Sonmez MF, Ozturk F. Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod. 2009;79(5):984–90.CrossRefGoogle Scholar
  100. 100.
    Valerio P, Pereira MM, Goes AM, Leite MF. Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater. 2009;4:045011.CrossRefGoogle Scholar
  101. 101.
    Vallet-Regı M, Ragel CV, Salinas AJ. Glasses with medical applications. Eur J Inorg Chem. 2003;6:1029–42.CrossRefGoogle Scholar
  102. 102.
    Vartuli JC, Schmitt KD, Kresge CT, Roth WJ, Leonowicz ME, McCullen SB, Hellring SD, Beck JS, Schlenker JL, Olson DH, Sheppard EW. Development of a formation mechanism for M41S materials. Stud Surf Sci Catal. 1994;84:53–60. http://dx.doi.org/10.1016/S0167-2991(08)64096-3 CrossRefGoogle Scholar
  103. 103.
    Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6(18):1952–67.CrossRefGoogle Scholar
  104. 104.
    Vogel W, Holand W, Nauman K, Gumel J. Development of machineable bioactive glass ceramics for medical uses. J Non Cryst Solids. 1986;80:34–41.CrossRefGoogle Scholar
  105. 105.
    Wegst UGK, Ashby MF. The mechanical efficiency of natural materials. Philos Mag. 2004;84(21):2167–81. http://dx.doi.org/10.1080/14786430410001680935 CrossRefGoogle Scholar
  106. 106.
    Wong PT, Choi SK. Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev. 2015;115:3388–432. doi: 10.1021/cr5004634.CrossRefGoogle Scholar
  107. 107.
    Wu C, Ramaswamy Y, Zhu Y, Zheng R, Appleyard R, Howard A, Zreiqat H. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(DL-lactide-co-glycolide) films. Biomaterials. 2009;30(12):2199–208.CrossRefGoogle Scholar
  108. 108.
    Wu C, Zhang Y, Zhou Y, Fan W, Xiao Y. A comparative study of mesoporous-glass/silk and non-mesoporous-glass/silk scaffolds: physiochemistry and in vivo osteogenesis. Acta Biomater. 2011;7(5):2229–36.CrossRefGoogle Scholar
  109. 109.
    Wu C, Fan W, Gelinsky M, Xiao Y, Simon P, Schulze R, Doert T, Luo Y, Cuniberti G. Bioactive SrO–SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater. 2011;7(4):1797–806.Google Scholar
  110. 110.
    Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release. 2006;110(3):522–30.CrossRefGoogle Scholar
  111. 111.
    Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med. 1998;11(2e3):119–35.CrossRefGoogle Scholar
  112. 112.
    Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Akagawa Y, Hamada Y, Takahashi J, Matsuura N. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res. 2002;62(1):99–105.CrossRefGoogle Scholar
  113. 113.
    Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int Ed. 2004;43:5980–4.CrossRefGoogle Scholar
  114. 114.
    Yu C, Fan J, Tian B, Zhao D. Morphology development of mesoporous materials: a colloidal phase separation mechanism. Chem Mater. 2004;16:889–98.CrossRefGoogle Scholar
  115. 115.
    Yun H, Kim S, Hyeon Y. Highly ordered mesoporous bioactive glasses with Im3m symmetry. Mater Lett. 2007;61:4569–72.CrossRefGoogle Scholar
  116. 116.
    Zhang H, Li Z, Xu P, Wu R, Jiao Z. A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release. Chem Commun. 2010;46:6783–5.CrossRefGoogle Scholar
  117. 117.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279:548–52.CrossRefGoogle Scholar
  118. 118.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic triblock and star Diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable mesoporous silica structures. J Am Chem Soc. 1998;120:6024–36.CrossRefGoogle Scholar
  119. 119.
    Zhao D, Yang P, Chmelka BF, Stucky GD. Multiphase assembly of mesoporous-macroporous membranes. Chem Mater. 1999;11:1174–8.CrossRefGoogle Scholar
  120. 120.
    Zhao D, Sun J, Li Q, Stucky GD. Morphological control of highly ordered mesoporous silica SBA-15. Chem Mater. 2000;12:275–9.CrossRefGoogle Scholar
  121. 121.
    Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62(2):175–84.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (Department of Chemical, Materials and Production Engineering) – DICMaPIUniversity of Naples “Federico II”, P.le TecchioNaplesItaly

Personalised recommendations