Skip to main content

Calcium Orthophosphate-Based Bioceramics and Its Clinical Applications

  • Chapter
  • First Online:

Abstract

Various types of grafts have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A bit later, such synthetic biomaterials were called bioceramics. In principle, bioceramics can be prepared from diverse inorganic substances but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, which possess the specific advantages due to the chemical similarity to mammalian bones and teeth. During the past 40 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants remain biologically stable once incorporated into the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed and such formulations became an integrated part of the tissue engineering approach. Now CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include bone augmentations, artificial bone grafts, maxillofacial reconstruction, spinal fusion, periodontal disease repairs and bone fillers after tumor surgery. Perspective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides and various types of cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ducheyne P, Healy K, Hutmacher DE, Grainger DW, Kirkpatrick CJ, editors. Comprehensive biomaterials, vol. 6. Amsterdam: Elsevier; 2011. 3672 pp

    Google Scholar 

  2. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. 3rd ed. Oxford: Academic; 2013. 1573 pp

    Google Scholar 

  3. Dorozhkin SV. Calcium orthophosphate-based bioceramics and biocomposites. Weinheim: Wiley-VCH; 2016. 405 pp

    Book  Google Scholar 

  4. Dorozhkin SV. Calcium orthophosphates (CaPO4) and dentistry. Bioceram Dev Appl. 2016;6:096. (28 pages)

    Article  Google Scholar 

  5. http://www.prweb.com/releases/bone_grafts/standard_bone_allografts/prweb8953883.htm. Accessed in Dec 2016.

  6. Dorozhkin SV. Calcium orthophosphates: applications in nature, biology, and medicine. Singapore: Pan Stanford; 2012. 850 pp

    Book  Google Scholar 

  7. Balazsi C, Weber F, Kover Z, Horvath E, Nemeth C. Preparation of calcium-phosphate bioceramics from natural resources. J Eur Ceram Soc. 2007;27:1601–6.

    Article  Google Scholar 

  8. Oktar FN. Microstructure and mechanical properties of sintered enamel hydroxyapatite. Ceram Int. 2007;33:1309–14.

    Article  Google Scholar 

  9. Han F, Wu L. Preparing and characterizing natural hydroxyapatite ceramics. Ceram Int. 2010;220:281–5.

    Google Scholar 

  10. Gergely G, Wéber F, Lukács I, Illés L, Tóth AL, Horváth ZE, Mihály J, Balázsi C. Nano-hydroxyapatite preparation from biogenic raw materials. Cent Eur J Chem. 2010;8:375–81.

    Google Scholar 

  11. Mondal S, Mahata S, Kundu S, Mondal B. Processing of natural resourced hydroxyapatite ceramics from fish scale. Adv Appl Ceram. 2010;109:234–9.

    Article  Google Scholar 

  12. Lim KT, Suh JD, Kim J, Choung PH, Chung JH. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering. J Biomed Mater Res B Appl Biomater. 2011;99B:399–411.

    Article  Google Scholar 

  13. Seo DS, Hwang KH, Yoon SY, Lee JK. Fabrication of hydroxyapatite bioceramics from the recycling of pig bone. J Ceram Proc Res. 2012;13:586–9.

    Google Scholar 

  14. Ho WF, Hsu HC, Hsu SK, Hung CW, Wu SC. Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int. 2013;39:6467–73.

    Article  Google Scholar 

  15. Piccirillo C, Dunnill CW, Pullar RC, Tobaldi DM, Labrincha JA, Parkin IP, Pintado MM, Castro PML. Calcium phosphate-based materials of natural origin showing photocatalytic activity. J Mater Chem A. 2013;1:6452–61.

    Article  Google Scholar 

  16. Salma-Ancane K, Stipniece L, Irbe Z. Effect of biogenic and synthetic starting materials on the structure of hydroxyapatite bioceramics. Ceram Int. 2016;42:9504–10.

    Article  Google Scholar 

  17. Ergun C, Webster TJ, Bizios R, Doremus RH. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I Structure and microstructure. J Biomed Mater Res. 2002;59:305–11.

    Article  Google Scholar 

  18. Webster TJ, Ergun C, Doremus RH, Bizios R. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. J Biomed Mater Res. 2002;59:312–7.

    Article  Google Scholar 

  19. Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials. 2003;24:1389–98.

    Article  Google Scholar 

  20. Landi E, Celotti G, Logroscino G, Tampieri A. Carbonated hydroxyapatite as bone substitute. J Eur Ceram Soc. 2003;23:2931–7.

    Article  Google Scholar 

  21. Vallet-Regí M, Arcos D. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J Mater Chem. 2005;15:1509–16.

    Article  Google Scholar 

  22. Gbureck U, Thull R, Barralet JE. Alkali ion substituted calcium phosphate cement formation from mechanically activated reactants. J Mater Sci Mater Med. 2005;16:423–7.

    Article  Google Scholar 

  23. Gbureck U, Knappe O, Grover LM, Barralet JE. Antimicrobial potency of alkali ion substituted calcium phosphate cements. Biomaterials. 2005;26:6880–6.

    Article  Google Scholar 

  24. Reid JW, Tuck L, Sayer M, Fargo K, Hendry JA. Synthesis and characterization of single-phase silicon substituted α-tricalcium phosphate. Biomaterials. 2006;27:2916–25.

    Article  Google Scholar 

  25. Tas AC, Bhaduri SB, Jalota S. Preparation of Zn-doped β-tricalcium phosphate (β-Ca3(PO4)2) bioceramics. Mater Sci Eng C. 2007;27:394–401.

    Article  Google Scholar 

  26. Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 2007;28:4023–32.

    Article  Google Scholar 

  27. Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007;3:961–9.

    Article  Google Scholar 

  28. Kannan S, Ventura JMG, Ferreira JMF. Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalcium phosphate mixtures. Ceram Int. 2007;33:1489–94.

    Article  Google Scholar 

  29. Kannan S, Rebelo A, Lemos AF, Barba A, Ferreira JMF. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J Eur Ceram Soc. 2007;27:2287–94.

    Article  Google Scholar 

  30. Kannan S, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF. Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement. J Am Ceram Soc. 2008;91:1–12.

    Article  Google Scholar 

  31. Meejoo S, Pon-On W, Charnchai S, Amornsakchai T. Substitution of iron in preparation of enhanced thermal property and bioactivity of hydroxyapatite. Adv Mater Res. 2008;55–57:689–92.

    Article  Google Scholar 

  32. Kannan S, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF. Synthesis and structure refinement of zinc-doped β-tricalcium phosphate powders. J Am Ceram Soc. 2009;92:1592–5.

    Article  Google Scholar 

  33. Matsumoto N, Yoshida K, Hashimoto K, Toda Y. Thermal stability of β-tricalcium phosphate doped with monovalent metal ions. Mater Res Bull. 2009;44:1889–94.

    Article  Google Scholar 

  34. Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6:1882–94.

    Article  Google Scholar 

  35. Habibovic P, Barralet JE. Bioinorganics and biomaterials: bone repair. Acta Biomater. 2011;7:3013–26.

    Article  Google Scholar 

  36. Mellier C, Fayon F, Schnitzler V, Deniard P, Allix M, Quillard S, Massiot D, Bouler JM, Bujoli B, Janvier P. Characterization and properties of novel gallium-doped calcium phosphate ceramics. Inorg Chem. 2011;50:8252–60.

    Article  Google Scholar 

  37. Ansar EB, Ajeesh M, Yokogawa Y, Wunderlich W, Varma H. Synthesis and characterization of iron oxide embedded hydroxyapatite bioceramics. J Am Ceram Soc. 2012;95:2695–9.

    Article  Google Scholar 

  38. Zhang M, Wu C, Li H, Yuen J, Chang J, Xiao Y. Preparation, characterization and in vitro angiogenic capacity of cobalt substituted β-tricalcium phosphate ceramics. J Mater Chem. 2012;22:21686–94.

    Article  Google Scholar 

  39. Shepherd JH, Shepherd DV, Best SM. Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med. 2012;23:2335–47.

    Article  Google Scholar 

  40. Ishikawa K. Carbonate apatite bone replacement. Key Eng Mater. 2014;587:17–20.

    Google Scholar 

  41. Šupová M. Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 2015;41:9203–31.

    Article  Google Scholar 

  42. Williams DF. The Williams dictionary of biomaterials. Liverpool: Liverpool University Press; 1999. 368 pp

    Google Scholar 

  43. Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.

    Article  Google Scholar 

  44. Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, Jansen JA. Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’. J Mater Chem. 2010;20:8747–59.

    Article  Google Scholar 

  45. Mann S, editor. Biomimetic materials chemistry. New York/Chichester: Wiley-VCH; 1996. 400 pp

    Google Scholar 

  46. Vallet-Regí M. Bioceramics: where do we come from and which are the future expectations. Key Eng Mater. 2008;377:1–18.

    Article  Google Scholar 

  47. Jandt KD. Evolutions, revolutions and trends in biomaterials science – a perspective. Adv Eng Mater. 2007;9:1035–50.

    Article  Google Scholar 

  48. Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and mechanical properties. Prog Mater Sci. 2008;53:1–206.

    Article  Google Scholar 

  49. https://en.wikipedia.org/wiki/Ceramic. Accessed in Dec 2016.

  50. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28.

    Article  Google Scholar 

  51. Hench LL, Day DE, Höland W, Rheinberger VM. Glass and medicine. Int J Appl Glas Sci. 2010;1:104–17.

    Article  Google Scholar 

  52. Pinchuk ND, Ivanchenko LA. Making calcium phosphate biomaterials. Powder Metall Metal Ceram. 2003;42:357–71.

    Article  Google Scholar 

  53. Heimann RB. Materials science of crystalline bioceramics: a review of basic properties and applications. CMU J. 2002;1:23–46.

    Google Scholar 

  54. Tomoda K, Ariizumi H, Nakaji T, Makino K. Hydroxyapatite particles as drug carriers for proteins. Colloid Surf B. 2010;76:226–35.

    Article  Google Scholar 

  55. Zamoume O, Thibault S, Regnié G, Mecherri MO, Fiallo M, Sharrock P. Macroporous calcium phosphate ceramic implants for sustained drug delivery. Mater Sci Eng C. 2011;31:1352–6.

    Article  Google Scholar 

  56. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8:1401–21.

    Article  Google Scholar 

  57. Arcos D, Vallet-Regí M. Bioceramics for drug delivery. Acta Mater. 2013;61:890–911.

    Article  Google Scholar 

  58. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.

    Article  Google Scholar 

  59. Dorozhkin SV. Calcium orthophosphates and human beings. A historical perspective from the 1770s until 1940. Biomaterials. 2012;2:53–70.

    Google Scholar 

  60. Dorozhkin SV. A detailed history of calcium orthophosphates from 1770-s till 1950. Mater Sci Eng C. 2013;33:3085–110.

    Article  Google Scholar 

  61. Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32:1–31.

    Article  Google Scholar 

  62. Taş AC, Korkusuz F, Timuçin M, Akkaş N. An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J Mater Sci Mater Med. 1997;8:91–6.

    Google Scholar 

  63. Layrolle P, Ito A, Tateishi T. Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J Am Ceram Soc. 1998;81:1421–8.

    Article  Google Scholar 

  64. Engin NO, Tas AC. Manufacture of macroporous calcium hydroxyapatite bioceramics. J Eur Ceram Soc. 1999;19:2569–72.

    Article  Google Scholar 

  65. Ahn ES, Gleason NJ, Nakahira A, Ying JY. Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 2001;1:149–53.

    Article  Google Scholar 

  66. Khalil KA, Kim SW, Dharmaraj N, Kim KW, Kim HY. Novel mechanism to improve toughness of the hydroxyapatite bioceramics using high-frequency induction heat sintering. J Mater Process Technol. 2007;187–188:417–20.

    Article  Google Scholar 

  67. Laasri S, Taha M, Laghzizil A, Hlil EK, Chevalier J. The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics. Mater Res Bull. 2010;45:1433–7.

    Article  Google Scholar 

  68. Kitamura M, Ohtsuki C, Ogata S, Kamitakahara M, Tanihara M. Microstructure and bioresorbable properties of α-TCP ceramic porous body fabricated by direct casting method. Mater Trans. 2004;45:983–8.

    Article  Google Scholar 

  69. Kawagoe D, Ioku K, Fujimori H, Goto S. Transparent β-tricalcium phosphate ceramics prepared by spark plasma sintering. J Ceram Soc Jpn. 2004;112:462–3.

    Article  Google Scholar 

  70. Wang CX, Zhou X, Wang M. Influence of sintering temperatures on hardness and Young’s modulus of tricalcium phosphate bioceramic by nanoindentation technique. Mater Charact. 2004;52:301–7.

    Article  Google Scholar 

  71. Ioku K, Kawachi G, Nakahara K, Ishida EH, Minagi H, Okuda T, Yonezawa I, Kurosawa H, Ikeda T. Porous granules of β-tricalcium phosphate composed of rod-shaped particles. Key Eng Mater. 2006;309–311:1059–62.

    Article  Google Scholar 

  72. Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl. 2008;23:197–212.

    Article  Google Scholar 

  73. Vorndran E, Klarner M, Klammert U, Grover LM, Patel S, Barralet JE, Gbureck U. 3D powder printing of β-tricalcium phosphate ceramics using different strategies. Adv Eng Mater. 2008;10:B67–71.

    Article  Google Scholar 

  74. Descamps M, Duhoo T, Monchau F, Lu J, Hardouin P, Hornez JC, Leriche A. Manufacture of macroporous β-tricalcium phosphate bioceramics. J Eur Ceram Soc. 2008;28:149–57.

    Article  Google Scholar 

  75. Liu Y, Kim JH, Young D, Kim S, Nishimoto SK, Yang Y. Novel template-casting technique for fabricating β-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J Biomed Mater Res A. 2010;92A:997–1006.

    Google Scholar 

  76. Carrodeguas RG, de Aza S. α-tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2011;7:3536–46.

    Article  Google Scholar 

  77. Zhang Y, Kong D, Feng X. Fabrication and properties of porous β-tricalcium phosphate ceramics prepared using a double slip-casting method using slips with different viscosities. Ceram Int. 2012;38:2991–6.

    Article  Google Scholar 

  78. Kim IY, Wen J, Ohtsuki C. Fabrication of α-tricalcium phosphate ceramics through two-step sintering. Key Eng Mater. 2015;631:78–82.

    Article  Google Scholar 

  79. Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram Int. 2016;42:6529–54.

    Article  Google Scholar 

  80. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201–9.

    Article  Google Scholar 

  81. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003;14:195–200.

    Article  Google Scholar 

  82. Dorozhkina EI, Dorozhkin SV. Mechanism of the solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures. Chem Mater. 2002;14:4267–72.

    Article  Google Scholar 

  83. Daculsi G. Biphasic calcium phosphate granules concept for injectable and mouldable bone substitute. Adv Sci Technol. 2006;49:9–13.

    Article  Google Scholar 

  84. Lecomte A, Gautier H, Bouler JM, Gouyette A, Pegon Y, Daculsi G, Merle C. Biphasic calcium phosphate: a comparative study of interconnected porosity in two ceramics. J Biomed Mater Res B Appl Biomater. 2008;84B:1–6.

    Article  Google Scholar 

  85. Daculsi G, Baroth S, LeGeros RZ. 20 years of biphasic calcium phosphate bioceramics development and applications. Ceram Eng Sci Proc. 2010;30:45–58.

    Google Scholar 

  86. Lukić M, Stojanović Z, Škapin SD, Maček-Kržmanc M, Mitrić M, Marković S, Uskoković D. Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. J Eur Ceram Soc. 2011;31:19–27.

    Article  Google Scholar 

  87. Descamps M, Boilet L, Moreau G, Tricoteaux A, Lu J, Leriche A, Lardot V, Cambier F. Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing. J Eur Ceram Soc. 2013;33:1263–70.

    Article  Google Scholar 

  88. Chen Y, Wang J, Zhu XD, Tang ZR, Yang X, Tan YF, Fan YJ, Zhang XD. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Acta Biomater. 2015;11:435–48.

    Article  Google Scholar 

  89. Li Y, Kong F, Weng W. Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. J Biomed Mater Res B Appl Biomater. 2009;89B:508–17.

    Article  Google Scholar 

  90. Sureshbabu S, Komath M, Varma HK. In situ formation of hydroxyapatite – alpha tricalcium phosphate biphasic ceramics with higher strength and bioactivity. J Am Ceram Soc. 2012;95:915–24.

    Google Scholar 

  91. Radovanović Ž, Jokić B, Veljović D, Dimitrijević S, Kojić V, Petrović R, Janaćković D. Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite. Appl Surf Sci. 2014;307:513–9.

    Article  Google Scholar 

  92. Oishi M, Ohtsuki C, Kitamura M, Kamitakahara M, Ogata S, Miyazaki T, Tanihara M. Fabrication and chemical durability of porous bodies consisting of biphasic tricalcium phosphates. Phosphorus Res Bull. 2004;17:95–100.

    Article  Google Scholar 

  93. Kamitakahara M, Ohtsuki C, Oishi M, Ogata S, Miyazaki T, Tanihara M. Preparation of porous biphasic tricalcium phosphate and its in vivo behavior. Key Eng Mater. 2005;284–286:281–4.

    Article  Google Scholar 

  94. Wang R, Weng W, Deng X, Cheng K, Liu X, Du P, Shen G, Han G. Dissolution behavior of submicron biphasic tricalcium phosphate powders. Key Eng Mater. 2006;309–311:223–6.

    Article  Google Scholar 

  95. Li Y, Weng W, Tam KC. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomater. 2007;3:251–4.

    Article  Google Scholar 

  96. Zou C, Cheng K, Weng W, Song C, Du P, Shen G, Han G. Characterization and dissolution–reprecipitation behavior of biphasic tricalcium phosphate powders. J Alloys Compd. 2011;509:6852–8.

    Article  Google Scholar 

  97. Xie L, Yu H, Deng Y, Yang W, Liao L, Long Q. Preparation and in vitro degradation study of the porous dual alpha/beta-tricalcium phosphate bioceramics. Mater Res Innov. 2016;20:530–7.

    Article  Google Scholar 

  98. Albuquerque JSV, Nogueira REFQ, da Silva TDP, Lima DO, da Silva MHP. Porous triphasic calcium phosphate bioceramics. Key Eng Mater. 2004;254–256:1021–4.

    Article  Google Scholar 

  99. Mendonça F, Lourom LHL, de Campos JB, da Silva MHP. Porous biphasic and triphasic bioceramics scaffolds produced by gelcasting. Key Eng Mater. 2008;361–363:27–30.

    Article  Google Scholar 

  100. Vani R, Girija EK, Elayaraja K, Parthiban PS, Kesavamoorthy R, Narayana Kalkura S. Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. J Mater Sci Mater Med. 2009;20(Suppl. 1):S43–8.

    Article  Google Scholar 

  101. Ahn MK, Moon YW, Koh YH, Kim HE. Production of highly porous triphasic calcium phosphate scaffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique. Ceram Int. 2013;39:5879–85.

    Article  Google Scholar 

  102. Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater. 2013;4:209–311.

    Article  Google Scholar 

  103. Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 2012;8:474–87.

    Article  Google Scholar 

  104. Drouet C, Largeot C, Raimbeaux G, Estournès C, Dechambre G, Combes C, Rey C. Bioceramics: spark plasma sintering (SPS) of calcium phosphates. Adv Sci Technol. 2006;49:45–50.

    Article  Google Scholar 

  105. Ishihara S, Matsumoto T, Onoki T, Sohmura T, Nakahira A. New concept bioceramics composed of octacalcium phosphate (OCP) and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater Sci Eng C. 2009;29:1885–8.

    Article  Google Scholar 

  106. Barinov SM, Komlev VS. Osteoinductive ceramic materials for bone tissue restoration: octacalcium phosphate (review). Inorg Mater Appl Res. 2010;1:175–81.

    Article  Google Scholar 

  107. Moseke C, Gbureck U. Tetracalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2010;6:3815–23.

    Article  Google Scholar 

  108. Morimoto S, Anada T, Honda Y, Suzuki O. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically. Biomed Mater. 2012;7:045020.

    Article  Google Scholar 

  109. Tamimi F, Nihouannen DL, Eimar H, Sheikh Z, Komarova S, Barralet J. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: brushite vs. monetite. Acta Biomater. 2012;8:3161–9.

    Article  Google Scholar 

  110. Suzuki O. Octacalcium phosphate (OCP)-based bone substitute materials. Jpn Dent Sci Rev. 2013;49:58–71.

    Article  Google Scholar 

  111. Suzuki O, Anada T. Octacalcium phosphate: a potential scaffold material for controlling activity of bone-related cells in vitro. Mater Sci Forum. 2014;783–786:1366–71.

    Article  Google Scholar 

  112. Komlev VS, Barinov SM, Bozo II, Deev RV, Eremin II, Fedotov AY, Gurin AN, Khromova NV, Kopnin PB, Kuvshinova EA, Mamonov VE, Rybko VA, Sergeeva NS, Teterina AY, Zorin VL. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior. ACS Appl Mater Interfaces. 2014;6:16610–20.

    Article  Google Scholar 

  113. LeGeros RZ. Calcium phosphates in oral biology and medicine, Monographs in oral science, vol. 15. Basel: Karger; 1991. 201 pp

    Google Scholar 

  114. Narasaraju TSB, Phebe DE. Some physico-chemical aspects of hydroxylapatite. J Mater Sci. 1996;31:1–21.

    Article  Google Scholar 

  115. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates, Studies in inorganic chemistry, vol. 18. Amsterdam: Elsevier; 1994. 389 pp

    Book  Google Scholar 

  116. Brown PW, Constantz B, editors. Hydroxyapatite and related materials. Boca Raton: CRC Press; 1994. 343 pp

    Google Scholar 

  117. Amjad Z, editor. Calcium phosphates in biological and industrial systems. Boston: Kluwer Academic Publishers; 1997. 529 pp

    Google Scholar 

  118. da Silva RV, Bertran CA, Kawachi EY, Camilli JA. Repair of cranial bone defects with calcium phosphate ceramic implant or autogenous bone graft. J Craniofac Surg. 2007;18:281–6.

    Article  Google Scholar 

  119. Okanoue Y, Ikeuchi M, Takemasa R, Tani T, Matsumoto T, Sakamoto M, Nakasu M. Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates. Arch Orthop Trauma Surg. 2012;132:1603–10.

    Article  Google Scholar 

  120. Draenert M, Draenert A, Draenert K. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics. Microsc Res Tech. 2013;76:370–80.

    Article  Google Scholar 

  121. Okuda T, Ioku K, Yonezawa I, Minagi H, Gonda Y, Kawachi G, Kamitakahara M, Shibata Y, Murayama H, Kurosawa H, Ikeda T. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials. 2008;29:2719–28.

    Article  Google Scholar 

  122. Daculsi G, Bouler JM, LeGeros RZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol. 1997;172:129–91.

    Article  Google Scholar 

  123. Zhu XD, Zhang HJ, Fan HS, Li W, Zhang XD. Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater. 2010;6:1536–41.

    Article  Google Scholar 

  124. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31(Suppl. 4):D37–47.

    Article  Google Scholar 

  125. Ahato I. Reverse engineering the ceramic art of algae. Science. 1999;286:1059–61.

    Google Scholar 

  126. Popişter F, Popescu D, Hurgoiu D. A new method for using reverse engineering in case of ceramic tiles. Qual Access Success. 2012;13(Suppl. 5):409–12.

    Google Scholar 

  127. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 2002;8:1–11.

    Article  Google Scholar 

  128. Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22:643–52.

    Article  Google Scholar 

  129. Ortona A, D’Angelo C, Gianella S, Gaia D. Cellular ceramics produced by rapid prototyping and replication. Mater Lett. 2012;80:95–8.

    Article  Google Scholar 

  130. Eufinger H, Wehniöller M, Machtens E, Heuser L, Harders A, Kruse D. Reconstruction of craniofacial bone defects with individual alloplastic implants based on CAD/CAM-manipulated CT-data. J Cranio-Maxillofac Surg. 1995;23:175–81.

    Article  Google Scholar 

  131. Klein M, Glatzer C. Individual CAD/CAM fabricated glass-bioceramic implants in reconstructive surgery of the bony orbital floor. Plast Reconstr Surg. 2006;117:565–70.

    Article  Google Scholar 

  132. Yin L, Song XF, Song YL, Huang T, Li J. An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry. Int J Mach Tools Manuf. 2006;46:1013–26.

    Article  Google Scholar 

  133. Li J, Hsu Y, Luo E, Khadka A, Hu J. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthet Plast Surg. 2011;35:636–40.

    Article  Google Scholar 

  134. Ciocca L, Donati D, Fantini M, Landi E, Piattelli A, Iezzi G, Tampieri A, Spadari A, Romagnoli N, Scotti R. CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results. J Biomater Appl. 2013;28:207–18.

    Article  Google Scholar 

  135. Yardimci MA, Guceri SI, Danforth SC. Process modeling for fused deposition of ceramics. Ceram Eng Sci Proc. 1996;17:78–82.

    Article  Google Scholar 

  136. Bellini A, Shor L, Guceri SI. New developments in fused deposition modeling of ceramics. Rapid Prototyp J. 2005;11:214–20.

    Article  Google Scholar 

  137. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials. 2003;24:3115–23.

    Article  Google Scholar 

  138. Wiria FE, Leong KF, Chua CK, Liu Y. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 2007;3:1–12.

    Article  Google Scholar 

  139. Xiao K, Dalgarno KW, Wood DJ, Goodridge RD, Ohtsuki C. Indirect selective laser sintering of apatite-wollostonite glass-ceramic. Proc Inst Mech Eng H. 2008;222:1107–14.

    Article  Google Scholar 

  140. Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY. Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med. 2008;19:2535–40.

    Article  Google Scholar 

  141. Shuai CJ, Li PJ, Feng P, Lu HB, Peng SP, Liu JL. Analysis of transient temperature distribution during the selective laser sintering of β-tricalcium phosphate. Laser Eng. 2013;26:71–80.

    Google Scholar 

  142. Shuai C, Zhuang J, Hu H, Peng S, Liu D, Liu J. In vitro bioactivity and degradability of β-tricalcium phosphate porous scaffold fabricated via selective laser sintering. Biotechnol Appl Biochem. 2013;60:266–73.

    Article  Google Scholar 

  143. Shuai C, Zhuang J, Peng S, Wen X. Inhibition of phase transformation from β- to α-tricalcium phosphate with addition of poly (L-lactic acid) in selective laser sintering. Rapid Prototyp J. 2014;20:369–76.

    Article  Google Scholar 

  144. Lusquiños F, Pou J, Boutinguiza M, Quintero F, Soto R, León B, Pérez-Amor M. Main characteristics of calcium phosphate coatings obtained by laser cladding. Appl Surf Sci. 2005;247:486–92.

    Article  Google Scholar 

  145. Wang DG, Chen CZ, Ma J, Zhang G. In situ synthesis of hydroxyapatite coating by laser cladding. Colloid Surf B. 2008;66:155–62.

    Article  Google Scholar 

  146. Comesaña R, Lusquiños F, del Val J, Malot T, López-Álvarez M, Riveiro A, Quintero F, Boutinguiza M, Aubry P, de Carlos A, Pou J. Calcium phosphate grafts produced by rapid prototyping based on laser cladding. J Eur Ceram Soc. 2011;31:29–41.

    Article  Google Scholar 

  147. Lv X, Lin X, Hu J, Gao B, Huang W. Phase evolution in calcium phosphate coatings obtained by in situ laser cladding. Mater Sci Eng C. 2012;32:872–7.

    Article  Google Scholar 

  148. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005;16:1121–4.

    Article  Google Scholar 

  149. Gbureck U, Hölzel T, Klammert U, Würzler K, Müller FA, Barralet JE. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv Funct Mater. 2007;17:3940–5.

    Article  Google Scholar 

  150. Gbureck U, Hölzel T, Doillon CJ, Müller FA, Barralet JE. Direct printing of bioceramic implants with spatially localized angiogenic factors. Adv Mater. 2007;19:795–800.

    Article  Google Scholar 

  151. Khalyfa A, Vogt S, Weisser J, Grimm G, Rechtenbach A, Meyer W, Schnabelrauch M. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med. 2007;18:909–16.

    Article  Google Scholar 

  152. Habibovic P, Gbureck U, Doillon CJ, Bassett DC, van Blitterswijk CA, Barralet JE. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials. 2008;29:944–53.

    Article  Google Scholar 

  153. Fierz FC, Beckmann F, Huser M, Irsen SH, Leukers B, Witte F, Degistirici O, Andronache A, Thie M, Müller B. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials. 2008;29:3799–806.

    Article  Google Scholar 

  154. Seitz H, Deisinger U, Leukers B, Detsch R, Ziegler G. Different calcium phosphate granules for 3-D printing of bone tissue engineering scaffolds. Adv Eng Mater. 2009;11:B41–6.

    Article  Google Scholar 

  155. Suwanprateeb J, Sanngam R, Panyathanmaporn T. Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique. Mater Sci Eng C. 2010;30:610–7.

    Article  Google Scholar 

  156. Butscher A, Bohner M, Roth C, Ernstberger A, Heuberger R, Doebelin N, von Rohr RP, Müller R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater. 2012;8:373–85.

    Article  Google Scholar 

  157. Butscher A, Bohner M, Doebelin N, Galea L, Loeffel O, Müller R. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomater. 2013;9:5369–78.

    Article  Google Scholar 

  158. Butscher A, Bohner M, Doebelin N, Hofmann S, Müller R. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater. 2013;9:9149–58.

    Article  Google Scholar 

  159. Tarafder S, Davies NM, Bandyopadhyay A, Bose S. 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci. 2013;1:1250–9.

    Article  Google Scholar 

  160. Maazouz Y, Montufar EB, Guillem-Marti J, Fleps I, Öhman C, Persson C, Ginebra MP. Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J Mater Chem B. 2014;2:5378–86.

    Article  Google Scholar 

  161. Akkineni AR, Luo Y, Schumacher M, Nies B, Lode A, Gelinsky M. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 2015;27:264–74.

    Article  Google Scholar 

  162. Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2016;45:23–44. (Early view)

    Google Scholar 

  163. Porter NL, Pilliar RM, Grynpas MD. Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics. J Biomed Mater Res. 2001;56:504–15.

    Article  Google Scholar 

  164. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24:2363–78.

    Article  Google Scholar 

  165. Calvert JW, Brenner KA, Mooney MP, Kumta P, Weiss LE. Cellular fusion of hydroxyapatite layers: solid freeform fabrication of synthetic bone grafts. Riv Ital Chir Plast. 2004;36:145–50.

    Google Scholar 

  166. Jongpaiboonkit L, Lin CY, Krebsbach PH, Hollister SJ, Halloran JW. Mechanical behavior of complex 3D calcium phosphate cement scaffolds fabricated by indirect solid freeform fabrication in vivo. Key Eng Mater. 2006;309–311:957–60.

    Article  Google Scholar 

  167. Dellinger JG, Cesarano 3rd J, Jamison RD. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J Biomed Mater Res A. 2007;82A:383–94.

    Article  Google Scholar 

  168. Shanjani Y, de Croos JNA, Pilliar RM, Kandel RA, Toyserkani E. Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J Biomed Mater Res B Appl Biomater. 2010;93B:510–9.

    Article  Google Scholar 

  169. Kim J, Lim D, Kim YH, Koh YH, Lee MH, Han I, Lee SJ, Yoo OS, Kim HS, Park JC. A comparative study of the physical and mechanical properties of porous hydroxyapatite scaffolds fabricated by solid freeform fabrication and polymer replication method. Int J Precis Eng Manuf. 2011;12:695–701.

    Article  Google Scholar 

  170. Shanjani Y, Hu Y, Toyserkani E, Grynpas M, Kandel RA, Pilliar RM. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies. J Biomed Mater Res B Appl Biomater. 2013;101B:972–80.

    Article  Google Scholar 

  171. Kwon BJ, Kim J, Kim YH, Lee MH, Baek HS, Lee DH, Kim HL, Seo HJ, Lee MH, Kwon SY, Koo MA, Park JC. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Artif Organs. 2013;37:663–70.

    Article  Google Scholar 

  172. Li X, Li D, Lu B, Wang C. Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and indirect stereolithography techniques. J Porous Mater. 2008;15:667–71.

    Article  Google Scholar 

  173. Maeda C, Tasaki S, Kirihara S. Accurate fabrication of hydroxyapatite bone models with porous scaffold structures by using stereolithography. IOP Conf Ser Mater Sci Eng. 2011;18:072017.

    Article  Google Scholar 

  174. Bian W, Li D, Lian Q, Li X, Zhang W, Wang K, Jin Z. Fabrication of a bio-inspired beta-tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyp J. 2012;18:68–80.

    Article  Google Scholar 

  175. Ronca A, Ambrosio L, Grijpma DW. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater. 2013;9:5989–96.

    Article  Google Scholar 

  176. Saber-Samandari S, Gross KA. The use of thermal printing to control the properties of calcium phosphate deposits. Biomaterials. 2010;31:6386–93.

    Article  Google Scholar 

  177. de Meira CR, Gomes DT, Braga FJC, de Moraes Purquerio B, Fortulan CA. Direct manufacture of hydroxyapatite scaffolds using blue laser. Mater Sci Forum. 2015;805:128–33.

    Article  Google Scholar 

  178. Narayan RJ, Jin C, Doraiswamy A, Mihailescu IN, Jelinek M, Ovsianikov A, Chichkov B, Chrisey DB. Laser processing of advanced bioceramics. Adv Eng Mater. 2005;7:1083–98.

    Article  Google Scholar 

  179. Nather A, editor. Bone grafts and bone substitutes: basic science and clinical applications. Singapore: World Scientific; 2005. 592 pp

    Google Scholar 

  180. Bártolo P, Bidanda B, editors. Bio-materials and prototyping applications in medicine. New York: Springer; 2008. 216 pp

    Google Scholar 

  181. Kokubo T, editor. Bioceramics and their clinical applications. Abington: Woodhead Publishing; 2008. 784 pp

    Google Scholar 

  182. Narayan R, editor. Biomedical materials. New York: Springer; 2009. 566 pp

    Google Scholar 

  183. Raksujarit A, Pengpat K, Rujijanagul G, Tunkasiri T. Processing and properties of nanoporous hydroxyapatite ceramics. Mater Des. 2010;31:1658–60.

    Article  Google Scholar 

  184. Park J. Bioceramics: properties, characterizations, and applications. New York: Springer; 2008. 364 pp

    Google Scholar 

  185. Rodríguez-Lorenzo LM, Vallet-Regí M, Ferreira JMF. Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials. 2001;22:583–8.

    Article  Google Scholar 

  186. Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F. Mechanical behaviour under uniaxial compression of robocast calcium phosphate scaffolds. Eur Cells Mater. 2007;14(Suppl. 1):79.

    Google Scholar 

  187. Nazarpak MH, Solati-Hashjin M, Moztarzadeh F. Preparation of hydroxyapatite ceramics for biomedical applications. J Ceram Process Res. 2009;10:54–7.

    Google Scholar 

  188. Uematsu K, Takagi M, Honda T, Uchida N, Saito K. Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake. J Am Ceram Soc. 1989;72:1476–8.

    Article  Google Scholar 

  189. Itoh H, Wakisaka Y, Ohnuma Y, Kuboki Y. A new porous hydroxyapatite ceramic prepared by cold isostatic pressing and sintering synthesized flaky powder. Dent Mater. 1994;13:25–35.

    Article  Google Scholar 

  190. Takikawa K, Akao M. Fabrication of transparent hydroxyapatite and application to bone marrow derived cell/hydroxyapatite interaction observation in-vivo. J Mater Sci Mater Med. 1996;7:439–45.

    Article  Google Scholar 

  191. Gautier H, Merle C, Auget JL, Daculsi G. Isostatic compression, a new process for incorporating vancomycin into biphasic calcium phosphate: comparison with a classical method. Biomaterials. 2000;21:243–9.

    Article  Google Scholar 

  192. Tadic D, Epple M. Mechanically stable implants of synthetic bone mineral by cold isostatic pressing. Biomaterials. 2003;24:4565–71.

    Article  Google Scholar 

  193. Onoki T, Hashida T. New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique. Surf Coat Technol. 2006;200:6801–7.

    Article  Google Scholar 

  194. Ergun C. Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing. Ceram Int. 2011;37:935–42.

    Article  Google Scholar 

  195. Ehsani N, Ruys AJ, Sorrell CC. Hot isostatic pressing (HIPing) of fecralloy-reinforced hydroxyapatite. J Biomim Biomater Tissue Eng. 2013;17:87–102.

    Article  Google Scholar 

  196. Irsen SH, Leukers B, Höckling C, Tille C, Seitz H. Bioceramic granulates for use in 3D printing: process engineering aspects. Materwiss Werksttech. 2006;37:533–7.

    Article  Google Scholar 

  197. Hsu YH, Turner IG, Miles AW. Fabrication and mechanical testing of porous calcium phosphate bioceramic granules. J Mater Sci Mater Med. 2007;18:1931–7.

    Article  Google Scholar 

  198. Zyman ZZ, Glushko V, Dedukh N, Malyshkina S, Ashukina N. Porous calcium phosphate ceramic granules and their behaviour in differently loaded areas of skeleton. J Mater Sci Mater Med. 2008;19:2197–205.

    Article  Google Scholar 

  199. Viana M, Désiré A, Chevalier E, Champion E, Chotard R, Chulia D. Interest of high shear wet granulation to produce drug loaded porous calcium phosphate pellets for bone filling. Key Eng Mater. 2009;396–398:535–8.

    Article  Google Scholar 

  200. Chevalier E, Viana M, Cazalbou S, Chulia D. Comparison of low-shear and high-shear granulation processes: effect on implantable calcium phosphate granule properties. Drug Dev Ind Pharm. 2009;35:1255–63.

    Article  Google Scholar 

  201. Lakevics V, Locs J, Loca D, Stepanova V, Berzina-Cimdina L, Pelss J. Bioceramic hydroxyapatite granules for purification of biotechnological products. Adv Mater Res. 2011;284–286:1764–9.

    Article  Google Scholar 

  202. Camargo NHA, Franczak PF, Gemelli E, da Costa BD, de Moraes AN. Characterization of three calcium phosphate microporous granulated bioceramics. Adv Mater Res. 2014;936:687–94.

    Article  Google Scholar 

  203. Reikerås O, Johansson CB, Sundfeldt M. Bone ingrowths to press-fit and loose-fit implants: comparisons between titanium and hydroxyapatite. J Long-Term Eff Med Implants. 2006;16:157–64.

    Article  Google Scholar 

  204. Rao RR, Kannan TS. Dispersion and slip casting of hydroxyapatite. J Am Ceram Soc. 2001;84:1710–6.

    Article  Google Scholar 

  205. Sakka Y, Takahashi K, Matsuda N, Suzuki TS. Effect of milling treatment on texture development of hydroxyapatite ceramics by slip casting in high magnetic field. Mater Trans. 2007;48:2861–6.

    Article  Google Scholar 

  206. Zhang Y, Yokogawa Y, Feng X, Tao Y, Li Y. Preparation and properties of bimodal porous apatite ceramics through slip casting using different hydroxyapatite powders. Ceram Int. 2010;36:107–13.

    Article  Google Scholar 

  207. Zhang Y, Kong D, Yokogawa Y, Feng X, Tao Y, Qiu T. Fabrication of porous hydroxyapatite ceramic scaffolds with high flexural strength through the double slip-casting method using fine powders. J Am Ceram Soc. 2012;95:147–52.

    Article  Google Scholar 

  208. Hagio T, Yamauchi K, Kohama T, Matsuzaki T, Iwai K. Beta tricalcium phosphate ceramics with controlled crystal orientation fabricated by application of external magnetic field during the slip casting process. Mater Sci Eng C. 2013;33:2967–70.

    Article  Google Scholar 

  209. Marçal RLSB, da Rocha DN, da Silva MHP. Slip casting used as a forming technique for hydroxyapatite processing. Key Eng Mater. 2017;720:219–22.

    Article  Google Scholar 

  210. Sepulveda P, Ortega FS, Innocentini MDM, Pandolfelli VC. Properties of highly porous hydroxyapatite obtained by the gel casting of foams. J Am Ceram Soc. 2000;83:3021–4.

    Article  Google Scholar 

  211. Padilla S, Vallet-Regí M, Ginebra MP, Gil FJ. Processing and mechanical properties of hydroxyapatite pieces obtained by the gel-casting method. J Eur Ceram Soc. 2005;25:375–83.

    Article  Google Scholar 

  212. Woesz A, Rumpler M, Stampfl J, Varga F, Fratzl-Zelman N, Roschger P, Klaushofer K, Fratzl P. Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gel casting. Mater Sci Eng C. 2005;25:181–6.

    Article  Google Scholar 

  213. Sánchez-Salcedo S, Werner J, Vallet-Regí M. Hierarchical pore structure of calcium phosphate scaffolds by a combination of gel-casting and multiple tape-casting methods. Acta Biomater. 2008;4:913–22.

    Article  Google Scholar 

  214. Chen B, Zhang T, Zhang J, Lin Q, Jiang D. Microstructure and mechanical properties of hydroxyapatite obtained by gel-casting process. Ceram Int. 2008;34:359–64.

    Article  Google Scholar 

  215. Marcassoli P, Cabrini M, Tirillò J, Bartuli C, Palmero P, Montanaro L. Mechanical characterization of hydroxiapatite micro/macro-porous ceramics obtained by means of innovative gel-casting process. Key Eng Mater. 2010;417–418:565–8.

    Google Scholar 

  216. Kim TW, Ryu SC, Kim BK, Yoon SY, Park HC. Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Met Mater Int. 2014;20:135–40.

    Article  Google Scholar 

  217. Asif A, Nazir R, Riaz T, Ashraf N, Zahid S, Shahid R, Ur-Rehman A, Chaudhry AA, Ur Rehman I. Influence of processing parameters and solid concentration on microstructural properties of gel-casted porous hydroxyapatite. J Porous Mater. 2014;21:31–7.

    Article  Google Scholar 

  218. Dash SR, Sarkar R, Bhattacharyya S. Gel casting of hydroxyapatite with naphthalene as pore former. Ceram Int. 2015;41:3775–90.

    Article  Google Scholar 

  219. Fomin AS, Barinov SM, Ievlev VM, Smirnov VV, Mikhailov BP, Belonogov EK, Drozdova NA. Nanocrystalline hydroxyapatite ceramics produced by low-temperature sintering after high-pressure treatment. Dokl Chem. 2008;418:22–5.

    Article  Google Scholar 

  220. Zhang J, Yin HM, Hsiao BS, Zhong GJ, Li ZM. Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching. J Mater Sci. 2014;49:1648–58.

    Article  Google Scholar 

  221. Kankawa Y, Kaneko Y, Saitou K. Injection molding of highly-purified hydroxylapatite and TCP utilizing solid phase reaction method. J Ceram Soc Jpn. 1991;99:438–42.

    Article  Google Scholar 

  222. Cihlář J, Trunec M. Injection moulded hydroxyapatite ceramics. Biomaterials. 1996;17:1905–11.

    Article  Google Scholar 

  223. Jewad R, Bentham C, Hancock B, Bonfield W, Best SM. Dispersant selection for aqueous medium pressure injection moulding of anhydrous dicalcium phosphate. J Eur Ceram Soc. 2008;28:547–53.

    Article  Google Scholar 

  224. Kwon SH, Jun YK, Hong SH, Lee IS, Kim HE, Won YY. Calcium phosphate bioceramics with various porosities and dissolution rates. J Am Ceram Soc. 2002;85:3129–31.

    Article  Google Scholar 

  225. Fooki ACBM, Aparecida AH, Fideles TB, Costa RC, Fook MVL. Porous hydroxyapatite scaffolds by polymer sponge method. Key Eng Mater. 2009;396–398:703–6.

    Article  Google Scholar 

  226. Sopyan I, Kaur J. Preparation and characterization of porous hydroxyapatite through polymeric sponge method. Ceram Int. 2009;35:3161–8.

    Article  Google Scholar 

  227. Bellucci D, Cannillo V, Sola A. Shell scaffolds: a new approach towards high strength bioceramic scaffolds for bone regeneration. Mater Lett. 2010;64:203–6.

    Article  Google Scholar 

  228. Cunningham E, Dunne N, Walker G, Maggs C, Wilcox R, Buchanan F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J Mater Sci Mater Med. 2010;21:2255–61.

    Article  Google Scholar 

  229. Sung JH, Shin KH, Koh YH, Choi WY, Jin Y, Kim HE. Preparation of the reticulated hydroxyapatite ceramics using carbon-coated polymeric sponge with elongated pores as a novel template. Ceram Int. 2011;37:2591–6.

    Article  Google Scholar 

  230. Mishima FD, Louro LHL, Moura FN, Gobbo LA, da Silva MHP. Hydroxyapatite scaffolds produced by hydrothermal deposition of monetite on polyurethane sponges substrates. Key Eng Mater. 2012;493–494:820–5.

    Google Scholar 

  231. Hannickel A, da Silva MHP. Novel bioceramic scaffolds for regenerative medicine. Bioceram Dev Appl. 2015;5:1000082.

    Google Scholar 

  232. Das S, Kumar S, Doloi B, Bhattacharyya B. Experimental studies of ultrasonic machining on hydroxyapatite bio-ceramics. Int J Adv Manuf Technol. 2016;86:829–39.

    Article  Google Scholar 

  233. Velayudhan S, Ramesh P, Sunny MC, Varma HK. Extrusion of hydroxyapatite to clinically significant shapes. Mater Lett. 2000;46:142–6.

    Article  Google Scholar 

  234. Yang HY, Thompson I, Yang SF, Chi XP, Evans JRG, Cook RJ. Dissolution characteristics of extrusion freeformed hydroxyapatite – tricalcium phosphate scaffolds. J Mater Sci Mater Med. 2008;19:3345–53.

    Article  Google Scholar 

  235. Yang S, Yang H, Chi X, Evans JRG, Thompson I, Cook RJ, Robinson P. Rapid prototyping of ceramic lattices for hard tissue scaffolds. Mater Des. 2008;29:1802–9.

    Article  Google Scholar 

  236. Yang HY, Chi XP, Yang S, Evans JRG. Mechanical strength of extrusion freeformed calcium phosphate filaments. J Mater Sci Mater Med. 2010;21:1503–10.

    Article  Google Scholar 

  237. Cortez PP, Atayde LM, Silva MA, da Silva PA, Fernandes MH, Afonso A, Lopes MA, Maurício AC, Santos JD. Characterization and preliminary in vivo evaluation of a novel modified hydroxyapatite produced by extrusion and spheronization techniques. J Biomed Mater Res B Appl Biomater. 2011;99B:170–9.

    Article  Google Scholar 

  238. Lim S, Chun S, Yang D, Kim S. Comparison study of porous calcium phosphate blocks prepared by piston and screw type extruders for bone scaffold. Tissue Eng Regen Med. 2012;9:51–5.

    Article  Google Scholar 

  239. Blake DM, Tomovic S, Jyung RW. Extrusion of hydroxyapatite ossicular prosthesis. Ear Nose Throat J. 2013;92:490–4.

    Google Scholar 

  240. Muthutantri AI, Huang J, Edirisinghe MJ, Bretcanu O, Boccaccini AR. Dipping and electrospraying for the preparation of hydroxyapatite foams for bone tissue engineering. Biomed Mater. 2008;3:25009. (14 pages)

    Article  Google Scholar 

  241. Roncari E, Galassi C, Pinasco P. Tape casting of porous hydroxyapatite ceramics. J Mater Sci Lett. 2000;19:33–5.

    Article  Google Scholar 

  242. Tian T, Jiang D, Zhang J, Lin Q. Aqueous tape casting process for hydroxyapatite. J Eur Ceram Soc. 2007;27:2671–7.

    Article  Google Scholar 

  243. Tanimoto Y, Shibata Y, Murakami A, Miyazaki T, Nishiyama N. Effect of varying HAP/TCP ratios in tape-cast biphasic calcium phosphate ceramics on responcce in vitro. J Hard Tissue Biol. 2009;18:71–6.

    Article  Google Scholar 

  244. Tanimoto Y, Teshima M, Nishiyama N, Yamaguchi M, Hirayama S, Shibata Y, Miyazaki T. Tape-cast and sintered β-tricalcium phosphate laminates for biomedical applications: effect of milled Al2O3 fiber additives on microstructural and mechanical properties. J Biomed Mater Res B Appl Biomater. 2012;100B:2261–8.

    Article  Google Scholar 

  245. Khamkasem C, Chaijaruwanich A. Effect of binder/plasticizer ratios in aqueous-based tape casting on mechanical properties of bovine hydroxyapatite tape. Ferroelectrics. 2013;455:129–35.

    Article  Google Scholar 

  246. Suzuki S, Itoh K, Ohgaki M, Ohtani M, Ozawa M. Preparation of sintered filter for ion exchange by a doctor blade method with aqueous slurries of needlelike hydroxyapatite. Ceram Int. 1999;25:287–91.

    Article  Google Scholar 

  247. Nishikawa H, Hatanaka R, Kusunoki M, Hayami T, Hontsu S. Preparation of freestanding hydroxyapatite membranes excellent biocompatibility and flexibility. Appl Phys Express. 2008;1:088001.

    Article  Google Scholar 

  248. Padilla S, Roman J, Vallet-Regí M. Synthesis of porous hydroxyapatites by combination of gel casting and foams burn out methods. J Mater Sci Mater Med. 2002;13:1193–7.

    Article  Google Scholar 

  249. Yang TY, Lee JM, Yoon SY, Park HC. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. J Mater Sci Mater Med. 2010;21:1495–502.

    Article  Google Scholar 

  250. Baradararan S, Hamdi M, Metselaar IH. Biphasic calcium phosphate (BCP) macroporous scaffold with different ratios of HA/β-TCP by combination of gel casting and polymer sponge methods. Adv Appl Ceram. 2012;111:367–73.

    Article  Google Scholar 

  251. Inoue K, Sassa K, Yokogawa Y, Sakka Y, Okido M, Asai S. Control of crystal orientation of hydroxyapatite by imposition of a high magnetic field. Mater Trans. 2003;44:1133–7.

    Article  Google Scholar 

  252. Iwai K, Akiyama J, Tanase T, Asai S. Alignment of HAp crystal using a sample rotation in a static magnetic field. Mater Sci Forum. 2007;539–543(Part 1):716–9.

    Article  Google Scholar 

  253. Iwai K, Akiyama J, Asai S. Structure control of hydroxyapatite using a magnetic field. Mater Sci Forum. 2007;561–565(Part 2):1565–8.

    Article  Google Scholar 

  254. Sakka Y, Takahashi K, Suzuki TS, Ito S, Matsuda N. Texture development of hydroxyapatite ceramics by colloidal processing in a high magnetic field followed by sintering. Mater Sci Eng A. 2008;475:27–33.

    Article  Google Scholar 

  255. Fleck NA. On the cold compaction of powders. J Mech Phys Solids. 1995;43:1409–31.

    Article  Google Scholar 

  256. Kang J, Hadfield M. Parameter optimization by Taguchi methods for finishing advanced ceramic balls using a novel eccentric lapping machine. Proc Inst Mech Eng B. 2001;215:69–78.

    Article  Google Scholar 

  257. Kulkarni SS, Yong Y, Rys MJ, Lei S. Machining assessment of nano-crystalline hydroxyapatite bio-ceramic. J Manuf Process. 2013;15:666–72.

    Article  Google Scholar 

  258. Kurella A, Dahotre NB. Surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl. 2005;20:5–50.

    Article  Google Scholar 

  259. Oktar FN, Genc Y, Goller G, Erkmen EZ, Ozyegin LS, Toykan D, Demirkiran H, Haybat H. Sintering of synthetic hydroxyapatite compacts. Key Eng Mater. 2004;264–268:2087–90.

    Article  Google Scholar 

  260. Georgiou G, Knowles JC, Barralet JE. Dynamic shrinkage behavior of hydroxyapatite and glass-reinforced hydroxyapatites. J Mater Sci. 2004;39:2205–8.

    Article  Google Scholar 

  261. Fellah BH, Layrolle P. Sol-gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity. Acta Biomater. 2009;5:735–42.

    Article  Google Scholar 

  262. Dudek A, Kolan C. Assessments of shrinkage degree in bioceramic sinters HA+ZrO2. Diffus Defect Data B Solid State Phenom. 2010;165:25–30.

    Article  Google Scholar 

  263. Ben Ayed F, Bouaziz J, Bouzouita K. Pressureless sintering of fluorapatite under oxygen atmosphere. J Eur Ceram Soc. 2000;20:1069–76.

    Article  Google Scholar 

  264. He Z, Ma J, Wang C. Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics. Biomaterials. 2005;26:1613–21.

    Article  Google Scholar 

  265. Rahaman MN. Sintering of ceramics. Boca Raton: CRC Press; 2007. 388 pp

    Book  Google Scholar 

  266. Monroe EA, Votava W, Bass DB, McMullen J. New calcium phosphate ceramic material for bone and tooth implants. J Dent Res. 1971;50:860–1.

    Article  Google Scholar 

  267. Landi E, Tampieri A, Celotti G, Sprio S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20:2377–87.

    Article  Google Scholar 

  268. Chen S, Wang W, Kono H, Sassa K, Asai S. Abnormal grain growth of hydroxyapatite ceramic sintered in a high magnetic field. J Cryst Growth. 2010;312:323–6.

    Article  Google Scholar 

  269. Ruys AJ, Wei M, Sorrell CC, Dickson MR, Brandwood A, Milthorpe BK. Sintering effect on the strength of hydroxyapatite. Biomaterials. 1995;16:409–15.

    Article  Google Scholar 

  270. van Landuyt P, Li F, Keustermans JP, Streydio JM, Delannay F, Munting E. The influence of high sintering temperatures on the mechanical properties of hydroxylapatite. J Mater Sci Mater Med. 1995;6:8–13.

    Article  Google Scholar 

  271. Pramanik S, Agarwal AK, Rai KN, Garg A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram Int. 2007;33:419–26.

    Article  Google Scholar 

  272. Haberko K, Bućko MM, Brzezińska-Miecznik J, Haberko M, Mozgawa W, Panz T, Pyda A, Zarebski J. Natural hydroxyapatite – its behaviour during heat treatment. J Eur Ceram Soc. 2006;26:537–42.

    Article  Google Scholar 

  273. Haberko K, Bućko MM, Mozgawa W, Pyda A, Brzezińska-Miecznik J, Carpentier J. Behaviour of bone origin hydroxyapatite at elevated temperatures and in O2 and CO2 atmospheres. Ceram Int. 2009;35:2537–40.

    Article  Google Scholar 

  274. Janus AM, Faryna M, Haberko K, Rakowska A, Panz T. Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. Microchim Acta. 2008;161:349–53.

    Article  Google Scholar 

  275. Bahrololoom ME, Javidi M, Javadpour S, Ma J. Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash. J Ceram Process Res. 2009;10:129–38.

    Google Scholar 

  276. Mostafa NY. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater Chem Phys. 2005;94:333–41.

    Article  Google Scholar 

  277. Suchanek W, Yashima M, Kakihana M, Yoshimura M. Hydroxyapatite ceramics with selected sintering additives. Biomaterials. 1997;18:923–33.

    Article  Google Scholar 

  278. Kalita SJ, Bose S, Bandyopadhyay A, Hosick HL. Oxide based sintering additives for HAp ceramics. Ceram Trans. 2003;147:63–72.

    Google Scholar 

  279. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A. CaO–P2O5–Na2O-based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials. 2004;25:2331–9.

    Article  Google Scholar 

  280. Safronova TV, Putlyaev VI, Shekhirev MA, Tretyakov YD, Kuznetsov AV, Belyakov AV. Densification additives for hydroxyapatite ceramics. J Eur Ceram Soc. 2009;29:1925–32.

    Article  Google Scholar 

  281. Muralithran G, Ramesh S. Effects of sintering temperature on the properties of hydroxyapatite. Ceram Int. 2000;26:221–30.

    Article  Google Scholar 

  282. Eskandari A, Aminzare M, Hassani H, Barounian H, Hesaraki S, Sadrnezhaad SK. Densification behavior and mechanical properties of biomimetic apatite nanocrystals. Curr Nanosci. 2011;7:776–80.

    Article  Google Scholar 

  283. Ramesh S, Tolouei R, Tan CY, Aw KL, Yeo WH, Sopyan I, Teng WD. Sintering of hydroxyapatite ceramic produced by wet chemical method. Adv Mater Res. 2011;264–265:1856–61.

    Google Scholar 

  284. Ou SF, Chiou SY, Ou KL. Phase transformation on hydroxyapatite decomposition. Ceram Int. 2013;39:3809–16.

    Article  Google Scholar 

  285. Bernache-Assollant D, Ababou A, Champion E, Heughebaert M. Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth. J Eur Ceram Soc. 2003;23:229–41.

    Article  Google Scholar 

  286. Ramesh S, Tan CY, Bhaduri SB, Teng WD, Sopyan I. Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J Mater Process Technol. 2008;206:221–30.

    Article  Google Scholar 

  287. Wang J, Shaw LL. Grain-size dependence of the hardness of submicrometer and nanometer hydroxyapatite. J Am Ceram Soc. 2010;93:601–4.

    Article  Google Scholar 

  288. Kobayashi S, Kawai W, Wakayama S. The effect of pressure during sintering on the strength and the fracture toughness of hydroxyapatite ceramics. J Mater Sci Mater Med. 2006;17:1089–93.

    Article  Google Scholar 

  289. Chen IW, Wang XH. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature. 2000;404:168–70.

    Article  Google Scholar 

  290. Mazaheri M, Haghighatzadeh M, Zahedi AM, Sadrnezhaad SK. Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics. J Alloys Compd. 2009;471:180–4.

    Article  Google Scholar 

  291. Lin K, Chen L, Chang J. Fabrication of dense hydroxyapatite nanobioceramics with enhanced mechanical properties via two-step sintering process. Int J Appl Ceram Technol. 2012;9:479–85.

    Article  Google Scholar 

  292. Panyata S, Eitssayeam S, Rujijanagul G, Tunkasiri T, Pengpat K. Property development of hydroxyapatite ceramics by two-step sintering. Adv Mater Res. 2012;506:190–3.

    Article  Google Scholar 

  293. Esnaashary M, Fathi M, Ahmadian M. The effect of the two-step sintering process on consolidation of fluoridated hydroxyapatite and its mechanical properties and bioactivity. Int J Appl Ceram Technol. 2014;11:47–56.

    Article  Google Scholar 

  294. Feng P, Niu M, Gao C, Peng S, Shuai C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Report. 2014;4:5599.

    Article  Google Scholar 

  295. Halouani R, Bernache-Assolant D, Champion E, Ababou A. Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics. J Mater Sci Mater Med. 1994;5:563–8.

    Article  Google Scholar 

  296. Kasuga T, Ota Y, Tsuji K, Abe Y. Preparation of high-strength calcium phosphate ceramics with low modulus of elasticity containing β-Ca(PO3)2 fibers. J Am Ceram Soc. 1996;79:1821–4.

    Article  Google Scholar 

  297. Suchanek WL, Yoshimura M. Preparation of fibrous, porous hydroxyapatite ceramics from hydroxyapatite whiskers. J Am Ceram Soc. 1998;81:765–7.

    Article  Google Scholar 

  298. Kim Y, Kim SR, Song H, Yoon H. Preparation of porous hydroxyapatite/TCP composite block using a hydrothermal hot pressing method. Mater Sci Forum. 2005;486–487:117–20.

    Article  Google Scholar 

  299. Li JG, Hashida T. In situ formation of hydroxyapatite-whisker ceramics by hydrothermal hot-pressing method. J Am Ceram Soc. 2006;89:3544–6.

    Article  Google Scholar 

  300. Li JG, Hashida T. Preparation of hydroxyapatite ceramics by hydrothermal hot-pressing method at 300 °C. J Mater Sci. 2007;42:5013–9.

    Article  Google Scholar 

  301. Petrakova NV, Lysenkov AS, Ashmarin AA, Egorov AA, Fedotov AY, Shvorneva LI, Komlev VS, Barinov SM. Effect of hot pressing temperature on the microstructure and strength of hydroxyapatite ceramic. Inorg Mater Appl Res. 2013;4:362–7.

    Article  Google Scholar 

  302. Nakahira A, Murakami T, Onoki T, Hashida T, Hosoi K. Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering. J Am Ceram Soc. 2005;88:1334–6.

    Article  Google Scholar 

  303. Auger MA, Savoini B, Muñoz A, Leguey T, Monge MA, Pareja R, Victoria J. Mechanical characteristics of porous hydroxyapatite/oxide composites produced by post-sintering hot isostatic pressing. Ceram Int. 2009;35:2373–80.

    Article  Google Scholar 

  304. Silva CC, Graça MPF, Sombra ASB, Valente MA. Structural and electrical study of calcium phosphate obtained by a microwave radiation assisted procedure. Phys Rev B Condens Matter. 2009;404:1503–8.

    Article  Google Scholar 

  305. Chanda A, Dasgupta S, Bose S, Bandyopadhyay A. Microwave sintering of calcium phosphate ceramics. Mater Sci Eng C. 2009;29:1144–9.

    Article  Google Scholar 

  306. Veljović D, Zalite I, Palcevskis E, Smiciklas I, Petrović R, Janaćković D. Microwave sintering of fine grained HAP and HAP/TCP bioceramics. Ceram Int. 2010;36:595–603.

    Article  Google Scholar 

  307. Kalita SJ, Verma S. Nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization. Mater Sci Eng C. 2010;30:295–303.

    Article  Google Scholar 

  308. Veljović D, Palcevskis E, Dindune A, Putić S, Balać I, Petrović R, Janaćković D. Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing. J Mater Sci. 2010;45:3175–83.

    Article  Google Scholar 

  309. Wu Q, Zhang X, Wu B, Huang W. Effects of microwave sintering on the properties of porous hydroxyapatite scaffolds. Ceram Int. 2013;39:2389–95.

    Article  Google Scholar 

  310. Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med. 2013;7:631–41.

    Article  Google Scholar 

  311. Thuault A, Savary E, Hornez JC, Moreau G, Descamps M, Marinel S, Leriche A. Improvement of the hydroxyapatite mechanical properties by direct microwave sintering in single mode cavity. J Eur Ceram Soc. 2014;34:1865–71.

    Article  Google Scholar 

  312. Tovstonoh H, Sych O, Skorokhod V. Effect of microwave sintering temperature on structure and properties of bioceramics based on biogenic hydroxyapatite. Funct Mater. 2014;21:487–91.

    Article  Google Scholar 

  313. Tarafder S, Dernell WS, Bandyopadhyay A, Bose S. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater. 2015;103B:679–90.

    Article  Google Scholar 

  314. Nakamura T, Fukuhara T, Izui H. Mechanical properties of hydroxyapatites sintered by spark plasma sintering. Ceram Trans. 2006;194:265–72.

    Google Scholar 

  315. Zhang F, Lin K, Chang J, Lu J, Ning C. Spark plasma sintering of macroporous calcium phosphate scaffolds from nanocrystalline powders. J Eur Ceram Soc. 2008;28:539–45.

    Article  Google Scholar 

  316. Grossin D, Rollin-Martinet S, Estournès C, Rossignol F, Champion E, Combes C, Rey C, Geoffroy C, Drouet C. Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects. Acta Biomater. 2010;6:577–85.

    Article  Google Scholar 

  317. Chesnaud A, Bogicevic C, Karolak F, Estournès C, Dezanneau G. Preparation of transparent oxyapatite ceramics by combined use of freeze-drying and spark-plasma sintering. Chem Commun. 2007;15:1550–2.

    Google Scholar 

  318. Eriksson M, Liu Y, Hu J, Gao L, Nygren M, Shen Z. Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. J Eur Ceram Soc. 2011;31:1533–40.

    Article  Google Scholar 

  319. Liu Y, Shen Z. Dehydroxylation of hydroxyapatite in dense bulk ceramics sintered by spark plasma sintering. J Eur Ceram Soc. 2012;32:2691–6.

    Article  Google Scholar 

  320. Yoshida H, Kim BN, Son HW, Han YH, Kim S. Superplastic deformation of transparent hydroxyapatite. Scr Mater. 2013;69:155–8.

    Article  Google Scholar 

  321. Kim BN, Prajatelistia E, Han YH, Son HW, Sakka Y, Kim S. Transparent hydroxyapatite ceramics consolidated by spark plasma sintering. Scr Mater. 2013;69:366–9.

    Article  Google Scholar 

  322. Yun J, Son H, Prajatelistia E, Han YH, Kim S, Kim BN. Characterisation of transparent hydroxyapatite nanoceramics prepared by spark plasma sintering. Adv Appl Ceram. 2014;113:67–72.

    Article  Google Scholar 

  323. Li Z, Khor KA. Transparent hydroxyapatite obtained through spark plasma sintering: optical and mechanical properties. Key Eng Mater. 2015;631:51–6.

    Google Scholar 

  324. Yanagisawa K, Kim JH, Sakata C, Onda A, Sasabe E, Yamamoto T, Matamoros-Veloza Z, Rendón-Angeles JC. Hydrothermal sintering under mild temperature conditions: preparation of calcium-deficient hydroxyapatite compacts. Z Naturforsch B. 2010;65:1038–44.

    Article  Google Scholar 

  325. Hosoi K, Hashida T, Takahashi H, Yamasaki N, Korenaga T. New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method. J Am Ceram Soc. 1996;79:2771–4.

    Article  Google Scholar 

  326. Gross KA, Berndt CC. Biomedical application of apatites. In: Hughes JM, Kohn M, Rakovan J, editors. Phosphates: geochemical, geobiological and materials importance, Series: Reviews in Mineralogy and Geochemistry, vol. 48. Washington, DC: Mineralogical Society of America; 2002. p. 631–72.

    Google Scholar 

  327. Champion E. Sintering of calcium phosphate bioceramics. Acta Biomater. 2013;9:5855–75.

    Article  Google Scholar 

  328. Evans JRG. Seventy ways to make ceramics. J Eur Ceram Soc. 2008;28:1421–32.

    Article  Google Scholar 

  329. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.

    Article  Google Scholar 

  330. Black J. Biological performance of materials: fundamentals of biocompatibility. 4th ed. Boca Raton: CRC Press; 2005. 520 pp

    Google Scholar 

  331. Carter CB, Norton MG. Ceramic materials: science and engineering. 2nd ed. New York: Springer; 2013. 766 pp

    Book  Google Scholar 

  332. Benaqqa C, Chevalier J, Saädaoui M, Fantozzi G. Slow crack growth behaviour of hydroxyapatite ceramics. Biomaterials. 2005;26:6106–12.

    Article  Google Scholar 

  333. Pecqueux F, Tancret F, Payraudeau N, Bouler JM. Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: modelling and experiment. J Eur Ceram Soc. 2010;30:819–29.

    Article  Google Scholar 

  334. Ramesh S, Tan CY, Sopyan I, Hamdi M, Teng WD. Consolidation of nanocrystalline hydroxyapatite powder. Sci Technol Adv Mater. 2007;8:124–30.

    Article  Google Scholar 

  335. Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011;7:16–30.

    Article  Google Scholar 

  336. Suchanek WL, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13:94–117.

    Article  Google Scholar 

  337. Fan X, Case ED, Ren F, Shu Y, Baumann MJ. Part I: porosity dependence of the Weibull modulus for hydroxyapatite and other brittle materials. J Mech Behav Biomed Mater. 2012;8:21–36.

    Article  Google Scholar 

  338. Fan X, Case ED, Gheorghita I, Baumann MJ. Weibull modulus and fracture strength of highly porous hydroxyapatite. J Mech Behav Biomed Mater. 2013;20:283–95.

    Article  Google Scholar 

  339. Cordell J, Vogl M, Johnson A. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds. J Mech Behav Biomed Mater. 2009;2:560–70.

    Article  Google Scholar 

  340. Suzuki S, Sakamura M, Ichiyanagi M, Ozawa M. Internal friction of hydroxyapatite and fluorapatite. Ceram Int. 2004;30:625–7.

    Article  Google Scholar 

  341. Suzuki S, Takahiro K, Ozawa M. Internal friction and dynamic modulus of polycrystalline ceramics prepared from stoichiometric and Ca-deficient hydroxyapatites. Mater Sci Eng B. 1998;55:68–70.

    Article  Google Scholar 

  342. Bouler JM, Trecant M, Delecrin J, Royer J, Passuti N, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength. J Biomed Mater Res. 1996;32:603–9.

    Article  Google Scholar 

  343. Tancret F, Bouler JM, Chamousset J, Minois LM. Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J Eur Ceram Soc. 2006;26:3647–56.

    Article  Google Scholar 

  344. le Huec JC, Schaeverbeke T, Clement D, Faber J, le Rebeller A. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials. 1995;16:113–8.

    Article  Google Scholar 

  345. Hsu YH, Turner IG, Miles AW. Mechanical properties of three different compositions of calcium phosphate bioceramic following immersion in Ringer’s solution and distilled water. J Mater Sci Mater Med. 2009;20:2367–74.

    Article  Google Scholar 

  346. Torgalkar AM. Resonance frequency technique to determine elastic modulus of hydroxyapatite. J Biomed Mater Res. 1979;13:907–20.

    Article  Google Scholar 

  347. Gilmore RS, Katz JL. Elastic properties of apatites. J Mater Sci. 1982;17:1131–41.

    Article  Google Scholar 

  348. Fan X, Case ED, Ren F, Shu Y, Baumann MJ. Part II: fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials. J Mech Behav Biomed Mater. 2012;8:99–110.

    Article  Google Scholar 

  349. de Aza PN, de Aza AH, de Aza S. Crystalline bioceramic materials. Bol Soc Esp Ceram V. 2005;44:135–45.

    Article  Google Scholar 

  350. Fritsch A, Dormieux L, Hellmich C, Sanahuja J. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. J Biomed Mater Res A. 2009;88A:149–61.

    Article  Google Scholar 

  351. Ching WY, Rulis P, Misra A. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater. 2009;5:3067–75.

    Article  Google Scholar 

  352. Fritsch A, Hellmich C, Dormieux L. The role of disc-type crystal shape for micromechanical predictions of elasticity and strength of hydroxyapatite biomaterials. Philos Trans R Soc Lond A. 2010;368:1913–35.

    Article  Google Scholar 

  353. Menéndez-Proupin E, Cervantes-Rodríguez S, Osorio-Pulgar R, Franco-Cisterna M, Camacho-Montes H, Fuentes ME. Computer simulation of elastic constants of hydroxyapatite and fluorapatite. J Mech Behav Biomed Mater. 2011;4:1011–120.

    Article  Google Scholar 

  354. Sun JP, Song Y, Wen GW, Wang Y, Yang R. Softening of hydroxyapatite by vacancies: a first principles investigation. Mater Sci Eng C. 2013;33:1109–15.

    Article  Google Scholar 

  355. Sha MC, Li Z, Bradt RC. Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. J Appl Phys. 1994;75:7784–7.

    Article  Google Scholar 

  356. Wakai F, Kodama Y, Sakaguchi S, Nonami T. Superplasticity of hot isostatically pressed hydroxyapatite. J Am Ceram Soc. 1990;73:457–60.

    Article  Google Scholar 

  357. Tago K, Itatani K, Suzuki TS, Sakka Y, Koda S. Densification and superplasticity of hydroxyapatite ceramics. J Ceram Soc Jpn. 2005;113:669–73.

    Article  Google Scholar 

  358. Burger EL, Patel V. Calcium phosphates as bone graft extenders. Orthopedics. 2007;30:939–42.

    Google Scholar 

  359. Rodriguez-Lorenzo LM, Vallet-Regí M, Ferreira JMF, Ginebra MP, Aparicio C, Planell J. A hydroxyapatite ceramic bodies with tailored mechanical properties for different applications. J Biomed Mater Res. 2002;60:159–66.

    Article  Google Scholar 

  360. Song J, Liu Y, Zhang Y, Jiao L. Mechanical properties of hydroxyapatite ceramics sintered from powders with different morphologies. Mater Sci Eng A. 2011;528:5421–7.

    Article  Google Scholar 

  361. Dorozhkin SV. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J Funct Biomater. 2015;6:708–832.

    Article  Google Scholar 

  362. Bouslama N, Ben Ayed F, Bouaziz J. Sintering and mechanical properties of tricalcium phosphate – fluorapatite composites. Ceram Int. 2009;35:1909–17.

    Article  Google Scholar 

  363. Suchanek W, Yashima M, Kakihana M, Yoshimura M. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers. Biomaterials. 1996;17:1715–23.

    Article  Google Scholar 

  364. Suchanek W, Yashima M, Kakihana M, Yoshimura M. Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution. J Am Ceram Soc. 1997;80:2805–13.

    Article  Google Scholar 

  365. Simsek D, Ciftcioglu R, Guden M, Ciftcioglu M, Harsa S. Mechanical properties of hydroxyapatite composites reinforced with hydroxyapatite whiskers. Key Eng Mater. 2004;264–268:1985–8.

    Article  Google Scholar 

  366. Bose S, Banerjee A, Dasgupta S, Bandyopadhyay A. Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites. J Am Ceram Soc. 2009;92:323–30.

    Article  Google Scholar 

  367. Lie-Feng L, Xiao-Yi H, Cai YX, Weng J. Reinforcing of porous hydroxyapatite ceramics with hydroxyapatite fibres for enhanced bone tissue engineering. J Biomim Biomater Tissue Eng. 2011;1314:67–73.

    Google Scholar 

  368. Shiota T, Shibata M, Yasuda K, Matsuo Y. Influence of β-tricalcium phosphate dispersion on mechanical properties of hydroxyapatite ceramics. J Ceram Soc Jpn. 2009;116:1002–5.

    Article  Google Scholar 

  369. Shuai C, Feng P, Nie Y, Hu H, Liu J, Peng S. Nano-hydroxyapatite improves the properties of β-tricalcium phosphate bone scaffolds. Int J Appl Ceram Technol. 2013;10:1003–13.

    Article  Google Scholar 

  370. Dorozhkin SV, Ajaal T. Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings. Proc Inst Mech Eng Η. 2009;223:459–70.

    Article  Google Scholar 

  371. Dorozhkin SV, Ajaal T. Strengthening of dense bioceramic samples using bioresorbable polymers – a statistical approach. J Biomim Biomater Tissue Eng. 2009;4:27–39.

    Article  Google Scholar 

  372. Dressler M, Dombrowski F, Simon U, Börnstein J, Hodoroaba VD, Feigl M, Grunow S, Gildenhaar R, Neumann M. Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics. J Eur Ceram Soc. 2011;31:523–9.

    Article  Google Scholar 

  373. Martinez-Vazquez FJ, Perera FH, Miranda P, Pajares A, Guiberteau F. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 2010;6:4361–8.

    Article  Google Scholar 

  374. Fedotov AY, Bakunova NV, Komlev VS, Barinov SM. High-porous calcium phosphate bioceramics reinforced by chitosan infiltration. Dokl Chem. 2011;439:233–6.

    Article  Google Scholar 

  375. Martínez-Vázquez FJ, Pajares A, Guiberteau F, Miranda P. Effect of polymer infiltration on the flexural behavior of β-tricalcium phosphate robocast scaffolds. Materials. 2014;7:4001–18.

    Article  Google Scholar 

  376. He LH, Standard OC, Huang TT, Latella BA, Swain MV. Mechanical behaviour of porous hydroxyapatite. Acta Biomater. 2008;4:577–86.

    Article  Google Scholar 

  377. Yamashita K, Owada H, Umegaki T, Kanazawa T, Futagamu T. Ionic conduction in apatite solid solutions. Solid State Ionics. 1988;28–30:660–3.

    Article  Google Scholar 

  378. Nagai M, Nishino T. Surface conduction of porous hydroxyapatite ceramics at elevated temperatures. Solid State Ionics. 1988;28–30:1456–61.

    Article  Google Scholar 

  379. Valdes JJP, Rodriguez AV, Carrio JG. Dielectric properties and structure of hydroxyapatite ceramics sintered by different conditions. J Mater Res. 1995;10:2174–7.

    Article  Google Scholar 

  380. Fanovich MA, Castro MS, Lopez JMP. Analysis of the microstructural evolution in hydroxyapatite ceramics by electrical characterisation. Ceram Int. 1999;25:517–22.

    Article  Google Scholar 

  381. Bensaoud A, Bouhaouss A, Ferhat M. Electrical properties in compressed poorly crystalline apatite. J Solid State Electrochem. 2001;5:362–5.

    Article  Google Scholar 

  382. Mahabole MP, Aiyer RC, Ramakrishna CV, Sreedhar B, Khairnar RS. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull Mater Sci. 2005;28:535–45.

    Article  Google Scholar 

  383. Tanaka Y, Takata S, Shimoe K, Nakamura M, Nagai A, Toyama T, Yamashita K. Conduction properties of non-stoichiometric hydroxyapatite whiskers for biomedical use. J Ceram Soc Jpn. 2008;116:815–21.

    Article  Google Scholar 

  384. Tanaka Y, Nakamura M, Nagai A, Toyama T, Yamashita K. Ionic conduction mechanism in Ca-deficient hydroxyapatite whiskers. Mater Sci Eng B. 2009;161:115–9.

    Article  Google Scholar 

  385. Wang W, Itoh S, Yamamoto N, Okawa A, Nagai A, Yamashita K. Electrical polarization of β-tricalcium phosphate ceramics. J Am Ceram Soc. 2010;93:2175–7.

    Article  Google Scholar 

  386. Mahabole MP, Mene RU, Khairnar RS. Gas sensing and dielectric studies on cobalt doped hydroxyapatite thick films. Adv Mater Lett. 2013;4:46–52.

    Article  Google Scholar 

  387. Horiuchi N, Nakaguki S, Wada N, Nozaki K, Nakamura M, Nagai A, Katayama K, Yamashita K. Polarization-induced surface charges in hydroxyapatite ceramics. J Appl Phys. 2014;116:014902.

    Article  Google Scholar 

  388. Tofail SAM, Gandhi AA, Gregor M, Bauer J. Electrical properties of hydroxyapatite. Pure Appl Chem. 2015;87:221–9.

    Article  Google Scholar 

  389. Kaygili O, Keser S, Ates T, Kirbag S, Yakuphanoglu F. Dielectric properties of calcium phosphate ceramics. Medziagotyra. 2016;22:65–9.

    Google Scholar 

  390. Suresh MB, Biswas P, Mahender V, Johnson R. Comparative evaluation of electrical conductivity of hydroxyapatite ceramics densified through ramp and hold, spark plasma and post sinter hot isostatic pressing routes. Mater Sci Eng C. 2017;70:364–70.

    Article  Google Scholar 

  391. Gandhi AA, Wojtas M, Lang SB, Kholkin AL, Tofail SAM. Piezoelectricity in poled hydroxyapatite ceramics. J Am Ceram Soc. 2014;97:2867–72.

    Article  Google Scholar 

  392. Bystrov VS. Piezoelectricity in the ordered monoclinic hydroxyapatite. Ferroelectrics. 2015;475:148–53.

    Article  Google Scholar 

  393. Nakamura S, Takeda H, Yamashita K. Proton transport polarization and depolarization of hydroxyapatite ceramics. J Appl Phys. 2001;89:5386–92.

    Article  Google Scholar 

  394. Gittings JP, Bowen CR, Turner IG, Baxter FR, Chaudhuri JB. Polarisation behaviour of calcium phosphate based ceramics. Mater Sci Forum. 2008;587–588:91–5.

    Article  Google Scholar 

  395. Itoh S, Nakamura S, Kobayashi T, Shinomiya K, Yamashita K, Itoh S. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcif Tissue Int. 2006;78:133–42.

    Article  Google Scholar 

  396. Iwasaki T, Tanaka Y, Nakamura M, Nagai A, Hashimoto K, Toda Y, Katayama K, Yamashita K. Rate of bonelike apatite formation accelerated on polarized porous hydroxyapatite. J Am Ceram Soc. 2008;91:3943–9.

    Article  Google Scholar 

  397. Itoh S, Nakamura S, Kobayashi T, Shinomiya K, Yamashita K. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization. Biomaterials. 2006;27:5572–9.

    Article  Google Scholar 

  398. Kobayashi T, Itoh S, Nakamura S, Nakamura M, Shinomiya K, Yamashita K. Enhanced bone bonding of hydroxyapatite-coated titanium implants by electrical polarization. J Biomed Mater Res A. 2007;82A:145–51.

    Article  Google Scholar 

  399. Bodhak S, Bose S, Bandyopadhyay A. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater. 2009;5:2178–88.

    Article  Google Scholar 

  400. Sagawa H, Itoh S, Wang W, Yamashita K. Enhanced bone bonding of the hydroxyapatite/β-tricalcium phosphate composite by electrical polarization in rabbit long bone. Artif Organs. 2010;34:491–7.

    Article  Google Scholar 

  401. Ohba S, Wang W, Itoh S, Nagai A, Yamashita K. Enhanced effects of new bone formation by an electrically polarized hydroxyapatite microgranule/platelet-rich plasma composite gel. Key Eng Mater. 2013;529–530:82–7.

    Google Scholar 

  402. Yamashita K, Oikawa N, Umegaki T. Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chem Mater. 1996;8:2697–700.

    Article  Google Scholar 

  403. Teng NC, Nakamura S, Takagi Y, Yamashita Y, Ohgaki M, Yamashita K. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite. J Dent Res. 2001;80:1925–9.

    Article  Google Scholar 

  404. Kobayashi T, Nakamura S, Yamashita K. Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. J Biomed Mater Res. 2001;57:477–84.

    Article  Google Scholar 

  405. Park YJ, Hwang KS, Song JE, Ong JL, Rawls HR. Growth of calcium phosphate on poling treated ferroelectric BaTiO3 ceramics. Biomaterials. 2002;23:3859–64.

    Article  Google Scholar 

  406. Hwang KS, Song JE, Jo JW, Yang HS, Park YJ, Ong JL, Rawls HR. Effect of poling conditions on growth of calcium phosphate crystal in ferroelectric BaTiO3 ceramics. J Mater Sci Mater Med. 2002;13:133–8.

    Article  Google Scholar 

  407. Yamashita K. Enhanced bioactivity of electrically poled hydroxyapatita ceramics and coatings. Mater Sci Forum. 2003;426–432:3237–42.

    Article  Google Scholar 

  408. Nakamura S, Kobayashi T, Yamashita K. Highly orientated calcification in newly formed bones on negatively charged hydroxyapatite electrets. Key Eng Mater. 2005;284–286:897–900.

    Article  Google Scholar 

  409. Kato R, Nakamura S, Katayama K, Yamashita K. Electrical polarization of plasma-spray-hydroxyapatite coatings for improvement of osteoconduction of implants. J Biomed Mater Res A. 2005;74A:652–8.

    Article  Google Scholar 

  410. Nakamura S, Kobayashi T, Nakamura M, Itoh S, Yamashita K. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/β-tricalcium phosphate ceramics. J Biomed Mater Res A. 2010;92A:267–75.

    Article  Google Scholar 

  411. Tarafder S, Bodhak S, Bandyopadhyay A, Bose S. Effect of electrical polarization and composition of biphasic calcium phosphates on early stage osteoblast interactions. J Biomed Mater Res B Appl Biomater. 2011;97B:306–14.

    Article  Google Scholar 

  412. Ohba S, Wang W, Itoh S, Takagi Y, Nagai A, Yamashita K. Acceleration of new bone formation by an electrically polarized hydroxyapatite microgranule/platelet-rich plasma composite. Acta Biomater. 2012;8:2778–87.

    Article  Google Scholar 

  413. Tarafder S, Banerjee S, Bandyopadhyay A, Bose S. Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir. 2010;26:16625–9.

    Article  Google Scholar 

  414. Itoh S, Nakamura S, Nakamura M, Shinomiya K, Yamashita K. Enhanced bone regeneration by electrical polarization of hydroxyapatite. Artif Organs. 2006;30:863–9.

    Article  Google Scholar 

  415. Nakamura M, Nagai A, Ohashi N, Tanaka Y, Sekilima Y, Nakamura S. Regulation of osteoblast-like cell behaviors on hydroxyapatite by electrical polarization. Key Eng Mater. 2008;361–363:1055–8.

    Article  Google Scholar 

  416. Nakamura M, Nagai A, Tanaka Y, Sekilima Y, Yamashita K. Polarized hydroxyapatite promotes spread and motility of osteoblastic cells. J Biomed Mater Res A. 2010;92A:783–90.

    Article  Google Scholar 

  417. Nakamura M, Nagai A, Yamashita K. Surface electric fields of apatite electret promote osteoblastic responses. Key Eng Mater. 2013;529–530:357–60.

    Google Scholar 

  418. Nakamura S, Kobayashi T, Yamashita K. Extended bioactivity in the proximity of hydroxyapatite ceramic surfaces induced by polarization charges. J Biomed Mater Res. 2002;61:593–9.

    Article  Google Scholar 

  419. Wang W, Itoh S, Tanaka Y, Nagai A, Yamashita K. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization. Acta Biomater. 2009;5:3132–40.

    Article  Google Scholar 

  420. Cartmell SH, Thurstan S, Gittings JP, Griffiths S, Bowen CR, Turner IG. Polarization of porous hydroxyapatite scaffolds: influence on osteoblast cell proliferation and extracellular matrix production. J Biomed Mater Res A. 2014;102A:1047–52.

    Article  Google Scholar 

  421. Nakamura M, Kobayashi A, Nozaki K, Horiuchi N, Nagai A, Yamashita K. Improvement of osteoblast adhesion through polarization of plasma-sprayed hydroxyapatite coatings on metal. J Med Biol Eng. 2014;34:44–8.

    Article  Google Scholar 

  422. Nagai A, Tanaka K, Tanaka Y, Nakamura M, Hashimoto K, Yamashita K. Electric polarization and mechanism of B-type carbonated apatite ceramics. J Biomed Mater Res A. 2011;99A:116–24.

    Article  Google Scholar 

  423. Nakamura M, Niwa K, Nakamura S, Sekijima Y, Yamashita K. Interaction of a blood coagulation factor on electrically polarized hydroxyapatite surfaces. J Biomed Mater Res B Appl Biomater. 2007;82B:29–36.

    Article  Google Scholar 

  424. Nagai M, Shibuya Y, Nishino T, Saeki T, Owada H, Yamashita K, Umegaki T. Electrical conductivity of calcium phosphate ceramics with various Ca/P ratios. J Mater Sci. 1991;26:2949–53.

    Article  Google Scholar 

  425. Laghzizil A, Elherch N, Bouhaouss A, Lorente G, Coradin T, Livage J. Electrical behavior of hydroxyapatites M10(PO4)6(OH)2 (M = Ca, Pb, Ba). Mater Res Bull. 2001;36:953–62.

    Article  Google Scholar 

  426. Louati B, Guidara K, Gargouri M. Dielectric and ac ionic conductivity investigations in the monetite. J Alloys Compd. 2009;472:347–51.

    Article  Google Scholar 

  427. Gittings JP, Bowen CR, Dent AC, Turner IG, Baxter FR, Chaudhuri JB. Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomater. 2009;5:743–54.

    Article  Google Scholar 

  428. Tofail SAM, Baldisserri C, Haverty D, McMonagle JB, Erhart J. Pyroelectric surface charge in hydroxyapatite ceramics. J Appl Phys. 2009;106:106104.

    Article  Google Scholar 

  429. Ioku K. Tailored bioceramics of calcium phosphates for regenerative medicine. J Ceram Soc Jpn. 2010;118:775–83.

    Article  Google Scholar 

  430. Fang Y, Agrawal DK, Roy DM, Roy R. Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering. Mater Lett. 1995;23:147–51.

    Article  Google Scholar 

  431. Varma H, Vijayan SP, Babu SS. Transparent hydroxyapatite ceramics through gel-casting and low-temperature sintering. J Am Ceram Soc. 2002;85:493–5.

    Article  Google Scholar 

  432. Watanabe Y, Ikoma T, Monkawa A, Suetsugu Y, Yamada H, Tanaka J, Moriyoshi Y. Fabrication of transparent hydroxyapatite sintered body with high crystal orientation by pulse electric current sintering. J Am Ceram Soc. 2005;88:243–5.

    Article  Google Scholar 

  433. Kotobuki N, Ioku K, Kawagoe D, Fujimori H, Goto S, Ohgushi H. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials. 2005;26:779–85.

    Article  Google Scholar 

  434. John A, Varma HK, Vijayan S, Bernhardt A, Lode A, Vogel A, Burmeister B, Hanke T, Domaschke H, Gelinsky M. In vitro investigations of bone remodeling on a transparent hydroxyapatite ceramic. Biomed Mater. 2009;4:015007. (9 pages)

    Article  Google Scholar 

  435. Wang J, Shaw LL. Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering. Scr Mater. 2010;63:593–6.

    Article  Google Scholar 

  436. Tan N, Kou Z, Ding Y, Leng Y, Liu C, He D. Novel substantial reductions in sintering temperatures for preparation of transparent hydroxyapatite bioceramics under ultrahigh pressure. Scr Mater. 2011;65:819–22.

    Article  Google Scholar 

  437. Boilet L, Descamps M, Rguiti E, Tricoteaux A, Lu J, Petit F, Lardot V, Cambier F, Leriche A. Processing and properties of transparent hydroxyapatite and β tricalcium phosphate obtained by HIP process. Ceram Int. 2013;39:283–8.

    Article  Google Scholar 

  438. Han YH, Kim BN, Yoshida H, Yun J, Son HW, Lee J, Kim S. Spark plasma sintered superplastic deformed transparent ultrafine hydroxyapatite nanoceramics. Adv Appl Ceram. 2016;115:174–84.

    Article  Google Scholar 

  439. Kobune M, Mineshige A, Fujii S, Iida H. Preparation of translucent hydroxyapatite ceramics by HIP and their physical properties. J Ceram Soc Jpn. 1997;105:210–3.

    Article  Google Scholar 

  440. Barralet JE, Fleming GJP, Campion C, Harris JJ, Wright AJ. Formation of translucent hydroxyapatite ceramics by sintering in carbon dioxide atmospheres. J Mater Sci. 2003;38:3979–93.

    Article  Google Scholar 

  441. Chaudhry AA, Yan H, Gong K, Inam F, Viola G, Reece MJ, Goodall JBM, Ur Rehman I, McNeil-Watson FK, Corbett JCW, Knowles JC, Darr JA. High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater. 2011;7:791–9.

    Article  Google Scholar 

  442. Tancred DC, McCormack BA, Carr AJ. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials. 1998;19:2303–11.

    Article  Google Scholar 

  443. Miao X, Sun D. Graded/gradient porous biomaterials. Materials. 2010;3:26–47.

    Article  Google Scholar 

  444. Schliephake H, Neukam FW, Klosa D. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study. Int J Oral Maxillofac Surg. 1991;20:53–8.

    Article  Google Scholar 

  445. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27:5892–900.

    Article  Google Scholar 

  446. Hing KA, Best SM, Bonfield W. Characterization of porous hydroxyapatite. J Mater Sci Mater Med. 1999;10:135–45.

    Article  Google Scholar 

  447. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999;10:111–20.

    Article  Google Scholar 

  448. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  Google Scholar 

  449. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28:2491–504.

    Article  Google Scholar 

  450. Tamai N, Myoui A, Kudawara I, Ueda T, Yoshikawa H. Novel fully interconnected porous hydroxyapatite ceramic in surgical treatment of benign bone tumor. J Orthop Sci. 2010;15:560–8.

    Article  Google Scholar 

  451. Sakane M, Tsukanishi T, Funayama T, Kobayashi M, Ochiai N. Unidirectional porous β-tricalcium phosphate bone substitute: examination of balance between new bone formation and absorption. Key Eng Mater. 2012;493–494:132–4.

    Google Scholar 

  452. Panzavolta S, Torricelli P, Amadori S, Parrilli A, Rubini K, Della Bella E, Fini M, Bigi A. 3D interconnected porous biomimetic scaffolds: in vitro cell response. J Biomed Mater Res A. 2013;101A:3560–70.

    Article  Google Scholar 

  453. Jin L, Feng ZQ, Wang T, Ren Z, Ma S, Wu J, Sun D. A novel fluffy hydroxylapatite fiber scaffold with deep interconnected pores designed for three-dimensional cell culture. J Mater Chem B. 2014;2:129–36.

    Article  Google Scholar 

  454. Flautre B, Descamps M, Delecourt C, Blary MC, Hardouin P. Porous HA ceramic for bone replacement: role of the pores and interconnections – experimental study in the rabbits. J Mater Sci Mater Med. 2001;12:679–82.

    Article  Google Scholar 

  455. Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T, Yoshikawa H. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res. 2002;59:110–7.

    Article  Google Scholar 

  456. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27:3230–7.

    Article  Google Scholar 

  457. Okamoto M, Dohi Y, Ohgushi H, Shimaoka H, Ikeuchi M, Matsushima A, Yonemasu K, Hosoi H. Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J Mater Sci Mater Med. 2006;17:327–36.

    Article  Google Scholar 

  458. Zhang L, Hanagata N, Maeda M, Minowa T, Ikoma T, Fan H, Zhang X. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells. Sci Technol Adv Mater. 2009;10:025003. (9 pages)

    Article  Google Scholar 

  459. Li X, Liu H, Niu X, Fan Y, Feng Q, Cui FZ, Watari F. Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics. J Biomed Mater Res B Appl Biomater. 2011;97B:10–9.

    Article  Google Scholar 

  460. Hong MH, Kim SM, Han MH, Kim YH, Lee YK, Oh DS. Evaluation of microstructure effect of the porous spherical β-tricalcium phosphate granules on cellular responses. Ceram Int. 2014;40:6095–102.

    Article  Google Scholar 

  461. de Godoy RF, Hutchens S, Campion C, Blunn G. Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells. J Mater Sci Mater Med. 2015;26:54. (12 pages)

    Article  Google Scholar 

  462. Omae H, Mochizuki Y, Yokoya S, Adachi N, Ochi M. Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics. J Biomed Mater Res A. 2006;79A:329–37.

    Article  Google Scholar 

  463. Yoshikawa H, Tamai N, Murase T, Myoui A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface. 2009;6:S341–8.

    Article  Google Scholar 

  464. Ribeiro GBM, Trommer RM, dos Santos LA, Bergmann CP. Novel method to produce β-TCP scaffolds. Mater Lett. 2011;65:275–7.

    Article  Google Scholar 

  465. Silva TSN, Primo BT, Silva Jr AN, Machado DC, Viezzer C, Santos LA. Use of calcium phosphate cement scaffolds for bone tissue engineering: in vitro study. Acta Cir Bras. 2011;26:7–11.

    Article  Google Scholar 

  466. de Moraes MacHado JL, Giehl IC, Nardi NB, dos Santos LA. Evaluation of scaffolds based on α-tricalcium phosphate cements for tissue engineering applications. IEEE Trans Biomed Eng. 2011;58:1814–9.

    Article  Google Scholar 

  467. Li SH, de Wijn JR, Layrolle P, de Groot K. Novel method to manufacture porous hydroxyapatite by dual-phase mixing. J Am Ceram Soc. 2003;86:65–72.

    Article  Google Scholar 

  468. de Oliveira JF, de Aguiar PF, Rossi AM, Soares GDA. Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. Artif Organs. 2003;27:406–11.

    Article  Google Scholar 

  469. Swain SK, Bhattacharyya S. Preparation of high strength macroporous hydroxyapatite scaffold. Mater Sci Eng C. 2013;33:67–71.

    Article  Google Scholar 

  470. Maeda H, Kasuga T, Nogami M, Kagami H, Hata K, Ueda M. Preparation of bonelike apatite composite sponge. Key Eng Mater. 2004;254–256:497–500.

    Article  Google Scholar 

  471. le Ray AM, Gautier H, Bouler JM, Weiss P, Merle C. A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure. Ceram Int. 2010;36:93–101.

    Article  Google Scholar 

  472. Li SH, de Wijn JR, Layrolle P, de Groot K. Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J Biomed Mater Res. 2002;61:109–20.

    Article  Google Scholar 

  473. Hesaraki S, Sharifi D. Investigation of an effervescent additive as porogenic agent for bone cement macroporosity. Biomed Mater Eng. 2007;17:29–38.

    Google Scholar 

  474. Hesaraki S, Moztarzadeh F, Sharifi D. Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J Biomed Mater Res A. 2007;83A:80–7.

    Article  Google Scholar 

  475. Pal K, Pal S. Development of porous hydroxyapatite scaffolds. Mater Manuf Process. 2006;21:325–8.

    Article  Google Scholar 

  476. Tas AC. Preparation of porous apatite granules from calcium phosphate cement. J Mater Sci Mater Med. 2008;19:2231–9.

    Article  Google Scholar 

  477. Yao X, Tan S, Jiang D. Improving the properties of porous hydroxyapatite ceramics by fabricating methods. J Mater Sci. 2005;40:4939–42.

    Article  Google Scholar 

  478. Song HY, Youn MH, Kim YH, Min YK, Yang HM, Lee BT. Fabrication of porous β-TCP bone graft substitutes using PMMA powder and their biocompatibility study. Korean J Mater Res. 2007;17:318–22.

    Article  Google Scholar 

  479. Youn MH, Paul RK, Song HY, Lee BT. Fabrication of porous structure of BCP sintered bodies using microwave assisted synthesized HAp nano powder. Mater Sci Forum. 2007;534–536:49–52.

    Article  Google Scholar 

  480. Almirall A, Larrecq G, Delgado JA, Martínez S, Ginebra MP, Planell JA. Fabrication of low temperature hydroxyapatite foams. Key Eng Mater. 2004;254–256:1001–4.

    Article  Google Scholar 

  481. Almirall A, Larrecq G, Delgado JA, Martínez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials. 2004;25:3671–80.

    Article  Google Scholar 

  482. Huang X, Miao X. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. J Biomater Appl. 2007;21:351–74.

    Article  Google Scholar 

  483. Strnadova M, Protivinsky J, Strnad J, Vejsicka Z. Preparation of porous synthetic nanostructured HA scaffold. Key Eng Mater. 2008;361–363:211–4.

    Article  Google Scholar 

  484. Li B, Chen X, Guo B, Wang X, Fan H, Zhang X. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater. 2009;5:134–43.

    Article  Google Scholar 

  485. Cheng Z, Zhao K, Wu ZP. Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceram Int. 2015;41:8599–604.

    Article  Google Scholar 

  486. Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Biomed Mater Res. 2001;12:135–9.

    Google Scholar 

  487. Walsh D, Tanaka J. Preparation of a bone-like apatite foam cement. J Mater Sci Mater Med. 2001;12:339–44.

    Article  Google Scholar 

  488. Tadic D, Beckmann F, Schwarz K, Epple M. A novel method to produce hydroxylapatite objects with interconnecting porosity that avoids sintering. Biomaterials. 2004;25:3335–40.

    Article  Google Scholar 

  489. Komlev VS, Barinov SM. Porous hydroxyapatite ceramics of bi-modal pore size distribution. J Mater Sci Mater Med. 2002;13:295–9.

    Article  Google Scholar 

  490. Sepulveda P, Binner JG, Rogero SO, Higa OZ, Bressiani JC. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation. J Biomed Mater Res. 2000;50:27–34.

    Article  Google Scholar 

  491. Hsu YH, Turner IG, Miles AW. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. J Mater Sci Mater Med. 2007;18:2319–29.

    Article  Google Scholar 

  492. Zhang HG, Zhu Q. Preparation of porous hydroxyapatite with interconnected pore architecture. J Mater Sci Mater Med. 2007;18:1825–9.

    Article  Google Scholar 

  493. Chevalier E, Chulia D, Pouget C, Viana M. Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J Pharm Sci. 2008;97:1135–54.

    Article  Google Scholar 

  494. Tang YJ, Tang YF, Lv CT, Zhou ZH. Preparation of uniform porous hydroxyapatite biomaterials by a new method. Appl Surf Sci. 2008;254:5359–62.

    Article  Google Scholar 

  495. Abdulqader ST, Rahman IA, Ismail H, Ponnuraj Kannan T, Mahmood Z. A simple pathway in preparation of controlled porosity of biphasic calcium phosphate scaffold for dentin regeneration. Ceram Int. 2013;39:2375–81.

    Article  Google Scholar 

  496. Stares SL, Fredel MC, Greil P, Travitzky N. Paper-derived hydroxyapatite. Ceram Int. 2013;39:7179–83.

    Article  Google Scholar 

  497. Wen FH, Wang F, Gai Y, Wang MT, Lai QH. Preparation of mesoporous hydroxylapatite ceramics using polystyrene microspheres as template. Appl Mech Mater. 2013;389:194–8.

    Article  Google Scholar 

  498. Guda T, Appleford M, Oh S, Ong JL. A cellular perspective to bioceramic scaffolds for bone tissue engineering: the state of the art. Curr Top Med Chem. 2008;8:290–9.

    Article  Google Scholar 

  499. Habraken WJEM, Wolke JGC, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:234–48.

    Article  Google Scholar 

  500. Tian J, Tian J. Preparation of porous hydroxyapatite. J Mater Sci. 2001;36:3061–6.

    Article  Google Scholar 

  501. Swain SK, Bhattacharyya S, Sarkar D. Preparation of porous scaffold from hydroxyapatite powders. Mater Sci Eng C. 2011;31:1240–4.

    Article  Google Scholar 

  502. Zhao K, Tang YF, Qin YS, Luo DF. Polymer template fabrication of porous hydroxyapatite scaffolds with interconnected spherical pores. J Eur Ceram Soc. 2011;31:225–9.

    Article  Google Scholar 

  503. Sung JH, Shin KH, Moon YW, Koh YH, Choi WY, Kim HE. Production of porous calcium phosphate (CaP) ceramics with highly elongated pores using carbon-coated polymeric templates. Ceram Int. 2012;38:93–7.

    Article  Google Scholar 

  504. Oha DS, Kim YH, Ganbat D, Han MH, Lim P, Back JH, Lee FY, Tawfeek H. Bone marrow absorption and retention properties of engineered scaffolds with micro-channels and nano-pores for tissue engineering: a proof of concept. Ceram Int. 2013;39:8401–10.

    Article  Google Scholar 

  505. Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006;27:5480–9.

    Article  Google Scholar 

  506. Lee EJ, Koh YH, Yoon BH, Kim HE, Kim HW. Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Mater Lett. 2007;61:2270–3.

    Article  Google Scholar 

  507. Fu Q, Rahaman MN, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J Biomed Mater Res B Appl Biomater. 2008;86B:125–35.

    Article  Google Scholar 

  508. Impens S, Schelstraete R, Luyten J, Mullens S, Thijs I, van Humbeeck J, Schrooten J. Production and characterisation of porous calcium phosphate structures with controllable hydroxyapatite/β-tricalcium phosphate ratios. Adv Appl Ceram. 2009;108:494–500.

    Article  Google Scholar 

  509. Macchetta A, Turner IG, Bowen CR. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 2009;5:1319–27.

    Article  Google Scholar 

  510. Potoczek M, Zima A, Paszkiewicz Z, Ślósarczyk A. Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose. Ceram Int. 2009;35:2249–54.

    Article  Google Scholar 

  511. Zuo KH, Zeng YP, Jiang D. Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Mater Sci Eng C. 2010;30:283–7.

    Article  Google Scholar 

  512. Soon YM, Shin KH, Koh YH, Lee JH, Choi WY, Kim HE. Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure. J Eur Ceram Soc. 2011;31:13–8.

    Article  Google Scholar 

  513. Hesaraki S. Freeze-casted nanostructured apatite scaffold obtained from low temperature biomineralization of reactive calcium phosphates. Key Eng Mater. 2014;587:21–6.

    Article  Google Scholar 

  514. Ng S, Guo J, Ma J, Loo SCJ. Synthesis of high surface area mesostructured calcium phosphate particles. Acta Biomater. 2010;6:3772–81.

    Article  Google Scholar 

  515. Walsh D, Hopwood JD, Mann S. Crystal tectonics: construction of reticulated calcium phosphate frameworks in bicontinuous reverse microemulsions. Science. 1994;264:1576–8.

    Article  Google Scholar 

  516. Walsh D, Mann S. Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions. Chem Mater. 1996;8:1944–53.

    Article  Google Scholar 

  517. Zhao K, Tang YF, Qin YS, Wei JQ. Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceram Int. 2011;37:635–9.

    Article  Google Scholar 

  518. Zhou K, Zhang Y, Zhang D, Zhang X, Li Z, Liu G, Button TW. Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scr Mater. 2011;64:426–9.

    Article  Google Scholar 

  519. Flauder S, Gbureck U, Muller FA. TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. Key Eng Mater. 2013;529–530:129–32.

    Google Scholar 

  520. Zhang Y, Zhou K, Bao Y, Zhang D. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Mater Sci Eng C. 2013;33:340–6.

    Article  Google Scholar 

  521. White E, Shors EC. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin N Am. 1986;30:49–67.

    Google Scholar 

  522. Aizawa M, Howell SF, Itatani K, Yokogawa Y, Nishizawa K, Toriyama M, Kameyama T. Fabrication of porous ceramics with well-controlled open pores by sintering of fibrous hydroxyapatite particles. J Ceram Soc Jpn. 2000;108:249–53.

    Article  Google Scholar 

  523. Nakahira A, Tamai M, Sakamoto K, Yamaguchi S. Sintering and microstructure of porous hydroxyapatite. J Ceram Soc Jpn. 2000;108:99–104.

    Article  Google Scholar 

  524. Rodriguez-Lorenzo LM, Vallet-Regí M, Ferreira JMF. Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation. J Biomed Mater Res. 2002;60:232–40.

    Article  Google Scholar 

  525. Charriere E, Lemaitre J, Zysset P. Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties. Biomaterials. 2003;24:809–17.

    Article  Google Scholar 

  526. Eichenseer C, Will J, Rampf M, Wend S, Greil P. Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang). J Mater Sci Mater Med. 2010;21:131–7.

    Article  Google Scholar 

  527. Zhou L, Wang D, Huang W, Yao A, Kamitakahara M, Ioku K. Preparation and characterization of periodic porous frame of hydroxyapatite. J Ceram Soc Jpn. 2009;117:521–4.

    Article  Google Scholar 

  528. Kawata M, Uchida H, Itatani K, Okada I, Koda S, Aizawa M. Development of porous ceramics with well-controlled porosities and pore sizes from apatite fibers and their evaluations. J Mater Sci Mater Med. 2004;15:817–23.

    Article  Google Scholar 

  529. Koh YH, Kim HW, Kim HE, Halloran JW. Fabrication of macrochannelled-hydroxyapatite bioceramic by a coextrusion process. J Am Ceram Soc. 2002;85:2578–80.

    Article  Google Scholar 

  530. Kitamura M, Ohtsuki C, Ogata SI, Kamitakahara M, Tanihara M, Miyazaki T. Mesoporous calcium phosphate via post-treatment of α-TCP. J Am Ceram Soc. 2005;88:822–6.

    Article  Google Scholar 

  531. Walsh D, Boanini E, Tanaka J, Mann S. Synthesis of tri-calcium phosphate sponges by interfacial deposition and thermal transformation of self-supporting calcium phosphate films. J Mater Chem. 2005;15:1043–8.

    Article  Google Scholar 

  532. Gonzalez-McQuire R, Green D, Walsh D, Hall S, Chane-Ching JY, Oreffo ROC, Mann S. Fabrication of hydroxyapatite sponges by dextran sulphate/amino acid templating. Biomaterials. 2005;26:6652–6.

    Article  Google Scholar 

  533. Xu S, Li D, Lu B, Tang Y, Wang C, Wang Z. Fabrication of a calcium phosphate scaffold with a three dimensional channel network and its application to perfusion culture of stem cells. Rapid Prototyp J. 2007;13:99–106.

    Article  Google Scholar 

  534. Saiz E, Gremillard L, Menendez G, Miranda P, Gryn K, Tomsia AP. Preparation of porous hydroxyapatite scaffolds. Mater Sci Eng C. 2007;27:546–50.

    Article  Google Scholar 

  535. Kamitakahara M, Ohtsuki C, Kawachi G, Wang D, Ioku K. Preparation of hydroxyapatite porous ceramics with different porous structures using a hydrothermal treatment with different aqueous solutions. J Ceram Soc Jpn. 2008;116:6–9.

    Article  Google Scholar 

  536. Peña J, Román J, Cabañas MV, Vallet-Regí M. An alternative technique to shape scaffolds with hierarchical porosity at physiological temperature. Acta Biomater. 2010;6:1288–96.

    Article  Google Scholar 

  537. Nakamura S, Nakahira A. Synthesis and evaluation of porous hydroxyapatite prepared by hydrothermal treatment and subsequent sintering method. J Ceram Soc Jpn. 2008;116:42–5.

    Article  Google Scholar 

  538. Zhang J, Fujiwara M, Xu Q, Zhu Y, Iwasa M, Jiang D. Synthesis of mesoporous calcium phosphate using hybrid templates. Microporous Mesoporous Mater. 2008;111:411–6.

    Article  Google Scholar 

  539. Song HY, Islam S, Lee BT. A novel method to fabricate unidirectional porous hydroxyapatite body using ethanol bubbles in a viscous slurry. J Am Ceram Soc. 2008;91:3125–7.

    Article  Google Scholar 

  540. Kawachi G, Misumi H, Fujimori H, Goto S, Ohtsuki C, Kamitakahara M, Ioku K. Fabrication of porous blocks of calcium phosphate through hydrothermal processing under glycine coexistence. J Ceram Soc Jpn. 2010;118:559–63.

    Article  Google Scholar 

  541. Sakamoto M, Nakasu M, Matsumoto T, Okihana H. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J Biomed Mater Res A. 2007;82A:238–42.

    Article  Google Scholar 

  542. Sakamoto M. Development and evaluation of superporous hydroxyapatite ceramics with triple pore structure as bone tissue scaffold. J Ceram Soc Jpn. 2010;118:753–7.

    Article  Google Scholar 

  543. Sakamoto M, Matsumoto T. Development and evaluation of superporous ceramics bone tissue scaffold materials with triple pore structure (a) hydroxyapatite, (b) beta-tricalcium phosphate. In: Tal H, editor. Bone regeneration. Rijeka: InTech Europe; 2012. p. 301–20.

    Google Scholar 

  544. Deisinger U. Generating porous ceramic scaffolds: processing and properties. Key Eng Mater. 2010;441:155–79.

    Article  Google Scholar 

  545. Ishikawa K, Tsuru K, Pham TK, Maruta M, Matsuya S. Fully-interconnected pore forming calcium phosphate cement. Key Eng Mater. 2012;493–494:832–5.

    Google Scholar 

  546. Yoon HJ, Kim UC, Kim JH, Koh YH, Choi WY, Kim HE. Fabrication and characterization of highly porous calcium phosphate (CaP) ceramics by freezing foamed aqueous CaP suspensions. J Ceram Soc Jpn. 2011;119:573–6.

    Article  Google Scholar 

  547. Ahn MK, Shin KH, Moon YW, Koh YH, Choi WY, Kim HE. Highly porous biphasic calcium phosphate (BCP) ceramics with large interconnected pores by freezing vigorously foamed BCP suspensions under reduced pressure. J Am Ceram Soc. 2011;94:4154–6.

    Article  Google Scholar 

  548. Ji L, Jell G, Dong Y, Jones JR, Stevens MM. Template synthesis of ordered macroporous hydroxyapatite bioceramics. Chem Commun. 2011;47:9048–50.

    Article  Google Scholar 

  549. Wang XY, Han YC, Li SP. Preparation and characterization of calcium phosphate crystals by precursor thermolysis method. Key Eng Mater. 2012;493–494:191–4.

    Google Scholar 

  550. Schlosser M, Kleebe HJ. Vapor transport sintering of porous calcium phosphate ceramics. J Am Ceram Soc. 2012;95:1581–7.

    Article  Google Scholar 

  551. Tanaka T, Yoshioka T, Ikoma T, Kuwayama T, Higaki T, Tanaka M. Fabrication of three different types of porous carbonate-substituted apatite ceramics for artificial bone. Key Eng Mater. 2013;529–530:143–6.

    Google Scholar 

  552. Zheng W, Liu G, Yan C, Xiao Y, Miao XG. Strong and bioactive tri-calcium phosphate scaffolds with tube-like macropores. J Biomim Biomater Tissue Eng. 2014;19:65–75.

    Article  Google Scholar 

  553. Tsuru K, Nikaido T, Munar ML, Maruta M, Matsuya S, Nakamura S, Ishikawa K. Synthesis of carbonate apatite foam using β-TCP foams as precursors. Key Eng Mater. 2014;587:52–5.

    Article  Google Scholar 

  554. Chen ZC, Zhang XL, Zhou K, Cai H, Liu CQ. Novel fabrication of hierarchically porous hydroxyapatite scaffolds with refined porosity and suitable strength. Adv Appl Ceram. 2015;114:183–7.

    Article  Google Scholar 

  555. Swain SK, Bhattacharyya S, Sarkar D. Fabrication of porous hydroxyapatite scaffold via polyethylene glycol-polyvinyl alcohol hydrogel state. Mater Res Bull. 2015;64:257–61.

    Article  Google Scholar 

  556. Charbonnier B, Laurent C, Marchat D. Porous hydroxyapatite bioceramics produced by impregnation of 3D-printed wax mold: slurry feature optimization. J Eur Ceram Soc. 2016;36:4269–79.

    Article  Google Scholar 

  557. Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 1974;247:220–2.

    Article  Google Scholar 

  558. Zhang X, Vecchio KS. Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front Mater Sci. 2013;7:103–17.

    Article  Google Scholar 

  559. Yang Y, Yao Q, Pu X, Hou Z, Zhang Q. Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chem Eng J. 2011;173:837–45.

    Article  Google Scholar 

  560. Thanh TNX, Maruta M, Tsuru K, Matsuya S, Ishikawa K. Three – dimensional porous carbonate apatite with sufficient mechanical strength as a bone substitute material. Adv Mater Res. 2014;891–892:1559–64.

    Article  Google Scholar 

  561. Moroni L, de Wijn JR, van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed. 2008;19:543–72.

    Article  Google Scholar 

  562. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ. Processing routes to macroporous ceramics: a review. J Am Ceram Soc. 2006;89:1771–89.

    Article  Google Scholar 

  563. Hing K, Annaz B, Saeed S, Revell P, Buckland T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med. 2005;16:467–75.

    Article  Google Scholar 

  564. Wang Z, Sakakibara T, Sudo A, Kasai Y. Porosity of β-tricalcium phosphate affects the results of lumbar posterolateral fusion. J Spinal Disord Tech. 2013;26:E40–5.

    Article  Google Scholar 

  565. Lan Levengood SK, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, Wagoner Johnson AJ. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials. 2010;31:3552–63.

    Article  Google Scholar 

  566. Ruksudjarit A, Pengpat K, Rujijanagul G, Tunkasiri T. The fabrication of nanoporous hydroxyapatite ceramics. Adv Mater Res. 2008;47–50:797–800.

    Article  Google Scholar 

  567. Murugan R, Ramakrishna S, Rao KP. Nanoporous hydroxy-carbonate apatite scaffold made of natural bone. Mater Lett. 2006;60:2844–7.

    Article  Google Scholar 

  568. Li Y, Tjandra W, Tam KC. Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates. Mater Res Bull. 2008;43:2318–26.

    Article  Google Scholar 

  569. El Asri S, Laghzizil A, Saoiabi A, Alaoui A, El Abassi K, M’hamdi R, Coradin T. A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock. Colloid Surf A. 2009;350:73–8.

    Article  Google Scholar 

  570. Ramli RA, Adnan R, Bakar MA, Masudi SM. Synthesis and characterisation of pure nanoporous hydroxyapatite. J Phys Sci. 2011;22:25–37.

    Google Scholar 

  571. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108:4742–53.

    Article  Google Scholar 

  572. Prokopiev O, Sevostianov I. Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater Sci Eng A. 2006;431:218–27.

    Article  Google Scholar 

  573. Daculsi G, Jegoux F, Layrolle P. The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue engineering. In: Basu B, Katti DS, Kumar A, editors. Advanced biomaterials: fundamentals, processing and applications. Hoboken: American Ceramic Society, Wiley; 2009. 768 pp.

    Google Scholar 

  574. Shipman P, Foster G, Schoeninger M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci. 1984;11:307–25.

    Article  Google Scholar 

  575. Rice RW. Porosity of ceramics. New York: Marcel Dekker; 1998. 560 pp

    Google Scholar 

  576. Wang H, Zhai L, Li Y, Shi T. Preparation of irregular mesoporous hydroxyapatite. Mater Res Bull. 2008;43:1607–14.

    Article  Google Scholar 

  577. Fan J, Lei J, Yu C, Tu B, Zhao D. Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Mater Chem Phys. 2007;103:489–93.

    Article  Google Scholar 

  578. Sopyan I, Mel M, Ramesh S, Khalid KA. Porous hydroxyapatite for artificial bone applications. Sci Technol Adv Mater. 2007;8:116–23.

    Article  Google Scholar 

  579. Hsu YH, Turner IG, Miles AW. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J Mater Sci Mater Med. 2007;18:2251–6.

    Article  Google Scholar 

  580. Abdurrahim T, Sopyan I. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications. Recent Pat Biomed Eng. 2008;1:213–29.

    Article  Google Scholar 

  581. Munch E, Franco J, Deville S, Hunger P, Saiz E, Tomsia AP. Porous ceramic scaffolds with complex architectures. JOM. 2008;60:54–9.

    Article  Google Scholar 

  582. Ohji T, Fukushima M. Macro-porous ceramics: processing and properties. Int Mater Rev. 2012;57:115–31.

    Article  Google Scholar 

  583. Naqshbandi AR, Sopyan I, Gunawan. Development of porous calcium phosphate bioceramics for bone implant applications: a review. Rec Pat Mater Sci. 2013;6:238–52.

    Google Scholar 

  584. Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int Ed Engl. 2004;43:5980–4.

    Article  Google Scholar 

  585. Izquierdo-Barba I, Ruiz-González L, Doadrio JC, González-Calbet JM, Vallet-Regí M. Tissue regeneration: a new property of mesoporous materials. Solid State Sci. 2005;7:983–9.

    Article  Google Scholar 

  586. Cosijns A, Vervaet C, Luyten J, Mullens S, Siepmann F, van Hoorebeke L, Masschaele B, Cnudde V, Remon JP. Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur J Pharm Biopharm. 2007;67:498–506.

    Article  Google Scholar 

  587. Uchida A, Shinto Y, Araki N, Ono K. Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J Orthop Res. 1992;10:440–5.

    Article  Google Scholar 

  588. Shinto Y, Uchida A, Korkusuz F, Araki N, Ono K. Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J Bone Joint Surg (Br). 1992;74:600–4.

    Google Scholar 

  589. Martin RB, Chapman MW, Sharkey NA, Zissimos SL, Bay B, Shors EC. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation. Biomaterials. 1993;14:341–8.

    Article  Google Scholar 

  590. Kazakia GJ, Nauman EA, Ebenstein DM, Halloran BP, Keaveny TM. Effects of in vitro bone formation on the mechanical properties of a trabeculated hydroxyapatite bone substitute. J Biomed Mater Res A. 2006;77A:688–99.

    Article  Google Scholar 

  591. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J Biomed Mater Res A. 2004;68A:187–200.

    Article  Google Scholar 

  592. Vuola J, Taurio R, Goransson H, Asko-Seljavaara S. Compressive strength of calcium carbonate and hydroxyapatite implants after bone marrow induced osteogenesis. Biomaterials. 1998;19:223–7.

    Article  Google Scholar 

  593. von Doernberg MC, von Rechenberg B, Bohner M, Grünenfelder S, van Lenthe GH, Müller R, Gasser B, Mathys R, Baroud G, Auer J. In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials. 2006;27:5186–98.

    Article  Google Scholar 

  594. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bunger C. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007;28:1036–47.

    Article  Google Scholar 

  595. Mankani MH, Afghani S, Franco J, Launey M, Marshall S, Marshall GW, Nissenson R, Lee J, Tomsia AP, Saiz E. Lamellar spacing in cuboid hydroxyapatite scaffolds regulates bone formation by human bone marrow stromal cells. Tissue Eng A. 2011;17:1615–23.

    Article  Google Scholar 

  596. Chan O, Coathup MJ, Nesbitt A, Ho CY, Hing KA, Buckland T, Campion C, Blunn GW. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater. 2012;8:2788–94.

    Article  Google Scholar 

  597. Holmes RE. Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg. 1979;63:626–33.

    Article  Google Scholar 

  598. Tsuruga E, Takita H, Wakisaka Y, Kuboki Y. Pore size of porous hydoxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997;121:317–24.

    Article  Google Scholar 

  599. LeGeros RZ, LeGeros JP. Calcium phosphate bioceramics: past, present, future. Key Eng Mater. 2003;240–242:3–10.

    Article  Google Scholar 

  600. Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, Clark SG, Wheeler MB, Jamison RD, Wagoner JAJ. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28:45–54.

    Article  Google Scholar 

  601. Levitt GE, Crayton PH, Monroe EA, Condrate RA. Forming methods for apatite prosthesis. J Biomed Mater Res. 1969;3:683–5.

    Article  Google Scholar 

  602. Easwer HV, Rajeev A, Varma HK, Vijayan S, Bhattacharya RN. Cosmetic and radiological outcome following the use of synthetic hydroxyapatite porous-dense bilayer burr-hole buttons. Acta Neurochir. 2007;149:481–5.

    Article  Google Scholar 

  603. Kashimura H, Ogasawara K, Kubo Y, Yoshida K, Sugawara A, Ogawa A. A newly designed hydroxyapatite ceramic burr-hole button. Vasc Health Risk Manag. 2010;6:105–8.

    Article  Google Scholar 

  604. Jordan DR, Gilberg S, Bawazeer A. Coralline hydroxyapatite orbital implant (Bio-Eye): experience with 158 patients. Ophthal Plast Reconstr Surg. 2004;20:69–74.

    Article  Google Scholar 

  605. Liao HF, Xiao W, Chen QJ. Ophthalmic applications of hydroxyapatite and its polymer composites. J Clin Rehabil Tissue Eng Res. 2008;12:8905–8.

    Google Scholar 

  606. Yoon JS, Lew H, Kim SJ, Lee SY. Exposure rate of hydroxyapatite orbital implants. A 15-year experience of 802 cases. Ophthalmology. 2008;115:566–72.

    Article  Google Scholar 

  607. Chai GR, Chen M. Clinical effect of hydroxyapatite orbital implantation. Int J Ophthalmol. 2010;10:999–1000.

    Google Scholar 

  608. Tabatabaee Z, Mazloumi M, Rajabi TM, Khalilzadeh O, Kassaee A, Moghimi S, Eftekhar H, Goldberg RA. Comparison of the exposure rate of wrapped hydroxyapatite (Bio-Eye) versus unwrapped porous polyethylene (Medpor) orbital implants in enucleated patients. Ophthal Plast Reconstr Surg. 2011;27:114–8.

    Article  Google Scholar 

  609. Ma XZ, Bi HS, Zhang X. Effect of hydroxyapatite orbital implant for plastic surgery of eye in 52 cases. Int Eye Sci. 2012;12:988–90.

    Google Scholar 

  610. Wang L. Simple fixation of hydroxyapatite artificial eye mount of auto sclera. Int Eye Sci. 2012;12:1394–5.

    Google Scholar 

  611. Kundu B, Sanyal D, Basu D. Physiological and elastic properties of highly porous hydroxyapatite potential for integrated eye implants: effects of SIRC and L-929 cell lines. Ceram Int. 2013;39:2651–64.

    Article  Google Scholar 

  612. Baino F, Vitale-Brovarone C. Bioceramics in ophthalmology. Acta Biomater. 2014;10:3372–97.

    Article  Google Scholar 

  613. Wehrs RE. Hearing results with incus and incus stapes prostheses of hydroxylapatite. Laryngoscope. 1991;101:555–6.

    Article  Google Scholar 

  614. Smith J, Gardner E, Dornhoffer JL. Hearing results with a hydroxylapatite/titanium bell partial ossicular replacement prosthesis. Laryngoscope. 2002;112:1796–9.

    Article  Google Scholar 

  615. Doi T, Hosoda Y, Kaneko T, Munemoto Y, Kaneko A, Komeda M, Furukawa M, Kuriyama H, Kitajiri M, Tomoda K, Yamashita T. Hearing results for ossicular reconstruction using a cartilage-connecting hydroxyapatite prosthesis with a spearhead. Otol Neurotol. 2007;28:1041–4.

    Article  Google Scholar 

  616. Thalgott JS, Fritts K, Giuffre JM, Timlin M. Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine. 1999;24:1295–9.

    Article  Google Scholar 

  617. Mashoof AA, Siddiqui SA, Otero M, Tucci JJ. Supplementation of autogenous bone graft with coralline hydroxyapatite in posterior spine fusion for idiopathic adolescent scoliosis. Orthopedics. 2002;25:1073–6.

    Google Scholar 

  618. Minamide A, Yoshida M, Kawakami M, Yamasaki S, Kojima H, Hashizume H, Boden SD. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine. 2005;30:1134–8.

    Article  Google Scholar 

  619. Liu WY, Mo JW, Gao H, Liu HL, Wang MY, He CL, Tang W, Ye YJ. Nano-hydroxyapatite artificial bone serves as a spacer for fusion with the cervical spine after bone grafting. Chin J Tissue Eng Res. 2012;16:5327–30.

    Google Scholar 

  620. Silva RV, Camilli JA, Bertran CA, Moreira NH. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg. 2005;34:178–84.

    Article  Google Scholar 

  621. Damron TA. Use of 3D β-tricalcium phosphate (Vitoss®) scaffolds in repairing bone defects. Nanomedicine. 2007;2:763–75.

    Article  Google Scholar 

  622. Busso M, Karlsberg PL. Cheek augmentation and rejuvenation using injectable calcium hydroxylapatite (Radiesse®). Cosmet Dermatol. 2006;19:583–8.

    Google Scholar 

  623. Bass LS, Smith S, Busso M, McClaren M. Calcium hydroxylapatite (Radiesse) for treatment of nasolabial folds: long-term safety and efficacy results. Aesthet Surg J. 2010;30:235–8.

    Article  Google Scholar 

  624. Low KL, Tan SH, Zein SHS, Roether JA, Mouriño V, Boccaccini AR. Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater Res B Appl Biomater. 2010;94B:273–86.

    Google Scholar 

  625. Daculsi G, Uzel AP, Weiss P, Goyenvalle E, Aguado E. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J Mater Sci Mater Med. 2010;21:855–61.

    Article  Google Scholar 

  626. Suzuki K, Anada T, Honda Y, Kishimoto KN, Miyatake N, Hosaka M, Imaizumi H, Itoi E, Suzuki O. Cortical bone tissue response of injectable octacalcium phosphate-hyaluronic acid complexes. Key Eng Mater. 2013;529–530:296–9.

    Google Scholar 

  627. Pastorino D, Canal C, Ginebra MP. Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity-drug interaction. Acta Biomater. 2015;12:250–9.

    Article  Google Scholar 

  628. Miramond T, Aguado E, Goyenvalle E, Borget P, Baroth S, Daculsi G. In vivo comparative study of two injectable/moldable calcium phosphate bioceramics. Key Eng Mater. 2013;529–530:291–5.

    Google Scholar 

  629. Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.

    Article  Google Scholar 

  630. Laschke MW, Witt K, Pohlemann T, Menger MD. Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J Biomed Mater Res B Appl Biomater. 2007;82B:494–505.

    Article  Google Scholar 

  631. Lopez-Heredia MA, Barnewitz D, Genzel A, Stiller M, Peters F, Huebner WD, Stang B, Kuhr A, Knabe C. In vivo osteogenesis assessment of a tricalcium phosphate paste and a tricalcium phosphate foam bone grafting materials. Key Eng Mater. 2015;631:426–9.

    Article  Google Scholar 

  632. Torres PMC, Gouveia S, Olhero S, Kaushal A, Ferreira JMF. Injectability of calcium phosphate pastes: effects of particle size and state of aggregation of β-tricalcium phosphate powders. Acta Biomater. 2015;21:204–16.

    Article  Google Scholar 

  633. Salinas AJ, Esbrit P, Vallet-Regí M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater Sci. 2013;1:40–51.

    Article  Google Scholar 

  634. ISO 13175-3:2012 Implants for surgery – calcium phosphates – oart 3: hydroxyapatite and beta-tricalcium phosphate bone substitutes. https://www.iso.org/obp/ui/#iso:std:iso:13175:-3:ed-1:v1:en.

  635. Chow LC. Next generation calcium phosphate-based biomaterials. Dent Mater J. 2009;28:1–10.

    Article  Google Scholar 

  636. Victor SP, Kumar TSS. Processing and properties of injectable porous apatitic cements. J Ceram Soc Jpn. 2008;116:105–7.

    Article  Google Scholar 

  637. Hesaraki S, Nemati R, Nosoudi N. Preparation and characterisation of porous calcium phosphate bone cement as antibiotic carrier. Adv Appl Ceram. 2009;108:231–40.

    Article  Google Scholar 

  638. Stulajterova R, Medvecky L, Giretova M, Sopcak T. Structural and phase characterization of bioceramics prepared from tetracalcium phosphate–monetite cement and in vitro osteoblast response. J Mater Sci Mater Med. 2015;26:1–9.

    Article  Google Scholar 

  639. Bohner M. Resorbable biomaterials as bone graft substitutes. Mater Today. 2010;13:24–30.

    Article  Google Scholar 

  640. Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R. 2009;66:1–70.

    Article  Google Scholar 

  641. León B, Jansen JA, editors. Thin calcium phosphate coatings for medical implants. New York: Springer; 2009. 326 pp

    Google Scholar 

  642. Dorozhkin SV. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater Sci Eng C. 2015;55:272–326.

    Article  Google Scholar 

  643. Kon M, Ishikawa K, Miyamoto Y, Asaoka K. Development of calcium phosphate based functional gradient bioceramics. Biomaterials. 1995;16:709–14.

    Article  Google Scholar 

  644. Wong LH, Tio B, Miao X. Functionally graded tricalcium phosphate/fluoroapatite composites. Mater Sci Eng C. 2002;20:111–5.

    Article  Google Scholar 

  645. Tampieri A, Celotti G, Sprio S, Delcogliano A, Franzese S. Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials. 2001;22:1365–70.

    Article  Google Scholar 

  646. Lu WW, Zhao F, Luk KDK, Yin YJ, Cheung KMC, Cheng GX, Yao KD, Leong JCY. Controllable porosity hydroxyapatite ceramics as spine cage: fabrication and properties evaluation. J Mater Sci Mater Med. 2003;14:1039–46.

    Article  Google Scholar 

  647. Werner J, Linner-Krcmar B, Friess W, Greil P. Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure. Biomaterials. 2002;23:4285–94.

    Article  Google Scholar 

  648. Rodriguez-Lorenzo LM, Ferreira JMF. Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems. Mater Res Bull. 2004;39:83–91.

    Article  Google Scholar 

  649. Watanabe T, Fukuhara T, Izui H, Fukase Y, Okano M. Properties of HAp/β-TCP functionally graded material by spark plasma sintering. Trans Jpn Soc Mech Eng A. 2009;75:612–8.

    Google Scholar 

  650. Bai X, Sandukas S, Appleford MR, Ong JL, Rabiei A. Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomater. 2009;5:3563–72.

    Article  Google Scholar 

  651. Roy M, Balla VK, Bandyopadhyay A, Bose S. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma. Acta Biomater. 2011;7:866–73.

    Article  Google Scholar 

  652. Tamura A, Asaoka T, Furukawa K, Ushida T, Tateishi T. Application of α-TCP/HAp functionally graded porous beads for bone regenerative scaffold. Adv Sci Technol. 2013;86:63–9.

    Article  Google Scholar 

  653. Gasik M, Keski-Honkola A, Bilotsky Y, Friman M. Development and optimisation of hydroxyapatite-β-TCP functionally gradated biomaterial. J Mech Behav Biomed Mater. 2014;30:266–73.

    Article  Google Scholar 

  654. Zhou C, Deng C, Chen X, Zhao X, Chen Y, Fan Y, Zhang X. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. J Mech Behav Biomed Mater. 2015;48:1–11.

    Article  Google Scholar 

  655. Marković S, Lukić MJ, Škapin SD, Stojanović B, Uskoković D. Designing, fabrication and characterization of nanostructured functionally graded HAp/BCP ceramics. Ceram Int. 2015;41:2654–67.

    Article  Google Scholar 

  656. Dubok VA. Bioceramics – yesterday, today, tomorrow. Powder Metall Met Ceram. 2000;39:381–94.

    Article  Google Scholar 

  657. Heness G, Ben-Nissan B. Innovative bioceramics. Mater Forum. 2004;27:104–14.

    Google Scholar 

  658. Ohtsuki C, Kamitakahara M, Miyazaki T. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J R Soc Interface. 2009;6:S349–60.

    Article  Google Scholar 

  659. Greenspan DC. Bioactive ceramic implant materials. Curr Opin Solid State Mater Sci. 1999;4:389–93.

    Article  Google Scholar 

  660. Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Haarman HJTM. Properties of calcium phosphate ceramics in relation to their in vivo behavior. J Trauma. 2000;48:179–89.

    Article  Google Scholar 

  661. Kim HM. Bioactive ceramics: challenges and perspectives. J Ceram Soc Jpn. 2001;109:S49–57.

    Article  Google Scholar 

  662. Seeley Z, Bandyopadhyay A, Bose S. Tricalcium phosphate based resorbable ceramics: influence of NaF and CaO addition. Mater Sci Eng C. 2008;28:11–7.

    Article  Google Scholar 

  663. Descamps M, Richart O, Hardouin P, Hornez JC, Leriche A. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural. Ceram Int. 2008;34:1131–7.

    Article  Google Scholar 

  664. Cushnie EK, Khan YM, Laurencin CT. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies. J Biomed Mater Res A. 2008;84A:54–62.

    Article  Google Scholar 

  665. Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010;7:S379–91.

    Article  Google Scholar 

  666. Nagase M, Baker DG, Schumacher HR. Prolonged inflammatory reactions induced by artificial ceramics in the rat pouch model. J Rheumatol. 1988;15:1334–8.

    Google Scholar 

  667. Rooney T, Berman S, Indersano AT. Evaluation of porous block hydroxylapatite for augmentation of alveolar ridges. J Oral Maxillofac Surg. 1988;46:15–8.

    Article  Google Scholar 

  668. Prudhommeaux F, Schiltz C, Lioté F, Hina A, Champy R, Bucki B, Ortiz-Bravo E, Meunier A, Rey C, Bardin T. Variation in the inflammatory properties of basic calcium phosphate crystals according to crystal type. Arthritis Rheum. 1996;39:1319–26.

    Article  Google Scholar 

  669. Ghanaati S, Barbeck M, Orth C, Willershausen I, Thimm BW, Hoffmann C, Rasic A, Sader RA, Unger RE, Peters F, Kirkpatrick CJ. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater. 2010;6:4476–87.

    Article  Google Scholar 

  670. Lin K, Yuan W, Wang L, Lu J, Chen L, Wang Z, Chang J. Evaluation of host inflammatory responses of β-tricalcium phosphate bioceramics caused by calcium pyrophosphate impurity using a subcutaneous model. J Biomed Mater Res B Appl Biomater. 2011;99B:350–8.

    Article  Google Scholar 

  671. Velard F, Braux J, Amedee J, Laquerriere P. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater. 2013;9:4956–63.

    Article  Google Scholar 

  672. Rydén L, Molnar D, Esposito M, Johansson A, Suska F, Palmquist A, Thomsen P. Early inflammatory response in soft tissues induced by thin calcium phosphates. J Biomed Mater Res A. 2013;101A:2712–7.

    Article  Google Scholar 

  673. Chatterjea A, van der Stok J, Danoux CB, Yuan H, Habibovic P, van Blitterswijk CA, Weinans H, de Boer J. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in a critical size cortical bone defects. J Biomed Mater Res A. 2014;102A:1399–407.

    Article  Google Scholar 

  674. Friesenbichler J, Maurer-Ertl W, Sadoghi P, Pirker-Fruehauf U, Bodo K, Leithner A. Adverse reactions of artificial bone graft substitutes: lessons learned from using tricalcium phosphate geneX®. Clin Orthop Relat Res. 2014;472:976–82.

    Article  Google Scholar 

  675. Chang TY, Pan SC, Huang YH, Hsueh YY. Blindness after calcium hydroxylapatite injection at nose. J Plast Reconstr Aesthet Surg. 2014;67:1755–7.

    Article  Google Scholar 

  676. Jacovella PF, Peiretti CB, Cunille D, Salzamendi M, Schechtel SA. Long-lasting results with hydroxylapatite (Radiesse) facial filler. Plast Reconstr Surg. 2006;118:15S–21S.

    Article  Google Scholar 

  677. Ghanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, Sader R, Unger RE, Ziegler G, Kirkpatrick CJ. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomed Mater. 2012;7:015005.

    Article  Google Scholar 

  678. Draenert K, Draenert M, Erler M, Draenert A, Draenert Y. How bone forms in large cancellous defects: critical analysis based on experimental work and literature. Injury. 2011;42(Suppl. 2):S47–55.

    Article  Google Scholar 

  679. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10:S96–S101.

    Article  Google Scholar 

  680. Yuan H, Kurashina K, de Bruijn DJ, Li Y, de Groot K, Zhang X. A preliminary study of osteoinduction of two kinds of calcium phosphate bioceramics. Biomaterials. 1999;20:1799–806.

    Article  Google Scholar 

  681. Yuan HP, de Bruijn JD, Li YB, Feng JQ, Yang ZJ, de Groot K, Zhang XD. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP. J Mater Sci Mater Med. 2001;12:7–13.

    Article  Google Scholar 

  682. Barrere F, van der Valk CM, Dalmeijer RA, Meijer G, van Blitterswijk CA, de Groot K, Layrolle P. Osteogenecity of octacalcium phosphate coatings applied on porous titanium. J Biomed Mater Res A. 2003;66A:779–88.

    Article  Google Scholar 

  683. Habibovic P, van der Valk CM, van Blitterswijk CA, de Groot K, Meijer G. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials. J Mater Sci Mater Med. 2004;15:373–80.

    Article  Google Scholar 

  684. Ripamonti U, Richter PW, Nilen RW, Renton L. The induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non human primate Papio ursinus. J Cell Mol Med. 2008;12:2609–21.

    Article  Google Scholar 

  685. Cheng L, Ye F, Yang R, Lu X, Shi Y, Li L, Fan H, Bu H. Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 2010;6:1569–74.

    Article  Google Scholar 

  686. Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AMC, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A. 2010;107:13614–9.

    Article  Google Scholar 

  687. Yao JF, Li XY, Wang AJ, Liang R, Bao CY, Chen ZQ. Osteoinductive calcium phosphate ceramics for in vivo construction of tissue engineered bone in adipose tissue. J Clin Rehabil Tissue Eng Res. 2011;15:2109–12.

    Google Scholar 

  688. Barradas AM, Yuan H, van der Stok J, le Quang B, Fernandes H, Chaterjea A, Hogenes MC, Shultz K, Donahue LR, van Blitterswijk C, de Boer J. The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice. Biomaterials. 2012;33:5696–705.

    Article  Google Scholar 

  689. Li B, Liao X, Zheng L, Zhu X, Wang Z, Fan H, Zhang X. Effect of nanostructure on osteoinduction of porous biphasic calcium phosphate ceramics. Acta Biomater. 2012;8:3794–804.

    Article  Google Scholar 

  690. Cheng L, Shi Y, Ye F, Bu H. Osteoinduction of calcium phosphate biomaterials in small animals. Mater Sci Eng C. 2013;33:1254–60.

    Article  Google Scholar 

  691. Song G, Habibovic P, Bao C, Hu J, van Blitterswijk CA, Yuan H, Chen W, Xu HHK. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials. 2013;34:2167–76.

    Article  Google Scholar 

  692. He P, Sahoo S, Ng KS, Chen K, Toh SL, Goh JCH. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. J Biomed Mater Res A. 2013;101A:555–66.

    Article  Google Scholar 

  693. Davison NL, Gamblin AL, Layrolle P, Yuan H, de Bruijn JD, Barrère-de Groot F. Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate. Biomaterials. 2014;35:5088–97.

    Article  Google Scholar 

  694. Huang Y, He J, Gan L, Liu X, Wu Y, Wu F, Gu ZW. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study. Biomed Mater. 2014;9:065007.

    Article  Google Scholar 

  695. Lü X, Wang J, Li B, Zhang Z, Zhao L. Gene expression profile study on osteoinductive effect of natural hydroxyapatite. J Biomed Mater Res A. 2014;102A:2833–41.

    Article  Google Scholar 

  696. Wang J, Chen Y, Zhu X, Yuan T, Tan Y, Fan Y, Zhang X. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. J Biomed Mater Res A. 2014;102A:4234–43.

    Google Scholar 

  697. Hongmin L, Wei Z, Xingrong Y, Jing W, Wenxin G, Jihong C, Xin X, Fulin C. Osteoinductive nanohydroxyapatite bone substitute prepared via in situ hydrothermal transformation of cuttlefish bone. J Biomed Mater Res B Appl Biomater. 2015;103B:816–24.

    Article  Google Scholar 

  698. Wang L, Barbieri D, Zhou H, de Bruijn JD, Bao C, Yuan H. Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. J Biomed Mater Res A. 2015;103A:1919–29.

    Article  Google Scholar 

  699. Cheng L, Wang T, Zhu J, Cai P. Osteoinduction of calcium phosphate ceramics in four kinds of animals for 1 year: dog, rabbit, rat, and mouse. Transplant Proc. 2016;48:1309–14.

    Article  Google Scholar 

  700. Habibovic P, Li J, van der Valk CM, Meijer G, Layrolle P, van Blitterswijk CA, de Groot K. Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials. 2005;26:23–36.

    Article  Google Scholar 

  701. Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26:3565–75.

    Article  Google Scholar 

  702. Habibovic P, Sees TM, van den Doel MA, van Blitterswijk CA, de Groot K. Osteoinduction by biomaterials – physicochemical and structural influences. J Biomed Mater Res A. 2006;77A:747–62.

    Article  Google Scholar 

  703. Reddi AH. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells and biomimetic biomaterials. Tissue Eng. 2000;6:351–9.

    Article  Google Scholar 

  704. Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained by conversion of calcium carbonate exoskeletons of coral. J Bone Joint Surg A. 1991;73:692–703.

    Article  Google Scholar 

  705. Kuboki Y, Takita H, Kobayashi D. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res. 1998;39:190–9.

    Article  Google Scholar 

  706. Zhang J, Luo X, Barbieri D, Barradas AMC, de Bruijn JD, van Blitterswijk CA, Yuan H. The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomater. 2014;10:3254–63.

    Article  Google Scholar 

  707. Zhang J, Barbieri D, Ten Hoopen H, de Bruijn JD, van Blitterswijk CA, Yuan H. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. J Biomed Mater Res A. 2015;103A:1188–99.

    Article  Google Scholar 

  708. Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res. 1992;275:280–6.

    Google Scholar 

  709. Boyan BD, Schwartz Z. Are calcium phosphate ceramics ‘smart’ biomaterials? Nat Rev Rheumatol. 2011;7:8–9.

    Article  Google Scholar 

  710. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res Appl Biomater. 2002;63:408–12.

    Article  Google Scholar 

  711. Wang H, Lee JK, Moursi A, Lannutti JJ. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J Biomed Mater Res A. 2003;67A:599–608.

    Article  Google Scholar 

  712. Dorozhkin SV. Inorganic chemistry of the dissolution phenomenon, the dissolution mechanism of calcium apatites at the atomic (ionic) level. Comment Inorg Chem. 1999;20:285–99.

    Article  Google Scholar 

  713. Dorozhkin SV. Dissolution mechanism of calcium apatites in acids: a review of literature. World J Methodol. 2012;2:1–17.

    Article  Google Scholar 

  714. Sakai S, Anada T, Tsuchiya K, Yamazaki H, Margolis HC, Suzuki O. Comparative study on the resorbability and dissolution behavior of octacalcium phosphate, β-tricalcium phosphate, and hydroxyapatite under physiological conditions. Dent Mater J. 2016;35:216–24.

    Article  Google Scholar 

  715. Wenisch S, Stahl JP, Horas U, Heiss C, Kilian O, Trinkaus K, Hild A, Schnettler R. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: fine structural microscopy. J Biomed Mater Res A. 2003;67A:713–8.

    Article  Google Scholar 

  716. Riihonen R, Nielsen S, Väänänen HK, Laitala-Leinonen T, Kwon TH. Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biol. 2010;29:287–94.

    Article  Google Scholar 

  717. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

    Article  Google Scholar 

  718. Matsunaga A, Takami M, Irié T, Mishima K, Inagaki K, Kamijo R. Microscopic study on resorption of β-tricalcium phosphate materials by osteoclasts. Cytotechnology. 2015;67:727–32.

    Article  Google Scholar 

  719. Narducci P, Nicolin V. Differentiation of activated monocytes into osteoclast-like cells on a hydroxyapatite substrate: an in vitro study. Ann Anat. 2009;191:349–55.

    Article  Google Scholar 

  720. Wu VM, Uskoković V. Is there a relationship between solubility and resorbability of different calcium phosphate phases in vitro? Biochim Biophys Acta. 1860;2016:2157–68.

    Google Scholar 

  721. Tamimi F, Torres J, Bassett D, Barralet J, Cabarcos EL. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials. 2010;31:2762–9.

    Article  Google Scholar 

  722. Sheikh Z, Abdallah MN, Hanafi AA, Misbahuddin S, Rashid H, Glogauer M. Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials. 2015;8:7913–25.

    Article  Google Scholar 

  723. Raynaud S, Champion E, Lafon JP, Bernache-Assollant D. Calcium phosphate apatites with variable Ca/P atomic ratio. III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials. 2002;23:1081–9.

    Article  Google Scholar 

  724. Barrère F, van der Valk CM, Dalmeijer RAJ, van Blitterswijk CA, de Groot K, Layrolle P. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J Biomed Mater Res A. 2003;64A:378–87.

    Article  Google Scholar 

  725. Souto RM, Laz MM, Reis RL. Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials. 2003;24:4213–21.

    Article  Google Scholar 

  726. Dellinger JG, Wojtowicz AM, Jamison RD. Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds. J Biomed Mater Res A. 2006;77A:563–71.

    Article  Google Scholar 

  727. Okuda T, Ioku K, Yonezawa I, Minagi H, Kawachi G, Gonda Y, Murayama H, Shibata Y, Minami S, Kamihara S, Kurosawa H, Ikeda T. The effect of the microstructure of β-tricalcium phosphate on the metabolism of subsequently formed bone tissue. Biomaterials. 2007;28:2612–21.

    Article  Google Scholar 

  728. Orly I, Gregoire M, Menanteau J, Heughebaert M, Kerebel B. Chemical changes in hydroxyapatite biomaterial under in vivo and in vitro biological conditions. Calcif Tissue Int. 1989;45:20–6.

    Article  Google Scholar 

  729. Sun L, Berndt CC, Gross KA, Kucuk A. Review: material fundamentals and clinical performance of plasma sprayed hydroxyapatite coatings. J Biomed Mater Res Appl Biomater. 2001;58:570–92.

    Article  Google Scholar 

  730. Bertazzo S, Zambuzzi WF, Campos DDP, Ogeda TL, Ferreira CV, Bertran CA. Hydroxyapatite surface solubility and effect on cell adhesion. Colloid Surf B. 2010;78:177–84.

    Article  Google Scholar 

  731. Schwartz Z, Boyan BD. Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem. 1994;56:340–7.

    Article  Google Scholar 

  732. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:2311–21.

    Article  Google Scholar 

  733. Xin R, Leng Y, Chen J, Zhang Q. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials. 2005;26:6477–86.

    Article  Google Scholar 

  734. Girija EK, Parthiban SP, Suganthi RV, Elayaraja K, Joshy MIA, Vani R, Kularia P, Asokan K, Kanjilal D, Yokogawa Y, Kalkura SN. High energy irradiation – a tool for enhancing the bioactivity of hydroxyapatite. J Ceram Soc Jpn. 2008;116:320–4.

    Article  Google Scholar 

  735. Okada M, Furukawa K, Serizawa T, Yanagisawa Y, Tanaka H, Kawai T, Furuzono T. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates. Langmuir. 2009;25:6300–6.

    Article  Google Scholar 

  736. Callis PD, Donaldson K, McCord JF. Early cellular responses to calcium phosphate ceramics. Clin Mater. 1988;3:183–90.

    Article  Google Scholar 

  737. Okumura M, Ohgushi H, Tamai S. Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials. 1990;12:28–37.

    Google Scholar 

  738. Holtgrave EA, Donath K. Response of odontoblast-like cells to hydroxyapatite ceramic granules. Biomaterials. 1995;16:155–9.

    Article  Google Scholar 

  739. Doi Y, Iwanaga H, Shibutani T, Moriwaki Y, Iwayama Y. Osteoclastic responses to various calcium phosphates in cell cultures. J Biomed Mater Res. 1999;47:424–33.

    Article  Google Scholar 

  740. Guo X, Gough JE, Xiao P, Liu J, Shen Z. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J Biomed Mater Res A. 2007;82A:1022–32.

    Article  Google Scholar 

  741. Wang Y, Zhang S, Zeng X, Ma LL, Weng W, Yan W, Qian M. Osteoblastic cell response on fluoridated hydroxyapatite coatings. Acta Biomater. 2007;3:191–7.

    Article  Google Scholar 

  742. Bae WJ, Chang SW, Lee SI, Kum KY, Bae KS, Kim EC. Human periodontal ligament cell response to a newly developed calcium phosphate-based root canal sealer. J Endod. 2010;36:1658–63.

    Article  Google Scholar 

  743. Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, Cao L, Fan Q, Tang T. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials. 2010;31:5782–8.

    Article  Google Scholar 

  744. Zhao X, Heng BC, Xiong S, Guo J, Tan TT-Y, Boey FYC, Ng KW, Loo JSC. In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas. Nanotoxicology. 2011;5:182–94.

    Article  Google Scholar 

  745. Detsch R, Schaefer S, Deisinger U, Ziegler G, Seitz H, Leukers B. In vitro-osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl. 2011;26:359–80.

    Article  Google Scholar 

  746. Kanayama K, Sriarj W, Shimokawa H, Ohya K, Doi Y, Shibutani T. Osteoclast and osteoblast activities on carbonate apatite plates in cell cultures. J Biomater Appl. 2011;26:435–49.

    Article  Google Scholar 

  747. Liu X, Zhao M, Lu J, Ma J, Wei J, Wei S. Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int J Nanomedicine. 2012;7:1239–50.

    Article  Google Scholar 

  748. Marchi J, Ribeiro C, de Almeida Bressiant AH, Marquesd MM. Cell response of calcium phosphate based ceramics, a bone substitute material. Mater Res. 2013;16:703–12.

    Article  Google Scholar 

  749. Perez RA, Kim TH, Kim M, Jang JH, Ginebra MP, Kim HW. Calcium phosphate cements loaded with basic fibroblast growth factor: delivery and in vitro cell response. J Biomed Mater Res A. 2013;101A:923–31.

    Article  Google Scholar 

  750. Yin P, Feng FF, Lei T, Zhong XH, Jian XC. Osteoblastic cell response on biphasic fluorhydroxyapatite/strontium-substituted hydroxyapatite coatings. J Biomed Mater Res A. 2014;102A:621–7.

    Article  Google Scholar 

  751. Lobo SE, Glickman R, da Silva WN, Arinzeh TL, Kerkis I. Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tissue Res. 2015;361:477–95.

    Article  Google Scholar 

  752. Suzuki T, Ohashi R, Yokogawa Y, Nishizawa K, Nagata F, Kawamoto Y, Kameyama T, Toriyama M. Initial anchoring and proliferation of fibroblast L-929 cells on unstable surface of calcium phosphate ceramics. J Biosci Bioeng. 1999;87:320–7.

    Article  Google Scholar 

  753. Arinzeh TL, Tran T, McAlary J, Daculsi G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials. 2005;26:3631–8.

    Article  Google Scholar 

  754. Oh S, Oh N, Appleford M, Ong JL. Bioceramics for tissue engineering applications – a review. Am J Biochem Biotechnol. 2006;2:49–56.

    Article  Google Scholar 

  755. Appleford M, Oh S, Cole JA, Carnes DL, Lee M, Bumgardner JD, Haggard WO, Ong JL. Effects of trabecular calcium phosphate scaffolds on stress signaling in osteoblast precursor cells. Biomaterials. 2007;28:2747–53.

    Article  Google Scholar 

  756. Gamie Z, Tran GT, Vyzas G, Korres N, Heliotis M, Mantalaris A, Tsiridis E. Stem cells combined with bone graft substitutes in skeletal tissue engineering. Expert Opin Biol Ther. 2012;12:713–29.

    Article  Google Scholar 

  757. Manfrini M, di Bona C, Canella A, Lucarelli E, Pellati A, d’Agostino A, Barbanti-Bròdano G, Tognon M. Mesenchymal stem cells from patients to assay bone graft substitutes. J Cell Physiol. 2013;228:1229–37.

    Article  Google Scholar 

  758. Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, Kirkpatrick CJ. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary like structures on three-dimensional porous biomaterials. Biomaterials. 2007;28:3965–76.

    Article  Google Scholar 

  759. Nazir NM, Dasmawati M, Azman SM, Omar NS, Othman R. Biocompatibility of in house β-tricalcium phosphate ceramics with normal human osteoblast cell. J Eng Sci Technol. 2012;7:169–76.

    Google Scholar 

  760. Tan F, O’Neill F, Naciri M, Dowling D, Al-Rubeai M. Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating. Acta Biomater. 2012;8:1627–38.

    Article  Google Scholar 

  761. Li B, Liao X, Zheng L, He H, Wang H, Fan H, Zhang X. Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics. Mater Sci Eng C. 2012;32:929–36.

    Article  Google Scholar 

  762. Teixeira S, Fernandes MH, Ferraz MP, Monteiro FJ. Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. J Biomed Mater Res A. 2010;95A:1–8.

    Article  Google Scholar 

  763. Yan-Zhong Z, Yan-Yan H, Jun Z, Shai-Hong Z, Zhi-You L, Ke-Chao Z. Characteristics of functionalized nano-hydroxyapatite and internalization by human epithelial cell. Nanoscale Res Lett. 2011;6:600. (8 pages)

    Article  Google Scholar 

  764. Borcard F, Staedler D, Comas H, Juillerat FK, Sturzenegger PN, Heuberger R, Gonzenbach UT, Juillerat-Jeanneret L, Gerber-Lemaire S. Chemical functionalization of bioceramics to enhance endothelial cells adhesion for tissue engineering. J Med Chem. 2012;27:7988–97.

    Article  Google Scholar 

  765. Treccani L, Klein TY, Meder F, Pardun K, Rezwan K. Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater. 2013;9:7115–50.

    Article  Google Scholar 

  766. Russo L, Taraballi F, Lupo C, Poveda A, Jiménez-Barbero J, Sandri M, Tampieri A, Nicotra F, Cipolla L. Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation. Interface Focus. 2014;4:20130040.

    Article  Google Scholar 

  767. Zhuang Z, Yoshimura H, Aizawa M. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel. Mater Sci Eng C. 2013;33:2534–40.

    Article  Google Scholar 

  768. Zhuang Z, Fujimi TJ, Nakamura M, Konishi T, Yoshimura H, Aizawa M. Development of a, b-plane-oriented hydroxyapatite ceramics as models for living bones and their cell adhesion behavior. Acta Biomater. 2013;9:6732–40.

    Article  Google Scholar 

  769. Aizawa M, Matsuura T, Zhuang Z. Syntheses of single-crystal apatite particles with preferred orientation to the a- and c-axes as models of hard tissue and their applications. Biol Pharm Bull. 2013;36:1654–61.

    Article  Google Scholar 

  770. Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014;10:4071–102.

    Article  Google Scholar 

  771. Chen W, Long T, Guo YJ, Zhu ZA, Guo YP. Hydrothermal synthesis of hydroxyapatite coatings with oriented nanorod arrays. RSC Adv. 2014;4:185–91.

    Article  Google Scholar 

  772. Guan JJ, Tian B, Tang S, Ke QF, Zhang CQ, Zhu ZA, Guo YP. Hydroxyapatite coatings with oriented nanoplate arrays: synthesis, formation mechanism and cytocompatibility. J Mater Chem B. 2015;3:1655–66.

    Article  Google Scholar 

  773. Freidlin LK, Sharf VZ. Two paths for the dehydration of 1,4-butandiol to divinyl with a tricalcium phosphate catalyst. Bull Acad Sci USSR Div Chem Sci. 1960;9:1577–9.

    Article  Google Scholar 

  774. Bett JAS, Christner LG, Hall WK. Studies of the hydrogen held by solids. XII. Hydroxyapatite catalysts. J Am Chem Soc. 1967;89:5535–41.

    Article  Google Scholar 

  775. Monma H. Catalytic behavior of calcium phosphates for decompositions of 2-propanol and ethanol. J Catal. 1982;75:200–3.

    Article  Google Scholar 

  776. Tsuchida T, Yoshioka T, Sakuma S, Takeguchi T, Ueda W. Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Ind Eng Chem Res. 2008;47:1443–52.

    Article  Google Scholar 

  777. Tsuchida T, Kubo J, Yoshioka T, Sakuma S, Takeguchi T, Ueda W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J Catal. 2008;259:183–9.

    Article  Google Scholar 

  778. Xu J, White T, Li P, He C, Han YF. Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature. J Am Chem Soc. 2010;132:13172–3.

    Article  Google Scholar 

  779. Hatano M, Moriyama K, Maki T, Ishihara K. Which is the actual catalyst: chiral phosphoric acid or chiral calcium phosphate? Angew Chem Int Ed Engl. 2010;49:3823–6.

    Article  Google Scholar 

  780. Zhang D, Zhao H, Zhao X, Liu Y, Chen H, Li X. Application of hydroxyapatite as catalyst and catalyst carrier. Prog Chem. 2011;23:687–94.

    Google Scholar 

  781. Gruselle M, Kanger T, Thouvenot R, Flambard A, Kriis K, Mikli V, Traksmaa R, Maaten B, Tõnsuaadu K. Calcium hydroxyapatites as efficient catalysts for the Michael C-C bond formation. ACS Catal. 2011;1:1729–33.

    Article  Google Scholar 

  782. Stošić D, Bennici S, Sirotin S, Calais C, Couturier JL, Dubois JL, Travert A, Auroux A. Glycerol dehydration over calcium phosphate catalysts: effect of acidic-basic features on catalytic performance. Appl Catal A. 2012;447–448:124–34.

    Article  Google Scholar 

  783. Ghantani VC, Lomate ST, Dongare MK, Umbarkar SB. Catalytic dehydration of lactic acid to acrylic acid using calcium hydroxyapatite catalysts. Green Chem. 2013;15:1211–7.

    Article  Google Scholar 

  784. Chen G, Shan R, Shi J, Liu C, Yan B. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy Convers Manag. 2015;98:463–9.

    Article  Google Scholar 

  785. Gruselle M. Apatites: a new family of catalysts in organic synthesis. J Organomet Chem. 2015;793:93–101.

    Article  Google Scholar 

  786. Urist MR, Huo YK, Brownell AG, Hohl WM, Buyske J, Lietze A, Tempst P, Hunkapiller M, de Lange RJ. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci U S A. 1984;81:371–5.

    Article  Google Scholar 

  787. Kawasaki T. Hydroxyapatite as a liquid chromatographic packing. J Chromatogr. 1991;544:147–84.

    Article  Google Scholar 

  788. Kuiper M, Sanches RM, Walford JA, Slater NKH. Purification of a functional gene therapy vector derived from moloney murine leukaemia virus using membrane filtration and ceramic hydroxyapatite chromatography. Biotechnol Bioeng. 2002;80:445–53.

    Article  Google Scholar 

  789. Jungbauer A, Hahn R, Deinhofer K, Luo P. Performance and characterization of a nanophased porous hydroxyapatite for protein chromatography. Biotechnol Bioeng. 2004;87:364–75.

    Article  Google Scholar 

  790. Wensel DL, Kelley BD, Coffman JL. High-throughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite. Biotechnol Bioeng. 2008;100:839–54.

    Article  Google Scholar 

  791. Hilbrig F, Freitag R. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography. Biotechnol J. 2012;7:90–102.

    Article  Google Scholar 

  792. Cummings LJ, Frost RG, Snyder MA. Monoclonal antibody purification by ceramic hydroxyapatite chromatography. Methods Mol Biol. 2014;1131:241–51.

    Article  Google Scholar 

  793. Nagai M, Nishino T, Saeki T. A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics. Sensors Actuators. 1988;15:145–51.

    Article  Google Scholar 

  794. Petrucelli GC, Kawachi EY, Kubota LT, Bertran CA. Hydroxyapatite-based electrode: a new sensor for phosphate. Anal Commun. 1996;33:227–9.

    Article  Google Scholar 

  795. Tagaya M, Ikoma T, Hanagata N, Chakarov D, Kasemo B, Tanaka J. Reusable hydroxyapatite nanocrystal sensors for protein adsorption. Sci Technol Adv Mater. 2010;11:045002.

    Article  Google Scholar 

  796. Khairnar RS, Mene RU, Munde SG, Mahabole MP. Nano-hydroxyapatite thick film gas sensors. AIP Conf Proc. 2011;1415:189–92.

    Article  Google Scholar 

  797. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

    Article  Google Scholar 

  798. Jones JR, Hench LL. Regeneration of trabecular bone using porous ceramics. Curr Opin Solid State Mater Sci. 2003;7:301–7.

    Article  Google Scholar 

  799. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–53.

    Article  Google Scholar 

  800. Griffith LG, Naughton G. Tissue engineering – current challenges and expanding opportunities. Science. 2002;295:1009–14.

    Article  Google Scholar 

  801. Goldberg VM, Caplan AI. Orthopedic tissue engineering basic science and practice. New York: Marcel Dekker; 2004. 338 pp

    Google Scholar 

  802. van Blitterswijk CA, Thomsen P, Hubbell J, Cancedda R, de Bruijn JD, Lindahl A, Sohier J, Williams DF, editors. Tissue engineering. Burlington: Academic; 2008. 760 pp

    Google Scholar 

  803. Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3:589–601.

    Article  Google Scholar 

  804. Cima LG, Langer R. Engineering human tissue. Chem Eng Prog. 1993;89:46–54.

    Google Scholar 

  805. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  Google Scholar 

  806. El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Dev. 2005;2:87–101.

    Article  Google Scholar 

  807. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10:7–19.

    Article  Google Scholar 

  808. Scott TG, Blackburn G, Ashley M, Bayer IS, Ghosh A, Biris AS, Biswas A. Advances in bionanomaterials for bone tissue engineering. J Nanosci Nanotechnol. 2013;13:1–22.

    Article  Google Scholar 

  809. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.

    Article  Google Scholar 

  810. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98.

    Article  Google Scholar 

  811. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–89.

    Article  Google Scholar 

  812. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  Google Scholar 

  813. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7:30–40.

    Article  Google Scholar 

  814. Yasuhiko T. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6:S311–24.

    Article  Google Scholar 

  815. Ma PX, Elisseeff J, editors. Scaffolding in tissue engineering. Boca Raton: CRC Press; 2006. 638 pp

    Google Scholar 

  816. Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. Eur J Trauma. 2006;32:114–24.

    Article  Google Scholar 

  817. Williams DF. The biomaterials conundrum in tissue engineering. Tissue Eng A. 2014;20:1129–31.

    Article  Google Scholar 

  818. Freed LE, Guilak F, Guo XE, Gray ML, Tranquillo R, Holmes JW, Radisic M, Sefton MV, Kaplan D, Vunjak-Novakovic G. Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng. 2006;12:3285–305.

    Article  Google Scholar 

  819. Gandaglia A, Bagno A, Naso F, Spina M, Gerosa G. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur J Cardiothorac Surg. 2011;39:523–31.

    Article  Google Scholar 

  820. Hui JHP, Buhary KS, Chowdhary A. Implantation of orthobiologic, biodegradable scaffolds in osteochondral repair. Orthop Clin N Am. 2012;43:255–61.

    Article  Google Scholar 

  821. Vanderleyden E, Mullens S, Luyten J, Dubruel P. Implantable (bio)polymer coated titanium scaffolds: a review. Curr Pharm Des. 2012;18:2576–90.

    Article  Google Scholar 

  822. Service RF. Tissue engineers build new bone. Science. 2000;289:1498–500.

    Article  Google Scholar 

  823. Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001;22:87–96.

    Article  Google Scholar 

  824. Fini M, Giardino R, Borsari V, Torricelli P, Rimondini L, Giavaresi G, Aldini NN. In vitro behaviour of osteoblasts cultured on orthopaedic biomaterials with different surface roughness, uncoated and fluorohydroxyapatite-coated, relative to the in vivo osteointegration rate. Int J Artif Organs. 2003;26:520–8.

    Google Scholar 

  825. Sato M, Webster TJ. Designing orthopedic implant surfaces: harmonization of nanotopographical and chemical aspects. Nanomedicine. 2006;1:351–4.

    Article  Google Scholar 

  826. Li X, van Blitterswijk CA, Feng Q, Cui F, Watari F. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials. 2008;29:3306–16.

    Article  Google Scholar 

  827. Kumar G, Waters MS, Farooque TM, Young MF, Simon CG. Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials. 2012;33:4022–30.

    Article  Google Scholar 

  828. Holthaus MG, Treccani L, Rezwan K. Osteoblast viability on hydroxyapatite with well-adjusted submicron and micron surface roughness as monitored by the proliferation reagent WST2-1. J Biomater Appl. 2013;27:791–800.

    Article  Google Scholar 

  829. Zhou Y, Chen F, Ho ST, Woodruff MA, Lim TM, Hutmacher DW. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials. 2007;28:814–24.

    Article  Google Scholar 

  830. Vitale-Brovarone C, Baino F, Verné E. High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci Mater Med. 2009;20:643–53.

    Article  Google Scholar 

  831. Ebaretonbofa E, Evans JR. High porosity hydroxyapatite foam scaffolds for bone substitute. J Porous Mater. 2002;9:257–63.

    Article  Google Scholar 

  832. Specchia N, Pagnotta A, Cappella M, Tampieri A, Greco F. Effect of hydroxyapatite porosity on growth and differentiation of human osteoblast-like cells. J Mater Sci. 2002;37:577–84.

    Article  Google Scholar 

  833. Hing KA. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol. 2005;2:184–99.

    Article  Google Scholar 

  834. Malmström J, Adolfsson E, Arvidsson A, Thomsen P. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity. Clin Implant Dent Relat Res. 2007;9:79–88.

    Article  Google Scholar 

  835. Peng Q, Jiang F, Huang P, Zhou S, Weng J, Bao C, Zhang C, Yu H. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering in vivo. I. Preparation and characterization of scaffold. J Biomed Mater Res A. 2010;93A:920–9.

    Google Scholar 

  836. Lew KS, Othman R, Ishikawa K, Yeoh FY. Macroporous bioceramics: a remarkable material for bone regeneration. J Biomater Appl. 2012;27:345–58.

    Article  Google Scholar 

  837. Ren LM, Todo M, Arahira T, Yoshikawa H, Myoui A. A comparative biomechanical study of bone ingrowth in two porous hydroxyapatite bioceramics. Appl Surf Sci. 2012;262:81–8.

    Article  Google Scholar 

  838. Guda T, Walker JA, Singleton B, Hernandez J, Oh DS, Appleford MR, Ong JL, Wenke JC. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J Biomater Appl. 2014;28:1016–27.

    Article  Google Scholar 

  839. Shao R, Quan R, Zhang L, Wei X, Yang D, Xie S. Porous hydroxyapatite bioceramics in bone tissue engineering: current uses and perspectives. J Ceram Soc Jpn. 2015;123:17–20.

    Article  Google Scholar 

  840. Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11:18–25.

    Article  Google Scholar 

  841. Artzi Z, Weinreb M, Givol N, Rohrer MD, Nemcovsky CE, Prasad HS, Tal H. Biomaterial resorbability and healing site morphology of inorganic bovine bone and beta tricalcium phosphate in the canine: a 24-month longitudinal histologic study and morphometric analysis. Int J Oral Maxillofac Implants. 2004;19:357–68.

    Google Scholar 

  842. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–59.

    Article  Google Scholar 

  843. Ajaal TT, Smith RW. Employing the Taguchi method in optimizing the scaffold production process for artificial bone grafts. J Mater Process Technol. 2009;209:1521–32.

    Article  Google Scholar 

  844. Daculsi G. Smart scaffolds: the future of bioceramic. J Mater Sci Mater Med. 2015;26:154.

    Article  Google Scholar 

  845. Daculsi G, Miramond T, Borget P, Baroth S. Smart calcium phosphate bioceramic scaffold for bone tissue engineering. Key Eng Mater. 2013;529–530:19–23.

    Google Scholar 

  846. Bohner M, Loosli Y, Baroud G, Lacroix D. Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 2011;7:478–84.

    Article  Google Scholar 

  847. Peppas NA, Langer R. New challenges in biomaterials. Science. 1994;263:1715–20.

    Article  Google Scholar 

  848. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.

    Article  Google Scholar 

  849. Barrère F, Mahmood TA, de Groot K, van Blitterswijk CA. Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions. Mater Sci Eng R. 2008;59:38–71.

    Article  Google Scholar 

  850. Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2007;28:354–69.

    Article  Google Scholar 

  851. Wang C, Duan Y, Markovic B, Barbara J, Howlett CR, Zhang X, Zreiqat H. Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials. 2004;25:2949–56.

    Article  Google Scholar 

  852. Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9:8037–45.

    Article  Google Scholar 

  853. Matsumoto T, Okazaki M, Nakahira A, Sasaki J, Egusa H, Sohmura T. Modification of apatite materials for bone tissue engineering and drug delivery carriers. Curr Med Chem. 2007;14:2726–33.

    Article  Google Scholar 

  854. Chai YC, Carlier A, Bolander J, Roberts SJ, Geris L, Schrooten J, van Oosterwyck H, Luyten FP. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 2012;8:3876–87.

    Article  Google Scholar 

  855. Denry I, Kuhn LT. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater. 2016;32:43–53.

    Article  Google Scholar 

  856. Traykova T, Aparicio C, Ginebra MP, Planell JA. Bioceramics as nanomaterials. Nanomedicine. 2006;1:91–106.

    Article  Google Scholar 

  857. Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C. 2007;27:441–9.

    Article  Google Scholar 

  858. Dorozhkin SV. Nanodimensional and nanocrystalline calcium orthophosphates. Int J Chem Mater Sci. 2013;1:105–74.

    Google Scholar 

  859. Šupová M. Isolation and preparation of nanoscale bioapatites from natural sources: a review. J Nanosci Nanotechnol. 2014;14:546–63.

    Article  Google Scholar 

  860. Zhao J, Liu Y, Sun WB, Zhang H. Amorphous calcium phosphate and its application in dentistry. Chem Cent J. 2011;5:40. (7 pages)

    Article  Google Scholar 

  861. Dorozhkin SV. Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int J Mater Chem. 2012;2:19–46.

    Article  Google Scholar 

  862. Liu B, Lun DX. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg. 2012;4:139–44.

    Article  Google Scholar 

  863. Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering – a review. J Biomed Nanotechnol. 2014;10:3124–40.

    Article  Google Scholar 

  864. Wu Y, Hench LL, Du J, Choy KL, Guo J. Preparation of hydroxyapatite fibers by electrospinning technique. J Am Ceram Soc. 2004;87:1988–91.

    Article  Google Scholar 

  865. Ramanan SR, Venkatesh R. A study of hydroxyapatite fibers prepared via sol-gel route. Mater Lett. 2004;58:3320–3.

    Article  Google Scholar 

  866. Aizawa M, Porter AE, Best SM, Bonfield W. Ultrastructural observation of single-crystal apatite fibres. Biomaterials. 2005;26:3427–33.

    Article  Google Scholar 

  867. Park YM, Ryu SC, Yoon SY, Stevens R, Park HC. Preparation of whisker-shaped hydroxyapatite/β-tricalcium phosphate composite. Mater Chem Phys. 2008;109:440–7.

    Article  Google Scholar 

  868. Aizawa M, Ueno H, Itatani K, Okada I. Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations. J Eur Ceram Soc. 2006;26:501–7.

    Article  Google Scholar 

  869. Seo DS, Lee JK. Synthesis of hydroxyapatite whiskers through dissolution-reprecipitation process using EDTA. J Cryst Growth. 2008;310:2162–7.

    Article  Google Scholar 

  870. Tas AC. Formation of calcium phosphate whiskers in hydrogen peroxide (H2O2) solutions at 90°C. J Am Ceram Soc. 2007;90:2358–62.

    Article  Google Scholar 

  871. Neira IS, Guitián F, Taniguchi T, Watanabe T, Yoshimura M. Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology. J Mater Sci. 2008;43:2171–8.

    Article  Google Scholar 

  872. Yang HY, Yang SF, Chi XP, Evans JRG, Thompson I, Cook RJ, Robinson P. Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds. J Eur Ceram Soc. 2008;28:159–67.

    Article  Google Scholar 

  873. Junginger M, Kübel C, Schacher FH, Müller AHE, Taubert A. Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers. RSC Adv. 2013;3:11301–8.

    Article  Google Scholar 

  874. Cui YS, Yan TT, Wu XP, Chen QH. Preparation and characterization of hydroxyapatite whiskers. Appl Mech Mater. 2013;389:21–4.

    Article  Google Scholar 

  875. Lee JH, Kim YJ. Hydroxyapatite nanofibers fabricated through electrospinning and sol-gel process. Ceram Int. 2014;40:3361–9.

    Article  Google Scholar 

  876. Zhang H, Zhu Q. Synthesis of nanospherical and ultralong fibrous hydroxyapatite and reinforcement of biodegradable chitosan/hydroxyapatite composite. Mod Phys Lett B. 2009;23:3967–76.

    Article  Google Scholar 

  877. Wijesinghe WPSL, Mantilaka MMMGPG, Premalal EVA, Herath HMTU, Mahalingam S, Edirisinghe M, Rajapakse RPVJ, Rajapakse RMG. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. Mater Sci Eng C. 2014;42:83–90.

    Article  Google Scholar 

  878. Ribeiro CC, Barrias CC, Barbosa MA. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. J Mater Sci Mater Med. 2006;17:455–63.

    Article  Google Scholar 

  879. Kimura I, Honma T, Riman RE. Preparation of hydroxyapatite microspheres by interfacial reaction in a multiple emulsion. J Ceram Soc Jpn. 2007;115:888–93.

    Article  Google Scholar 

  880. Zhou WY, Wang M, Cheung WL, Guo BC, Jia DM. Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J Mater Sci Mater Med. 2008;19:103–10.

    Article  Google Scholar 

  881. Lim JH, Park JH, Park EK, Kim HJ, Park IK, Shin HY, Shin HI. Fully interconnected globular porous biphasic calcium phosphate ceramic scaffold facilitates osteogenic repair. Key Eng Mater. 2008;361–363:119–22.

    Article  Google Scholar 

  882. Kawai T, Sekikawa H, Unuma H. Preparation of hollow hydroxyapatite microspheres utilizing poly(divinylbenzene) as a template. J Ceram Soc Jpn. 2009;117:340–3.

    Article  Google Scholar 

  883. Descamps M, Hornez JC, Leriche A. Manufacture of hydroxyapatite beads for medical applications. J Eur Ceram Soc. 2009;29:369–75.

    Article  Google Scholar 

  884. Cho JS, Jung DS, Han JM, Kang YC. Spherical shape hydroxyapatite powders prepared by flame spray pyrolysis. J Ceram Process Res. 2008;9:348–52.

    Google Scholar 

  885. Yao A, Ai F, Liu X, Wang D, Huang W, Xu W. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature. Mater Res Bull. 2010;45:25–8.

    Article  Google Scholar 

  886. Cho JS, Ko YN, Koo HY, Kang YC. Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis. J Mater Sci Mater Med. 2010;21:1143–9.

    Article  Google Scholar 

  887. Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater. 2010;6:2212–8.

    Article  Google Scholar 

  888. He W, Tao J, Pan H, Xu R, Tang R. A size-controlled synthesis of hollow apatite nanospheres at water-oil interfaces. Chem Lett. 2010;39:674–5.

    Article  Google Scholar 

  889. Itatani K, Tsugawa T, Umeda T, Musha Y, Davies IJ, Koda S. Preparation of submicrometer-sized porous spherical hydroxyapatite agglomerates by ultrasonic spray pyrolysis technique. J Ceram Soc Jpn. 2010;118:462–6.

    Article  Google Scholar 

  890. Xiao W, Fu H, Rahaman MN, Liu Y, Bal BS. Hollow hydroxyapatite microspheres: a novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration. Acta Biomater. 2013;9:8374–83.

    Article  Google Scholar 

  891. Bohner M, Tadier S, van Garderen N, de Gasparo A, Döbelin N, Baroud G. Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. Biomaterials. 2013;3:e25103.

    Google Scholar 

  892. Rahaman MN, Fu H, Xiao W, Liu Y. Bioactive ceramic implants composed of hollow hydroxyapatite microspheres for bone regeneration. Ceram Eng Sci Proc. 2014;34:67–76.

    Google Scholar 

  893. Ito N, Kamitakahara M, Ioku K. Preparation and evaluation of spherical porous granules of octacalcium phosphate/hydroxyapatite as drug carriers in bone cancer treatment. Mater Lett. 2014;120:94–6.

    Article  Google Scholar 

  894. Li Z, Wen T, Su Y, Wei X, He C, Wang D. Hollow hydroxyapatite spheres fabrication with three-dimensional hydrogel template. Cryst Eng Commun. 2014;16:4202–9.

    Article  Google Scholar 

  895. Feng J, Chong M, Chan J, Zhang ZY, Teoh SH, Thian ES. Fabrication, characterization and in-vitro evaluation of apatite-based microbeads for bone implant science. Ceram Trans. 2014;247:179–90.

    Google Scholar 

  896. Kovach I, Kosmella S, Prietzel C, Bagdahn C, Koetz J. Nano-porous calcium phosphate balls. Colloid Surf B. 2015;132:246–52.

    Article  Google Scholar 

  897. Kamitakahara M, Murakami S, Takahashi H, Watanabe N, Ioku K. Formation of hydroxyapatite microtubes assisted with anatase under hydrothermal conditions. Chem Lett. 2010;39:854–5.

    Article  Google Scholar 

  898. Chandanshive B, Dyondi D, Ajgaonkar VR, Banerjee R, Khushalani D. Biocompatible calcium phosphate based tubes. J Mater Chem. 2010;20:6923–8.

    Article  Google Scholar 

  899. Kamitakahara M, Takahashi H, Ioku K. Tubular hydroxyapatite formation through a hydrothermal process from α-tricalcium phosphate with anatase. J Mater Sci. 2012;47:4194–9.

    Article  Google Scholar 

  900. Ustundag CB, Kaya F, Kamitakahara M, Kaya C, Ioku K. Production of tubular porous hydroxyapatite using electrophoretic deposition. J Ceram Soc Jpn. 2012;120:569–73.

    Article  Google Scholar 

  901. Li C, Ge X, Li G, Lu H, Ding R. In situ hydrothermal crystallization of hexagonal hydroxyapatite tubes from yttrium ion-doped hydroxyapatite by the Kirkendall effect. Mater Sci Eng C. 2014;45:191–5.

    Article  Google Scholar 

  902. Nonoyama T, Kinoshita T, Higuchi M, Nagata K, Tanaka M, Kamada M, Sato K, Kato K. Arrangement techniques of proteins and cells using amorphous calcium phosphate nanofiber scaffolds. Appl Surf Sci. 2012;262:8–12.

    Article  Google Scholar 

  903. Sohier J, Daculsi G, Sourice S, de Groot K, Layrolle P. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. J Biomed Mater Res A. 2010;92A:1105–14.

    Google Scholar 

  904. Stähli C, Bohner M, Bashoor-Zadeh M, Doebelin N, Baroud G. Aqueous impregnation of porous β-tricalcium phosphate scaffolds. Acta Biomater. 2010;6:2760–72.

    Article  Google Scholar 

  905. Lin K, Chen L, Qu H, Lu J, Chang J. Improvement of mechanical properties of macroporous β-tricalcium phosphate bioceramic scaffolds with uniform and interconnected pore structures. Ceram Int. 2011;37:2397–403.

    Article  Google Scholar 

  906. Wójtowicz J, Leszczyńska J, Chróścicka A, Ślósarczyk A, Paszkiewicz Z, Zima A, Rozniatowski K, Jeleń P, Lewandowska-Szumieł M. Comparative in vitro study of calcium phosphate ceramics for their potency as scaffolds for tissue engineering. Biomed Mater Eng. 2014;24:1609–23.

    Google Scholar 

  907. Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A. 2007;83A:747–58.

    Article  Google Scholar 

  908. Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs. 2005;8:131–6.

    Article  Google Scholar 

  909. Min SH, Jin HH, Park HY, Park IM, Park HC, Yoon SY. Preparation of porous hydroxyapatite scaffolds for bone tissue engineering. Mater Sci Forum. 2006;510–511:754–7.

    Article  Google Scholar 

  910. Deville S, Saiz E, Nalla RK, Tomsia AP. Strong biomimetic hydroxyapatite scaffolds. Adv Sci Technol. 2006;49:148–52.

    Article  Google Scholar 

  911. Buckley CT, O’Kelly KU. Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations. J Biomed Mater Res B Appl Biomater. 2010;93B:459–67.

    Article  Google Scholar 

  912. Ramay HRR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004;25:5171–80.

    Article  Google Scholar 

  913. Chen G, Li W, Zhao B, Sun K. A novel biphasic bone scaffold: β-calcium phosphate and amorphous calcium polyphosphate. J Am Ceram Soc. 2009;92:945–8.

    Article  Google Scholar 

  914. Guo D, Xu K, Han Y. The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties. J Biomed Mater Res A. 2009;88A:43–52.

    Article  Google Scholar 

  915. Sarin P, Lee SJ, Apostolov ZD, Kriven WM. Porous biphasic calcium phosphate scaffolds from cuttlefish bone. J Am Ceram Soc. 2011;94:2362–70.

    Article  Google Scholar 

  916. Kim DH, Kim KL, Chun HH, Kim TW, Park HC, Yoon SY. In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceram Int. 2014;40:8293–300.

    Article  Google Scholar 

  917. Marques CF, Perera FH, Marote A, Ferreira S, Vieira SI, Olhero S, Miranda P, Ferreira JMF. Biphasic calcium phosphate scaffolds fabricated by direct write assembly: mechanical, anti-microbial and osteoblastic properties. J Eur Ceram Soc. 2017;37:359–68.

    Article  Google Scholar 

  918. Furuichi K, Oaki Y, Ichimiya H, Komotori J, Imai H. Preparation of hierarchically organized calcium phosphate-organic polymer composites by calcification of hydrogel. Sci Technol Adv Mater. 2006;7:219–25.

    Article  Google Scholar 

  919. Wei J, Jia J, Wu F, Wei S, Zhou H, Zhang H, Shin JW, Liu C. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration. Biomaterials. 2010;31:1260–9.

    Article  Google Scholar 

  920. Gbureck U, Grolms O, Barralet JE, Grover LM, Thull R. Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials. 2003;24:4123–31.

    Article  Google Scholar 

  921. Gbureck U, Barralet JE, Hofmann M, Thull R. Mechanical activation of tetracalcium phosphate. J Am Ceram Soc. 2004;87:311–3.

    Article  Google Scholar 

  922. Bohner M, Luginbühl R, Reber C, Doebelin N, Baroud G, Conforto E. A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomater. 2009;5:3524–35.

    Article  Google Scholar 

  923. Hagio T, Tanase T, Akiyama J, Iwai K, Asai S. Formation and biological affinity evaluation of crystallographically aligned hydroxyapatite. J Ceram Soc Jpn. 2008;116:79–82.

    Article  Google Scholar 

  924. Blawas AS, Reichert WM. Protein patterning. Biomaterials. 1998;19:595–609.

    Article  Google Scholar 

  925. Kasai T, Sato K, Kanematsu Y, Shikimori M, Kanematsu N, Doi Y. Bone tissue engineering using porous carbonate apatite and bone marrow cells. J Craniofac Surg. 2010;21:473–8.

    Article  Google Scholar 

  926. Wang L, Fan H, Zhang ZY, Lou AJ, Pei GX, Jiang S, Mu TW, Qin JJ, Chen SY, Jin D. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials. 2010;31:9452–61.

    Article  Google Scholar 

  927. Sánchez-Salcedo S, Izquierdo-Barba I, Arcos D, Vallet-Regí M. In vitro evaluation of potential calcium phosphate scaffolds for tissue engineering. Tissue Eng. 2006;12:279–90.

    Article  Google Scholar 

  928. Meganck JA, Baumann MJ, Case ED, McCabe LR, Allar JN. Biaxial flexure testing of calcium phosphate bioceramics for use in tissue engineering. J Biomed Mater Res A. 2005;72A:115–26.

    Article  Google Scholar 

  929. Case ED, Smith IO, Baumann MJ. Microcracking and porosity in calcium phosphates and the implications for bone tissue engineering. Mater Sci Eng A. 2005;390:246–54.

    Article  Google Scholar 

  930. Tripathi G, Basu B. A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram Int. 2012;38:341–9.

    Article  Google Scholar 

  931. Sibilla P, Sereni A, Aguiari G, Banzi M, Manzati E, Mischiati C, Trombelli L, del Senno L. Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J Dent Res. 2006;85:354–8.

    Article  Google Scholar 

  932. Verron E, Bouler JM. Calcium phosphate ceramics as bone drug-combined devices. Key Eng Mater. 2010;441:181–201.

    Article  Google Scholar 

  933. Zhou TH, Su M, Shang BC, Ma T, Xu GL, Li HL, Chen QH, Sun W, Xu YQ. Nano-hydroxyapatite/β-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms. Drug Dev Ind Pharm. 2012;38:1298–304.

    Article  Google Scholar 

  934. Kolmas J, Krukowski S, Laskus A, Jurkitewicz M. Synthetic hydroxyapatite in pharmaceutical applications. Ceram Int. 2016;42:2472–87.

    Article  Google Scholar 

  935. Rapoport A, Borovikova D, Kokina A, Patmalnieks A, Polyak N, Pavlovska I, Mezinskis G, Dekhtyar Y. Immobilisation of yeast cells on the surface of hydroxyapatite ceramics. Process Biochem. 2011;46:665–70.

    Article  Google Scholar 

  936. Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res. 2005;8:277–84.

    Article  Google Scholar 

  937. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344:385–6.

    Article  Google Scholar 

  938. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med. 2001;344:1511–4.

    Article  Google Scholar 

  939. Morishita T, Honoki K, Ohgushi H, Kotobuki N, Matsushima A, Takakura Y. Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artif Organs. 2006;30:115–8.

    Article  Google Scholar 

  940. Eniwumide JO, Yuan H, Cartmell SH, Meijer GJ, de Bruijn JD. Ectopic bone formation in bone marrow stem cell seeded calcium phosphate scaffolds as compared to autograft and (cell seeded) allograft. Eur Cell Mater. 2007;14:30–9.

    Article  Google Scholar 

  941. Zuolin J, Hong Q, Jiali T. Dental follicle cells combined with beta-tricalcium phosphate ceramic: a novel available therapeutic strategy to restore periodontal defects. Med Hypotheses. 2010;75:669–70.

    Article  Google Scholar 

  942. Ge S, Zhao N, Wang L, Yu M, Liu H, Song A, Huang J, Wang G, Yang P. Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold. Int J Nanomedicine. 2012;7:5405–14.

    Article  Google Scholar 

  943. Franch J, Díaz-Bertrana C, Lafuente P, Fontecha P, Durall I. Beta-tricalcium phosphate as a synthetic cancellous bone graft in veterinary orthopaedics: a retrospective study of 13 clinical cases. Vet Comp Orthop Traumatol. 2006;19:196–204.

    Google Scholar 

  944. Vertenten G, Gasthuys F, Cornelissen M, Schacht E, Vlaminck L. Enhancing bone healing and regeneration: present and future perspectives in veterinary orthopaedics. Vet Comp Orthop Traumatol. 2010;23:153–62.

    Google Scholar 

  945. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  Google Scholar 

  946. Navarro M, Michiardi A, Castano O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface. 2008;5:1137–58.

    Article  Google Scholar 

  947. Anderson JM. The future of biomedical materials. J Mater Sci Mater Med. 2006;17:1025–8.

    Article  Google Scholar 

  948. Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009;462:426–32.

    Article  Google Scholar 

  949. Sanchez-Sálcedo S, Arcos D, Vallet-Regí M. Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng Mater. 2008;377:19–42.

    Article  Google Scholar 

  950. Chevalier J, Gremillard L. Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc. 2009;29:1245–55.

    Article  Google Scholar 

  951. Salgado PC, Sathler PC, Castro HC, Alves GG, de Oliveira AM, de Oliveira RC, Maia MDC, Rodrigues CR, Coelh PG, Fuly A, Cabral LM, Granjeiro JM. Bone remodeling, biomaterials and technological applications: revisiting basic concepts. J Biomater Nanobiotechnol. 2011;2:318–28.

    Article  Google Scholar 

  952. Vallet-Regí M. Evolution of bioceramics within the field of biomaterials. C R Chim. 2010;13:174–85.

    Article  Google Scholar 

  953. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Dorozhkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dorozhkin, S.V. (2017). Calcium Orthophosphate-Based Bioceramics and Its Clinical Applications. In: Kaur, G. (eds) Clinical Applications of Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-56059-5_5

Download citation

Publish with us

Policies and ethics