Nanostructured Calcium Phosphates for Drug, Gene, DNA and Protein Delivery and as Anticancer Chemotherapeutic Devices

  • Andy H. Choi
  • Innocent J. Macha
  • Sibel Akyol
  • Sophie Cazalbou
  • Besim Ben-Nissan


During the past two decades, a number of materials and devices have been utilised in drug delivery applications. A range of biomaterials with different morphologies and pore sizes are currently utilised. For any given biomaterial or bioceramic, having an adequate control of the chemical composition as well as the critical pore sizes is important in terms of controlling the effectiveness when used to deliver drugs locally. In comparison to all currently known and used biomaterials, given the fact that it possesses chemical similarity to human bone, and most importantly its dissolution characteristics which allow for bone regeneration and growth, calcium phosphate holds a special consideration. Moreover, due to their interconnected pore structure, marine materials such as shells and coral exoskeletons show potential for applications in drug delivery due to their easy conversion to calcium phosphates with controllable dissolution rates. This chapter covers a range of current methods used specifically for natural materials that can be converted to calcium phosphates and mixed with polymeric materials as thin film or nanostructured drug, genes, protein and range of delivery and as anticancer chemotherapeutic devices.


Hydroxyapatite Foraminifera Marine material Coral skeleton Liposomes Surface modifications Biomimetics 


  1. 1.
    Chang MC, Ko CC, Douglas WH. Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials. 2003;24:3087–94.CrossRefGoogle Scholar
  2. 2.
    Zhang W, Liao SS, Cui FZ. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater. 2003;15:3221–6.CrossRefGoogle Scholar
  3. 3.
    Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev. 2002;54:135–47.CrossRefGoogle Scholar
  4. 4.
    Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem. 2004;15:50–60.CrossRefGoogle Scholar
  5. 5.
    de Groot KR, Geesink R, Klein CPAT, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res. 1987;21:1375–81.CrossRefGoogle Scholar
  6. 6.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.CrossRefGoogle Scholar
  7. 7.
    Choi AH, Ben-Nissan B, Matinlinna JP, Conway RC. Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. J Dent Res. 2013;92:853–9.CrossRefGoogle Scholar
  8. 8.
    LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.CrossRefGoogle Scholar
  9. 9.
    Ben-Nissan B, Choi AH. Sol-gel production of bioactive nanocoatings for medical applications: part I: an introduction. Nanomedicine. 2006;1:311–9.CrossRefGoogle Scholar
  10. 10.
    Choi AH, Ben-Nissan B. Sol-gel production of bioactive nanocoatings for medical applications: part II: current research and development. Nanomedicine. 2007;2:51–61.CrossRefGoogle Scholar
  11. 11.
    LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.CrossRefGoogle Scholar
  12. 12.
    Giri S, Trewyn BG, Lin VS. Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. Nanomedicine. 2007;2:99–111.CrossRefGoogle Scholar
  13. 13.
    Wu C, Chang J, Zhai W, Ni S. A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J Mater Sci Mater Med. 2007;18:857–64.CrossRefGoogle Scholar
  14. 14.
    Victor SP, Sharma CP. Calcium phosphates as drug delivery systems. J Biomater Tissue Eng. 2012;2:269–79.CrossRefGoogle Scholar
  15. 15.
    Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release. 2010;142:416–21.CrossRefGoogle Scholar
  16. 16.
    Pittella F, Miyata K, Maeda Y, Suma T, Watanabe S, Chen Q, Christie RJ, Osada K, Nishiyama N, Kataoka K. Pancreatic cancer therapy by systemic administration of VEGF siRNA contained in calcium phosphate/charge-conversional polymer hybrid nanoparticles. J Control Release. 2012;161:868–74.CrossRefGoogle Scholar
  17. 17.
    Olton D, Li J, Wilson ME, Rogers T, Close J, Huang L, Kumta PN, Sfeir C. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials. 2007;28:1267–79.CrossRefGoogle Scholar
  18. 18.
    Liu Y, Wang T, He F, Liu Q, Zhang D, Xiang S, Su S, Zhang J. An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery. Int J Nanomedicine. 2011;6:721–7.CrossRefGoogle Scholar
  19. 19.
    Zhou C, Yu B, Yang X, Huo T, Lee LJ, Barth RF, Lee RJ. Lipid-coated nano-calcium-phosphate (LNCP) for gene delivery. Int J Pharm. 2010;392:201–8.CrossRefGoogle Scholar
  20. 20.
    Cao X, Deng W, Wei Y, Yang Y, Su W, Wei Y, Xu X, Yu J. Incorporating pTGF-β1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: efficient, sustained gene delivery to stem cells for chondrogenic differentiation. Eur Cell Mater. 2012;23:81–93.CrossRefGoogle Scholar
  21. 21.
    Sokolova V, Knuschke T, Buer J, Westendorf AM, Epple M. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater. 2011;7:4029–36.CrossRefGoogle Scholar
  22. 22.
    Han JY, Tan TTY, Loo JSC. Utilizing inverse micelles to synthesize calcium phosphate nanoparticles as nano-carriers. J Nanopart Res. 2011;13:3441–54.CrossRefGoogle Scholar
  23. 23.
    Paul W, Sharma CP. Fatty acid conjugated calcium phosphate nanoparticles for protein delivery. Int J Appl Ceram Technol. 2010;7:129–38.CrossRefGoogle Scholar
  24. 24.
    Uskoković V, Batarni SS, Schweicher J, King A, Desai TA. Effect of calcium phosphate particle shape and size on their antibacterial and osteogenic activity in the delivery of antibiotics in vitro. ACS Appl Mater Interfaces. 2013;5:2422–31.CrossRefGoogle Scholar
  25. 25.
    Kester M, Heakal Y, Fox T, Sharma A, Robertson GP, Morgan TT, Altinoğlu EI, Tabaković A, Parette MR, Rouse SM, Ruiz-Velasco V, Adair JH. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett. 2008;8:4116–21.CrossRefGoogle Scholar
  26. 26.
    Bastakoti BP, Hsu YC, Liao SH, Wu KC, Inoue M, Yusa S, Nakashima K, Yamauchi Y. Inorganic-organic hybrid nanoparticles with biocompatible calcium phosphate thin shells for fluorescence enhancement. Chem Asian J. 2013;8:1301–5.CrossRefGoogle Scholar
  27. 27.
    El-Ghannam A, Ricci K, Malkawi A, Jahed K, Vedantham K, Wyan H, Allen LD, Dréau D. A ceramic-based anticancer drug delivery system to treat breast cancer. J Mater Sci Mater Med. 2010;21:2701–10.CrossRefGoogle Scholar
  28. 28.
    Zhao XY, Zhu YJ, Chen F, Lu BQ, Qi C, Zhao J, Wu J. Calcium phosphate hybrid nanoparticles: self-assembly formation, characterization, and application as an anticancer drug nanocarrier. Chem Asian J. 2013;8:1306–12.CrossRefGoogle Scholar
  29. 29.
    Liang P, Zhao D, Wang CQ, Zong JY, Zhuo RX, Cheng SX. Facile preparation of heparin/CaCO3/CaP hybrid nano-carriers with controllable size for anticancer drug delivery. Colloids Surf B: Biointerfaces. 2013;102:783–8.CrossRefGoogle Scholar
  30. 30.
    Li WM, Chen SY, Liu DM. In situ doxorubicin-CaP shell formation on amphiphilic gelatin-iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging. Acta Biomater. 2013;9:5360–8.CrossRefGoogle Scholar
  31. 31.
    Rout SR, Behera B, Maiti TK, Mohapatra S. Multifunctional magnetic calcium phosphate nanoparticles for targeted platin delivery. Dalton Trans. 2012;41:10777–83.CrossRefGoogle Scholar
  32. 32.
    Mukesh U, Kulkarni V, Tushar R, Murthy RS. Methotrexate loaded self stabilized calcium phosphate nanoparticles: a novel inorganic carrier for intracellular drug delivery. J Biomed Nanotechnol. 2009;5:99–105.CrossRefGoogle Scholar
  33. 33.
    Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X. Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials. 2013;34:1364–71.CrossRefGoogle Scholar
  34. 34.
    Chiu D, Zhou W, Kitayaporn S, Schwartz DT, Murali-Krishna K, Kavanagh TJ, Baneyx F. Biomineralization and size control of stable calcium phosphate core-protein shell nanoparticles: potential for vaccine applications. Bioconjug Chem. 2012;23:610–7.CrossRefGoogle Scholar
  35. 35.
    Li S, Wang K, Chang KC, Zong M, Wang J, Cao YG, Bai YH, Wei TM, Zhang ZR. Preparation and evaluation of nano-hydroxyapatite/poly(styrene-divinylbenzene) porous microsphere for aspirin carrier. Sci China Chem. 2012;55:1134–9.CrossRefGoogle Scholar
  36. 36.
    Ignjatović N, Uskoković V, Ajduković Z, Uskoković D. Multifunctional hydroxyapatite and poly(D, L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Mater Sci Eng C. 2013;33:943–50.CrossRefGoogle Scholar
  37. 37.
    Chen R, Qian Y, Li R, Zhang Q, Liu D, Wang M, Xu Q. Methazolamide calcium phosphate nanoparticles in an ocular delivery system. Yakugaku Zasshi. 2010;130:419–24.CrossRefGoogle Scholar
  38. 38.
    Ramachandran R, Paul W, Sharma CP. Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. J Biomed Mater Res B Appl Biomater. 2009;88:41–8.CrossRefGoogle Scholar
  39. 39.
    Xu T, Zhang N, Nichols HL, Shi D, Wen X. Modification of nanostructured materials for biomedical applications. Mater Sci Eng C. 2007;27:579–94.CrossRefGoogle Scholar
  40. 40.
    Xu Q, Tanaka Y, Czernuszka JT. Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes. Biomaterials. 2007;28:2687–94.CrossRefGoogle Scholar
  41. 41.
    Anada T, Takeda Y, Honda Y, Sakurai K, Suzuki O. Synthesis of calcium phosphate-binding liposome for drug delivery. Bioorg Med Chem Lett. 2009;19:4148–50.CrossRefGoogle Scholar
  42. 42.
    Zhu CT, Xu YQ, Shi J, Li J, Ding J. Liposome combined porous β-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv. 2010;17:391–8.CrossRefGoogle Scholar
  43. 43.
    Huang JS, Liu KM, Chen CC, Ho KY, Wu YM, Wang CC, Cheng YM, Ko WL, Liu CS, Ho YP, Wang YP, Hong K. Liposomes-coated hydroxyapatite and tricalcium phosphate implanted in the mandibular bony defect of miniature swine. Kaohsiung J Med Sci. 1997;13:213–28.Google Scholar
  44. 44.
    Wang G, Babadağli ME, Uludağ H. Bisphosphonate-derivatized liposomes to control drug release from collagen/hydroxyapatite scaffolds. Mol Pharm. 2011;8:1025–34.CrossRefGoogle Scholar
  45. 45.
    Al-Jamal WT, Kostarelos K. Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine. 2007;2:85–98.CrossRefGoogle Scholar
  46. 46.
    Ben-Nissan B, Macha I, Cazalbou S, Choi AH. Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis. Nanomedicine. 2016;11:531–44.CrossRefGoogle Scholar
  47. 47.
    Choi AH, Ben-Nissan B, Conway RC, Macha I. Advances in calcium phosphate nanocoatings and nanocomposites. In: Ben-Nissan B, editor. Advances in calcium phosphate biomaterials, Springer series in biomaterials science and engineering (SSBSE). Berlin: Springer; 2014. p. 485–509.CrossRefGoogle Scholar
  48. 48.
    Ben-Nissan B, Green DW. Marine materials in drug delivery and tissue engineering: from natural role models, to bone regeneration and repair and slow delivery of therapeutic drugs, proteins and genes. In: Kim S-K, editor. Marine biomaterials. Boca Raton: Taylor and Francis/CSR Books; 2013. p. 575–602.CrossRefGoogle Scholar
  49. 49.
    Green DW, Li G, Milthrope B, Ben-Nissan B. Adult stem cell coatings using biomaterials for regenerative medicine. Mater Today. 2012;15:61–8.CrossRefGoogle Scholar
  50. 50.
    Ben-Nissan B. Natural bioceramic: from coral to bone and beyond. Curr Opin Solid State Mater Sci. 2003;7:283–8.CrossRefGoogle Scholar
  51. 51.
    Mann S. Mineralization in biological systems. Struct Bond. 1983;54:125.CrossRefGoogle Scholar
  52. 52.
    Gonzalez-McQuire R, Green D, Walsh D, Hall S, Chane-Ching JY, Oreffo RO, Mann S. Fabrication of hydroxyapatite sponges by dextran sulfate/amino acid templating. Biomaterials. 2005;26:6652–6.CrossRefGoogle Scholar
  53. 53.
    Green D, Walsh D, Yang X, Mann S, Oreffo ROC. Stimulation of human bone marrow stromal cells using growth factor-encapsulated calcium carbonate porous microspheres. J Mater Chem. 2004;14:2206–12.CrossRefGoogle Scholar
  54. 54.
    Walsh D, Mann S. Feigning nature’s sculptures. Chem Br. 1996;32:31–4.Google Scholar
  55. 55.
    Walsh D, Boanini E, Tanaka J, Mann S. Synthesis of tri-calcium phosphate sponges by interfacial deposition and thermal transformation of self-supporting inorganic films. J Mater Chem. 2005;15:1043–8.CrossRefGoogle Scholar
  56. 56.
    Hall SR, Swinerd VM, Newby FN, Collins AM, Mann S. Fabrication of porous titania (brookite) microparticles with complex morphology by sol-gel replication of pollen grains. Chem Mater. 2006;18:598–600.CrossRefGoogle Scholar
  57. 57.
    Green DW. Bio-inspired ceramic structures: from invertebrate marine skeletons to biomimetic crystal engineering. J Aust Ceram Soc. 2004;40:1–7.Google Scholar
  58. 58.
    Parker AR, Martini N. Structural color in animals-simple to complex optics. Opt Laser Technol. 2006;38:315–22.CrossRefGoogle Scholar
  59. 59.
    Ben-Nissan B, Green DW. Marine structures as templates for biomaterials. In: Ben-Nissan B, editor. Advances in calcium phosphate biomaterials, springer series in biomaterials science and engineering (SSBSE). Berlin: Springer; 2014. p. 391–414.CrossRefGoogle Scholar
  60. 60.
    Choi AH, Cazalbou S, Ben-Nissan B. Biomimetics and marine materials in drug delivery and tissue engineering. In: Antoniac IV, editor. Handbook of bioceramics and Biocomposites. Berlin: Springer; 2015. p. 1–24.CrossRefGoogle Scholar
  61. 61.
    Mock T, Samanta MP, Iverson V, Berthiaume C, Robison M, Holtermann K, Durkin C, Bondurant SS, Richmond K, Rodesch M, Kallas T, Huttlin EL, Cerrina F, Sussman MR, Armbrust EV. Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc Natl Acad Sci U S A. 2008;105:1579–84.CrossRefGoogle Scholar
  62. 62.
    Belegratis MR, Schmidt V, Nees D, Stadlober B, Hartmann P. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms. Bioinspir Biomi. 2014;9:016004.CrossRefGoogle Scholar
  63. 63.
    Kim ES. Directed evolution: a historical exploration into an evolutionary experimental system of nanobiotechnology, 1965–2006. Minerva. 2008;46:463–84.CrossRefGoogle Scholar
  64. 64.
    Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8:1401–21.CrossRefGoogle Scholar
  65. 65.
    Fuhrman J, McCallum K, Davis A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl Environ Microbiol. 1995;61:4517.Google Scholar
  66. 66.
    Rossbach M, Kniewald G. Concepts of marine specimen banking. Chemosphere. 1997;34:1997–2010.CrossRefGoogle Scholar
  67. 67.
    Leupold J, Barfield W, An Y, Hartsock L. A comparison of ProOsteon, DBX, and collagraft in a rabbit model. J Biomed Mater Res B Appl Biomater. 2006;79:292–7.CrossRefGoogle Scholar
  68. 68.
    Luesch H, Harrigan G, Goetz G, Horgen F. The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr Med Chem. 2002;9:1791–806.CrossRefGoogle Scholar
  69. 69.
    Pettit GR, Xu JP, Hogan F, Williams MD, Doubek DL, Schmidt JM, Cerny RL, Boyd MR. Isolation and structure of the human cancer cell growth inhibitory cyclodepsipeptide dolastatin 16. J Nat Prod. 1997;60:752–4.CrossRefGoogle Scholar
  70. 70.
    Simmons TL, Coates RC, Clark BR, Engene N, Gonzalez D, Esquenazi E, Dorrestein PC, Gerwick WH. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci U S A. 2008;105:4587–94.CrossRefGoogle Scholar
  71. 71.
    Simmons T, Andrianasolo E, McPhail K, Flatt P, Gerwick W. Marine natural products as anticancer drugs. Mol Cancer Ther. 2005;4:333–42.Google Scholar
  72. 72.
    Sithranga Boopathy N, Kathiresan K. Anticancer drugs from marine flora: an overview. J Oncol. 2010;2010:214186.CrossRefGoogle Scholar
  73. 73.
    Stanley G. The evolution of modern corals and their early history. Earth Sci Rev. 2003;60:195–225.CrossRefGoogle Scholar
  74. 74.
    Sethmann I, Worheide G. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron. 2008;39:209–28.CrossRefGoogle Scholar
  75. 75.
    Wilt F, Kilian C, Livingston B. Development of calcareous skeletal elements in invertebrates. Differentiation. 2003;71:237–50.CrossRefGoogle Scholar
  76. 76.
    Laine J, Labady M, Albornoz A, Yunes S. Porosities and pore sizes in coralline calcium carbonate. Mater Charact. 2008;59:1522–5.CrossRefGoogle Scholar
  77. 77.
    Chou J, Valenzuela S, Bishop D, Ben-Nissan B, Milthorpe B. Strontium- and magnesium-enriched biomimetic β-TCP macrospheres with potential for bone tissue morphogenesis. J Tissue Eng Regen Med. 2012;8:771–8.CrossRefGoogle Scholar
  78. 78.
    Demers C, Hamdy C, Corsi K, Chellat F, Tabrizian M, Yahia L. Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng. 2002;12:15–35.Google Scholar
  79. 79.
    Baudet-Pommel M, Collangettes-Peyrat D, Couvet-Lejczyk V. Autotransplantation: clinical results, radiography, orthodontics, criteria for success. Acta Odontol. 1988;163:463–72.Google Scholar
  80. 80.
    Patat J, Guillemin G. Natural coral used as a replacement biomaterial in bone grafts. Ann Chir Plast Esthet. 1989;34:221–5.Google Scholar
  81. 81.
    Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42:129–38.CrossRefGoogle Scholar
  82. 82.
    LeGeros R. Apatites in biological systems. Prog Cryst Growth Charact. 1981;41:1–45.CrossRefGoogle Scholar
  83. 83.
    Papacharalambous S, Anastasoff K. Natural coral skeleton used as onlay graft for contour augmentation of the face. A preliminary report. Int J Oral Maxillofac Surg. 1993;22:260–4.CrossRefGoogle Scholar
  84. 84.
    Chou J, Ben-Nissan B, Choi A, Wuhrer R, Green D. Conversion of coral sand to calcium phosphate for biomedical application. J Aust Ceram Soc. 2007;43:44–8.Google Scholar
  85. 85.
    Ben-Nissan B, Milev A, Vago R. Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials. 2004;25:4971–5.CrossRefGoogle Scholar
  86. 86.
    Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 1974;247:220–2.CrossRefGoogle Scholar
  87. 87.
    Damron T, Lisle J, Craig T, Wade M, Silbert W, Cohen H. Ultraporous β-tricalcium phosphate alone or combined with bone marrow aspirate for benign cavitary lesions: comparison in a prospective randomized clinical trial. J Bone Joint Surg Am. 2013;95:158–66.CrossRefGoogle Scholar
  88. 88.
    Guyton G, Miller S. Stem cells in bone grafting: trinity allograft with stem cells and collagen/β-tricalcium phosphate with concentrated bone marrow aspirate. Foot Ankle Clin. 2010;15:611–9.CrossRefGoogle Scholar
  89. 89.
    Barber F, Dockery W. Long-term absorption of β-tricalcium phosphate poly-L-lactic acid interference screws. Arthroscopy. 2008;24:441–7.CrossRefGoogle Scholar
  90. 90.
    Somanathan R, Simunek A. Evaluation of the success of β-tricalcium phosphate and deproteinized bovine bone in maxillary sinus augmentation using histomorphometry: a review. Acta Med. 2006;49:87–9.Google Scholar
  91. 91.
    Florczyk SJ, Leung M, Jana S, Li Z, Bhattarai N, Huang JI, Hopper RA, Zhang M. Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J Biomed Mater Res A. 2012;100:3408–15.CrossRefGoogle Scholar
  92. 92.
    Zhou J, Fang T, Wang Y, Dong J. The controlled release of vancomycin in gelatin/β-TCP composite scaffolds. J Biomed Mater Res A. 2012;100:2295–301.Google Scholar
  93. 93.
    La W, Kwon S, Lee T, Yang H, Park J, Kim B. The effect of the delivery carrier on the quality of bone formed via bone morphogenetic protein-2. Artif Organs. 2012;36:642–7.CrossRefGoogle Scholar
  94. 94.
    Suarez-Gonzalez D, Lee J, Lan Levengood S, Vanderby RJ, Murphy W. Mineral coatings modulate β-TCP stability and enable growth factor binding and release. Acta Biomater. 2012;8:1117–24.CrossRefGoogle Scholar
  95. 95.
    Paschalis E, Wikiel K, Nancollas G. Dual constant composition kinetics characterization of apatitic surfaces. J Biomed Mater Res. 1994;28:1411–8.CrossRefGoogle Scholar
  96. 96.
    Tang R, Hass M, Wu W, Gulde S, Nancollas G. Constant composition dissolution of mixed phases. II. Selective dissolution of calcium phosphates. J Colloid Interface Sci. 2003;260:379–84.CrossRefGoogle Scholar
  97. 97.
    LeGeros R, Lin S, Rohanizadeh R, Mijares D, LeGeros J. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201–9.CrossRefGoogle Scholar
  98. 98.
    Chou J, Ito T, Bishop D, Otsuka M, Ben-Nissan B, Milthorpe B. Controlled release of simvastatin from biomimetic β-TCP drug delivery system. PLoS One. 2013;8:e54676.CrossRefGoogle Scholar
  99. 99.
    Chou J, Ito T, Otsuka M, Ben-Nissan B, Milthorpe B. The effectiveness of the controlled release of simvastatin from β-TCP macrosphere in the treatment of OVX mice. J Tissue Eng Regen Med. 2016;10:E195–203.CrossRefGoogle Scholar
  100. 100.
    Chou J, Ito T, Otsuka M, Ben-Nissan B, Milthorpe B. Simvastatin-loaded β-TCP drug delivery system induces bone formation and prevents rhabdomyolysis in OVX mice. Adv Healthc Mater. 2013;2:678–81.CrossRefGoogle Scholar
  101. 101.
    Chou J, Ben-Nissan B, Green D, Valenzuela S, Kohan L. Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of micro-spherical shells from coral beach sand. Adv Eng Mater. 2010;13:93–9.CrossRefGoogle Scholar
  102. 102.
    Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, Tateishi T. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res. 2000;50:184–90.CrossRefGoogle Scholar
  103. 103.
    Relea P, Revilla M, Ripoll E, Arribas I, Villa LF, Rico H. Zinc, biochemical markers of nutrition, and type I osteoporosis. Age Ageing. 1995;24:303–7.CrossRefGoogle Scholar
  104. 104.
    Yamaguchi M, Oishi H, Suketa Y. Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol. 1987;36:4007–12.CrossRefGoogle Scholar
  105. 105.
    Moonga B, Dempster D. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res. 1995;10:453–7.CrossRefGoogle Scholar
  106. 106.
    Hernández-Sierra JF1, Ruiz F, Pena DC, Martínez-Gutiérrez F, Martínez AE, Guillén Ade J, Tapia-Pérez H, Castañón GM. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine. 2008;4:237–40.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andy H. Choi
    • 1
  • Innocent J. Macha
    • 1
    • 2
  • Sibel Akyol
    • 1
    • 3
  • Sophie Cazalbou
    • 1
    • 4
  • Besim Ben-Nissan
    • 1
  1. 1.Advanced Tissue Regeneration & Drug Delivery Group, School of Life SciencesUniversity of Technology SydneyBroadwayAustralia
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of Dar es SalaamDar es SalaamTanzania
  3. 3.Department of Physiology, Cerrahpasa Medical FacultyUniversity of IstanbulIstanbulTurkey
  4. 4.Laboratoire CIRIMAT – UMR 5085 UPS-INPT-CNRSToulouse cedex 09France

Personalised recommendations