Variation in Properties of Bioactive Glasses After Surface Modification

Chapter

Abstract

Surface modification is one of the most effective ways to improve properties of biomaterials for specific applications in medicine, dentistry, pharmacology, and biotechnology. The surface properties of biomaterials play a significant role in the interaction with the surrounding tissues. This chapter is mainly focused on bioactive silicate glasses, in the following three aspects: (1) ion doping glass, (2) covalent modification of a bioactive glass’s surfaces by silanes, and (3) biological surface functionalization of bioactive glass. The incorporation of various ions in the structure of bioactive glasses can improve their bioactivity, stimulating effects on osteogenesis, angiogenesis, and antibacterial activity. The goal of covalent modification by silanes is to improve the interaction with the surrounding bone tissue, to enhance dispersion stability of inorganic particles in various liquids, or to act as anchors for the immobilization of drugs. Biological functionalization of bioactive glasses can improve their bone integration.

Keywords

Bioactive glasses Biomaterials Surface modification Silinization Bone 

Notes

Acknowledgment

This work was supported by the Ministry of Education Science and Technological Development of the Republic of Serbia (Project III43009).

References

  1. 1.
    Hench LL, Splinter RJ, Greenlee TK, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;2:117–41.CrossRefGoogle Scholar
  2. 2.
    Hench LL. Chronology of bioactive glass development and clinical applications. New J Glass Ceram. 2013;3:67–73.CrossRefGoogle Scholar
  3. 3.
    Hench LL. Sol-gel materials for bioceramic. Curr Opin Solid State Mater Sci. 1997;2:604–10.CrossRefGoogle Scholar
  4. 4.
    Takadama H, Kim HM, Kokubo T, et al. Mechanism of biomineralization of apatite on a sodium silicate glass: tem-edx study in vitro. Chem Mater. 2001;13:1108–13.CrossRefGoogle Scholar
  5. 5.
    Itälä A, Ylänen HO, Yrjans J, et al. Characterization of microrough bioactive glass surface: surface reactions and osteoblast responses in vitro. J Biomed Mater Res. 2002;62:404–11.CrossRefGoogle Scholar
  6. 6.
    Ebisawa Y, Kokubo T, Ohura K, et al. Bioactivity of CaO·SiObased glasses: in vitro evaluation. J Mater Sci Mater Med. 1990;1:239–44.CrossRefGoogle Scholar
  7. 7.
    Filho OP, LaTorre GP, Hench LL, et al. Effect of crystallization on apatite-layer formation of bioactive glass 45%. J Biomed Mater Res. 1996;30:509–14.CrossRefGoogle Scholar
  8. 8.
    Goel A, Kapoor S, Rajagopal RR, et al. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation. Acta Biomater. 2012;8:361–72.CrossRefGoogle Scholar
  9. 9.
    Brito AF, Antunes B, dos Santos F, et al. Osteogenic capacity of alkali-free bioactive glasses. In vitro studies. J Biomed Mater Res B. 2016; doi: 10.1002/jbm.b.33771.Google Scholar
  10. 10.
    Dorozhkin SV. Calcium orthophosphates (CaPO4): occurrence and properties. Prog Biomater. 2016;5:9–70.CrossRefGoogle Scholar
  11. 11.
    Raicevic S, Stanic V, Kaludjervoic-Radoicic T, et al. Theoretical assessment of calcium arsenates stability: application in the treatment of arsenic contaminated waste. Mater Sci Forum. 2007;555:131–6.CrossRefGoogle Scholar
  12. 12.
    Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.CrossRefGoogle Scholar
  13. 13.
    Hench LL, Polak JM. Third-generation biomaterials. Science. 2002;295:1014–7.CrossRefGoogle Scholar
  14. 14.
    Brauer DS. Bioactive glasses – structure and properties. Angew Chem Int Ed. 2015;54:4160–81.CrossRefGoogle Scholar
  15. 15.
    Schubert U, Hüsing N. Synthesis of inorganic materials, 2nd, revised and updated edition. Weinheim: Wiley-VCH, 2005.Google Scholar
  16. 16.
    Affatigato M, Feller S, Schue AK, et al. Studies of oxide glass structure using laser ionization time of flight mass spectrometry. J Phys Condens Matter. 2003;15:S2323–34.CrossRefGoogle Scholar
  17. 17.
    Huang W, Day DE, Kittiratanapiboon K, et al. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med. 2006;17:583–96.CrossRefGoogle Scholar
  18. 18.
    Fu Q, Rahaman MN, Fu H, et al. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A. 2010;95:164–71.CrossRefGoogle Scholar
  19. 19.
    Wiederhorn SM, Chae Y-H, Simon CG, et al. Cell adhesion to borate glasses by colloidal probe microscopy. Acta Biomater. 2011;7:2256–63.CrossRefGoogle Scholar
  20. 20.
    Bi L, Rahaman MN, Day DE, et al. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomater. 2013;9:80158026.CrossRefGoogle Scholar
  21. 21.
    Wu C, Miron R, Sculean A, et al. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials. 2011;32:7068–78.CrossRefGoogle Scholar
  22. 22.
    Gu Y, Huang W, Rahaman MN, et al. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta Biomater. 2013;9:9126–36.CrossRefGoogle Scholar
  23. 23.
    Gorustovich AA, JMP L’o, Guglielmotti MB, et al. Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow. Biomed Mater. 2006;1:100–5.CrossRefGoogle Scholar
  24. 24.
    Fu Q, Rahaman MN, Bal BS, et al. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A. 2010;95:172–9.CrossRefGoogle Scholar
  25. 25.
    Brown RF, Rahaman MN, Dwilewicz AB, et al. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J Biomed Mater Res A. 2009;88:392–400.CrossRefGoogle Scholar
  26. 26.
    Landolph JR. Cytotoxicity and negligible genotoxicity of borax and borax ores to cultured mammalian cells. Am J Ind Med. 1985;7:31–43.CrossRefGoogle Scholar
  27. 27.
    Balasubramanian P, Grünewald A, Detsch R, et al. Ion release, hydroxyapatite conversion, and cytotoxicity of boron-containing bioactive glass scaffolds. Int J Appl Glas Sci. 2016;7:206–15.CrossRefGoogle Scholar
  28. 28.
    Hoppe A, Güldal NS, Boccaccini AR, et al. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.CrossRefGoogle Scholar
  29. 29.
    Neel EAA, Pickup DM, Valappil SP, et al. Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem. 2009;19:690–701.CrossRefGoogle Scholar
  30. 30.
    Ahmed I, Lewis M, Olsen I, et al. Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials. 2004;25:491–9.CrossRefGoogle Scholar
  31. 31.
    Brow RK. Review: the structure of simple phosphate glasses. J Non-Cryst Solids. 2000;263–264:1–28.CrossRefGoogle Scholar
  32. 32.
    Kaur G, Pickrell G, Sriranganathan N, et al. Review and the state of the art: sol–gel and melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B. 2016;104:1248–75.CrossRefGoogle Scholar
  33. 33.
    Lucas-Girot A, Mezahi FZ, Mami M, et al. Sol-gel synthesis of a new composition of bioactive glass in the quaternary system SiO2-CaO-Na2O-P2O5: comparison with melting method. J Non-Cryst Solids. 2011;357:3322–7.CrossRefGoogle Scholar
  34. 34.
    Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C. 2016;61:922–39.CrossRefGoogle Scholar
  35. 35.
    Bellucci D, Cannillo V, Sola A, et al. Macroporous bioglass1-derived scaffolds for bone tissue regeneration. Ceram Int. 2011;37:1575–85.CrossRefGoogle Scholar
  36. 36.
    Dziadek M, Zagrajczuk B, Jelen P, et al. Structural variations of bioactive glasses obtained by different synthesis routes. Ceram Int. 2016;42:14700–9.CrossRefGoogle Scholar
  37. 37.
    Qiu D, Martin RA, Knowles JC, et al. A comparative study of the structure of sodium borophosphates made by sol–gel and melt-quench methods. J Non-Cryst Solids. 2010;356:490–4.CrossRefGoogle Scholar
  38. 38.
    Li R, Clark AE, Hench LL, et al. An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater. 1991;2:231–9.CrossRefGoogle Scholar
  39. 39.
    Kannan S, Rocha JHG, Agathopoulos S, et al. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater. 2007;3:243–9.CrossRefGoogle Scholar
  40. 40.
    Eanes ED, Reddi AH. The effect of fluoride on bone mineral apatite. Metab Bone Dis Relat Res. 1979;2:3–10.CrossRefGoogle Scholar
  41. 41.
    Eslami H, Solati-Hashjin M, Tahriri M, et al. The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mater Sci Eng C. 2009;29:1387–98.CrossRefGoogle Scholar
  42. 42.
    Komori R, Sato T, Takano-Yamamoto T, et al. Microbial composition of dental plaque microflora on first molars with orthodontic bands and brackets, and the acidogenic potential of these bacteria. J Oral Biosci. 2012;54:107–12.CrossRefGoogle Scholar
  43. 43.
    Stanić V, Dimitrijević S, Antonović DG, et al. Synthesis of fluorine substituted hydroxyapatite nanopowders and application of the central composite design for determination of its antimicrobial effects. Appl Surf Sci. 2014;290:346–52.CrossRefGoogle Scholar
  44. 44.
    Stanić V, Radosavljević-Mihajlović AS, Živković-Radovanović V, et al. Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method. Appl Surf Sci. 2015;337:72–80.CrossRefGoogle Scholar
  45. 45.
    Liu J, Rawlinsona SCF, Hillb RG, et al. Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects. Dent Mater. 2016;32:e221–37.CrossRefGoogle Scholar
  46. 46.
    Browne D, Whelton H, O’Mullane D, et al. Fluoride metabolism and fluorosis. J Dent. 2005;33:177–86.CrossRefGoogle Scholar
  47. 47.
    Diamanti I, Koletsi-Kounari H, Mamai-Homata E, Vougiouklakis G, et al. In vitro evaluation of fluoride and calcium sodium phosphosilicate toothpastes, on root dentine caries lesions. J Dent. 2011;39:619–28.CrossRefGoogle Scholar
  48. 48.
    Christie JK, Pedone A, Menziani MC, et al. Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J Phys Chem B. 2011;115:2038–45.CrossRefGoogle Scholar
  49. 49.
    Lusvardi G, Malavasi G, Menabue L, et al. Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions. Acta Biomater. 2009;5:3548–62.CrossRefGoogle Scholar
  50. 50.
    Brauer DS, Karpukhina N, MD O’D, et al. Fluoride-containing bioactive glasses: effect of glass design and structure. Acta Biomater. 2010;6:3275–82.CrossRefGoogle Scholar
  51. 51.
    Mneimne M, Hill RG, Bushby AJ, et al. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater. 2011;7:1827–34.CrossRefGoogle Scholar
  52. 52.
    Cowan JA. Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals. 2002;15:225–35.CrossRefGoogle Scholar
  53. 53.
    Hartwig A. Role of magnesium in genomic stability. Mutat Res/Fund Mol Mech Mutagen. 2001;475:113–21.CrossRefGoogle Scholar
  54. 54.
    Johnson S. The multifaceted and widespread pathology of magnesium deficiency. Med Hypotheses. 2001;56:163–70.CrossRefGoogle Scholar
  55. 55.
    He LY, Zhang XM, Liu B, et al. Effect of magnesium ion on human osteoblast activity. Braz J Med Biol Res. 2016;49:e5257.CrossRefGoogle Scholar
  56. 56.
    Janning C, Willbold E, Vogt C, et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodeling. Acta Biomater. 2010;6:1861–8.CrossRefGoogle Scholar
  57. 57.
    Belluci MM, Schoenmaker T, Rossa-Junior C, et al. Magnesium deficiency results in an increased formation of osteoclasts. J Nutr Biochem. 2013;24:1488–98.CrossRefGoogle Scholar
  58. 58.
    Bernick S, Hungerford GF. Effect of dietary magnesium deficiency on bones and teeth of rats. J Dent Res. 1965;44:1317–24.CrossRefGoogle Scholar
  59. 59.
    Oliveira JM, Correia RN, Fernandes MH, et al. Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials. 2002;23:371–9.CrossRefGoogle Scholar
  60. 60.
    Zhao Y, Song M, Liu J, et al. Characteristics of bioactive glass coatings obtained by pulsed laser deposition. Surf Interface Anal. 2008;40:1463–8.CrossRefGoogle Scholar
  61. 61.
    Watts SJ, Hill RG, O’Donnell MD, et al. Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids. 2010;356:517–24.CrossRefGoogle Scholar
  62. 62.
    Perez-Pariente J, Balas F, Vallet-Regi M, et al. Surface and chemical study of SiO2 P2O5 CaO MgO bioactive glasses. Chem Mater. 2000;12:750–5.CrossRefGoogle Scholar
  63. 63.
    Ma J, Chen CZ, Wang D, et al. Textural and structural studies of sol–gel derived SiO2–CaO–P2O5–MgO glasses by substitution of MgO for CaO. Mater Sci Eng C. 2010;30:886–90.CrossRefGoogle Scholar
  64. 64.
    Ma J, Chen CZ, Wang DG, et al. Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses. Colloids Surf B Biointerfaces. 2010;81:87–95.CrossRefGoogle Scholar
  65. 65.
    Vallet-Regí M, Salinas AJ, Román J, et al. Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO2-P2O5 sol-gel glasses. J Mater Chem. 1999;9:515–8.CrossRefGoogle Scholar
  66. 66.
    Dietrich E, Oudadesse H, Lucas-Girot A, et al. In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J Biomed Mater Res. 2009;88A:1087–96.CrossRefGoogle Scholar
  67. 67.
    Moya JS, Tomsia AP, Pazo A, et al. In vitro formation of hydroxyapatite layer in a MgO-containing glass. J Mater Sci Mater Med. 1994;5:529–32.CrossRefGoogle Scholar
  68. 68.
    Saboori A, Rabiee M, Moztarzadeh F, et al. Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C. 2009;29:335–40.CrossRefGoogle Scholar
  69. 69.
    Wang X, Li X, Ito A, et al. Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M = Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater. 2011;7:3638–44.CrossRefGoogle Scholar
  70. 70.
    Balamurugan A, Balossier G, Michel J, et al. Sol gel derived SiO2-CaO-MgO-P2O5 bioglass system—preparation and in vitro characterization. J Biomed Mater Res B. 2007;83:546–53.CrossRefGoogle Scholar
  71. 71.
    Prabhu M, Kavitha K, Manivasakan P. Synthesis, characterization and biological response of magnesium-substituted nanobioactive glass particles for biomedical applications. Ceram Int. 2013;39:1683–94.CrossRefGoogle Scholar
  72. 72.
    Merolli A, Leali PT, Guidi PL, et al. Comparison in in-vivo response between a bioactive glass and a non-bioactive glass. J Mater Sci Mater Med. 2000;11:219–22.CrossRefGoogle Scholar
  73. 73.
    Tamura J, Kawanabe K, Kobayashi M, et al. Mechanical and biological properties of two types of bioactive bone cements containing: MgO-CaO-SiO2-P2O5-CaF2, glass and glass-ceramic powder. J Biomed Mater Res. 1996;30:85–94.CrossRefGoogle Scholar
  74. 74.
    Brink M, Turunen T, Happonen RP, et al. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. J Biomed Mater Res. 1997;37:114–21.CrossRefGoogle Scholar
  75. 75.
    Reginster JY, Seeman E, De Vernejoul MC, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmeno-pausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. Endocrinol Care. 2005;90:2816–22.Google Scholar
  76. 76.
    Marie PJ, Ammann P, Boivin G, et al. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69:121–9.CrossRefGoogle Scholar
  77. 77.
    Morohashi T, Sano T, Yamada S. Effects of strontium on calcium metabolism in rats. I. A distinction between the pharmacological and toxic doses. Jpn J Pharmacol. 1994;64:155–62.CrossRefGoogle Scholar
  78. 78.
    Huang M, Hill RG, Rawlinson SCF. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair? Acta Biomater. 2016;38:201–11.CrossRefGoogle Scholar
  79. 79.
    Curzon MEJ. The relation between caries prevalence and strontium concentrations in drinking water, plaque, and surface enamel. J Dent Res. 1985;64:1386–8.CrossRefGoogle Scholar
  80. 80.
    Liu J, Rawlinson SCF, Hill RG, et al. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater. 2016;32:412–22.CrossRefGoogle Scholar
  81. 81.
    Fredholm YC, Karpukhina N, Law RV, et al. Strontium containing bioactive glasses: glass structure and physical properties. J Non-Cryst Solids. 2010;356:2546–51.CrossRefGoogle Scholar
  82. 82.
    Xiang Y, Du J. Effect of strontium substitution on the structure of 45S5 bioglasses. Chem Mater. 2011;23:2703–17.CrossRefGoogle Scholar
  83. 83.
    Dziadeka M, Zagrajczuk B, Menaszek E, et al. Gel-derived SiO2–CaO–P2O5 bioactive glasses and glass-ceramics modified by SrO addition. Ceram Int. 2016;42:5842–57.CrossRefGoogle Scholar
  84. 84.
    Lao J, Nedelec JM, Jallot E, et al. New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products. J Mater Chem. 2009;19:2940–9.CrossRefGoogle Scholar
  85. 85.
    Hesaraki S, Gholami M, Vazehra S, et al. The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system. Mater Sci Eng C. 2010;30:383–90.CrossRefGoogle Scholar
  86. 86.
    Du J, Xiang Y. Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 bioactive glasses. Ceram Int. 2016;42:5842–57.CrossRefGoogle Scholar
  87. 87.
    Arepalli SK, Tripathi H, Hira SK, et al. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. Mater Sci Eng C. 2016;69:108–16.CrossRefGoogle Scholar
  88. 88.
    Gentleman E, Fredholm YC, Jell G, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31:3949–56.CrossRefGoogle Scholar
  89. 89.
    Zhang Y, Wei L, Chang J, et al. Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J Mater Chem B. 2013;1:5711–22.CrossRefGoogle Scholar
  90. 90.
    Wu X, Meng G, Wang S, et al. Zn and Sr incorporated 64S bioglasses: material characterization, in-vitro bioactivity and mesenchymal stem cell responses. Mater Sci Eng C. 2015;52:242–50.CrossRefGoogle Scholar
  91. 91.
    Gorustovich AA, Steimetz T, Cabrini RL, et al. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A. 2010;92:232–7.CrossRefGoogle Scholar
  92. 92.
    Zhao S, Zhang J, Zhu M, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater. 2015;12:270–80.CrossRefGoogle Scholar
  93. 93.
    Wei L, Ke J, Prasadam I, et al. A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos Int. 2014;25:2089–96.CrossRefGoogle Scholar
  94. 94.
    Zhang Y, Wei L, Wu C, et al. Periodontal regeneration using strontium-loaded mesoporous bioactive glass scaffolds in osteoporotic rats. PLoS One. 2014;9:e104527.CrossRefGoogle Scholar
  95. 95.
    Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27:2331–9.CrossRefGoogle Scholar
  96. 96.
    Mozafari M, Moztarzadeh F. Silver-doped bioactive glasses: what remains unanswered? Interceram. 2013;62:423–5.Google Scholar
  97. 97.
    Silver S, Phung LT, Silver G, et al. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol. 2006;33:627–34.CrossRefGoogle Scholar
  98. 98.
    Stanić V, Janaćković D, Dimitrijević S, et al. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci. 2011;257:4510–8.CrossRefGoogle Scholar
  99. 99.
    Stanić V, Radosavljević-Mihajlović AS, Živković-Radovanović V, et al. Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method. Appl Surf Sci. 2015;337:72–80.CrossRefGoogle Scholar
  100. 100.
    Bellantone M, Williams HD, Hench LL, et al. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother. 2002;46:1940–5.CrossRefGoogle Scholar
  101. 101.
    Verné E, Di Nunzioa S, Bosettib M. Surface characterization of silver-doped bioactive glass. Biomaterials. 2005;26:5111–9.CrossRefGoogle Scholar
  102. 102.
    Luo SH, Xiao W, Wei XJ. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass. J Biomed Mater Res Part B. 2010;95:441–8.CrossRefGoogle Scholar
  103. 103.
    Phetnin R, Rattanachan ST. Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres. J Sol-Gel Sci Technol. 2015;75:279–90.CrossRefGoogle Scholar
  104. 104.
    Bunetel L, Wers E, Novella A, et al. In vitro chemical and biological effects of Ag, Cu and Cu + Zn adjunction in 46S6 bioactive glasses. Mater Res Express. 2015;2:095402.CrossRefGoogle Scholar
  105. 105.
    Nezafati N, Moztarzadeh F, Hesaraki S, et al. Surface reactivity and in vitro biological evaluation of sol gel derived silver/calcium silicophosphate bioactive glass. Biotechnol Bioprocess Eng. 2012;17:746–54.CrossRefGoogle Scholar
  106. 106.
    Rabiee SM, Nazparvar N, Azizian N, et al. Effect of ion substitution on properties of bioactive glasses: a review. Ceram Int. 2015;41:7241–51.CrossRefGoogle Scholar
  107. 107.
    Shirkhanzadeh M, Azadegan M. Formation of carbonate apatite on calcium phosphate coating containing silver ions. J Mater Sci Mater Med. 1998;9:385–91.CrossRefGoogle Scholar
  108. 108.
    Delben JRJ, Pimentel OM, Coelho MB. Synthesis and thermal properties of nanoparticles of bioactive glasses containing silver. J Therm Anal Calorim. 2009;97:433–6.CrossRefGoogle Scholar
  109. 109.
    Vulpoi A, Baia L, Simon S, et al. Silver effect on the structure of SiO2-CaO-P2O5 ternary system. Mater Sci Eng C. 2012;32:178–83.CrossRefGoogle Scholar
  110. 110.
    Saghiri MA, Asatourian A, Orangi J, et al. Functional role of inorganic trace elements in angiogenesis – part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol Hematol. 2015;96:143–55.Google Scholar
  111. 111.
    Nasulewicz A, Mazur A, Opolski A, et al. Role of copper in tumor angiogenesis—clinical implications. J Trace Elem Med Biol. 2004;18:1–8.CrossRefGoogle Scholar
  112. 112.
    Hu G. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem. 1998;69:326–35.CrossRefGoogle Scholar
  113. 113.
    Smith BJ, King JB, Lucas EA, et al. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats. J Nutr. 2002;132:190–6.Google Scholar
  114. 114.
    Rodríguez JP, Rios S, Gonzales M, et al. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem. 2002;85:92–100.CrossRefGoogle Scholar
  115. 115.
    Ewald A, Kappel C, Vorndran E, et al. The effect of Cu(II)-loaded brushite scaffolds on growth and activity of osteoblastic cells. J Biomed Mater Res. 2012;A100:2392–400.Google Scholar
  116. 116.
    Zhang JC, Huang JA, Xu SJ, et al. Effects of Cu2+ and pH on osteoclastic bone resorption in vitro. Prog Nat Sci. 2003;13:266–70.Google Scholar
  117. 117.
    Borkow G, Gabbay J. Copper as a biocidal tool. Curr Med Chem. 2005;12:2163–75.CrossRefGoogle Scholar
  118. 118.
    Stanić V, Dimitrijević S, Antić-Stanković J, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256:6083–9.CrossRefGoogle Scholar
  119. 119.
    Li X, Wang X, He D, et al. Synthesis and characterization of mesoporous CaO–MO–SiO2–P2O5 (M= Mg, Zn, Cu) bioactive glasses/composites. J Mater Chem. 2008;18:4103–9.CrossRefGoogle Scholar
  120. 120.
    Bejarano J, Caviedes P, Palza H, et al. Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed Mater. 2015;10:025001.CrossRefGoogle Scholar
  121. 121.
    Hoppe A, Meszaros R, Stähli C, et al. In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. J Mater Chem B. 2013;1:5659–74.CrossRefGoogle Scholar
  122. 122.
    Li J, Zhai D, Lv F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;36:254–66.CrossRefGoogle Scholar
  123. 123.
    Wu C, Zhou Y, Xu M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34:422–33.CrossRefGoogle Scholar
  124. 124.
    Lin Y, Xiao W, Bal BS, et al. Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo. Mater Sci Eng C. 2016;67:440–52.CrossRefGoogle Scholar
  125. 125.
    Miola M, Verné E. Bioactive and antibacterial glass powders doped with copper by ion-exchange in aqueous solutions. Materials. 2016;9:405.CrossRefGoogle Scholar
  126. 126.
    Ye J, He J, Wang C, et al. Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity. Biotechnol Lett. 2014;36:961–8.CrossRefGoogle Scholar
  127. 127.
    Palza H, Escobar B, Bejarano J, et al. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method. Mater Sci Eng C. 2013;33:3795–801.CrossRefGoogle Scholar
  128. 128.
    Popescu RA, Magyari K, Vulpoi A, et al. Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials. Biomater Sci. 2016;4:1252–65.CrossRefGoogle Scholar
  129. 129.
    Brandao-Neto J, Stefan V, Mendonca BB, et al. The essential role of zinc in growth. Nutr Res. 1995;15:335–58.CrossRefGoogle Scholar
  130. 130.
    Hadley KB, Newman SM, Hunt JR, et al. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J Nutr Biochem. 2010;21:297–303.CrossRefGoogle Scholar
  131. 131.
    Park JHY, Grandjean CJ, Antonson DL, et al. Effects of isolated zinc deficiency on the composition of skeletal muscle, liver and bone during growth in rats. J Nutr. 1986;116:610–7.Google Scholar
  132. 132.
    Salgueiro MJ, Zubillaga M, Lysionek A, et al. Zinc as an essential micro nutrient: a review. Nutr Res. 2000;20:737–55.CrossRefGoogle Scholar
  133. 133.
    Gonzales GF, Gasco M, Tapia V, et al. High serum zinc and serum testosterone levels were associated with excessive erythrocytosis in men at high altitudes. Endocrine. 2011;40:472–80.CrossRefGoogle Scholar
  134. 134.
    Aina V, Perardi A, Bergandi L, et al. Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chem Biol Interact. 2007;167:207–18.CrossRefGoogle Scholar
  135. 135.
    Kasai M, Miyazaki T, Takenaka T, et al. Excessive zinc intake increases systemic blood pressure and reduces renal blood flow via kidney angiotensin II in rats. Biol Trace Elem Res. 2012;150:285–90.CrossRefGoogle Scholar
  136. 136.
    Aina V, Bonino F, Morterra C, et al. Influence of the chemical composition on nature and activity of the surface layer of Zn-substituted sol-gel (bioactive) glasses. J Phys Chem C. 2011;115:2196–210.CrossRefGoogle Scholar
  137. 137.
    Linati L, Lusvardi G, Malavasi G, et al. Qualitative and quantitative structure-property relationships analysis of multicomponent potential bioglasses. J Phys Chem B. 2005;109:4989–98.CrossRefGoogle Scholar
  138. 138.
    Wers E, Oudadesse H. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. J Therm Anal Calorim. 2014;115:2137–44.CrossRefGoogle Scholar
  139. 139.
    Haimi S, Gorianc G, Moimas L, et al. Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater. 2009;5:3122–31.CrossRefGoogle Scholar
  140. 140.
    Srivastava AK, Pyare R. Characterization of ZnO substituted 45S5 bioactive glasses and glass—ceramics. J Mater Sci Res. 2012;1:207–20.Google Scholar
  141. 141.
    Atkinsona I, Anghela EM, Predoana L, et al. Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses. Ceram Int. 2016;42:3033–45.CrossRefGoogle Scholar
  142. 142.
    Goel A, Kapoor S, Tilocca A, et al. Structural role of zinc in biodegradation of alkali-free bioactive glasses. J Mater Chem B. 2013;1:3073–82.CrossRefGoogle Scholar
  143. 143.
    Aina V, Malavasi G, Pla AF, et al. Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater. 2009;5:1211–22.CrossRefGoogle Scholar
  144. 144.
    Ouis MA. Effect of ZnO on the bioactivity of hench’s derived glasses and corresponding glass-ceramic derivatives. Silicon. 2011;3:177–83.CrossRefGoogle Scholar
  145. 145.
    Du RL, Chang J, Ni SY, et al. Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics. J Biomater Appl. 2006;20:341–60.CrossRefGoogle Scholar
  146. 146.
    Kanzaki N, Onuma K, Treboux G, et al. Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face. J Phys Chem B. 2000;104:4189–94.CrossRefGoogle Scholar
  147. 147.
    Balamurugan A, Balossier G, Kannan S, et al. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 2007;3:255–62.CrossRefGoogle Scholar
  148. 148.
    Esteban-Tejeda L, Prado C, Cabal B, et al. Antibacterial and antifungal activity of ZnO containing glasses. PLoS One. 2015; doi: 10.1371/journal.pone.0132709.Google Scholar
  149. 149.
    Baghbani F, Moztarzadeh F, Mozafari M, et al. Production and characterization of a Ag- and Zn-doped glass-ceramic material and in vitro evaluation of its biological effects. J Mater Eng Perform. 2016;25:3398–408.CrossRefGoogle Scholar
  150. 150.
    Arfin SM, Kendall RL, Hall L, et al. Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc Natl Acad Sci U S A. 1995;92:7714–8.CrossRefGoogle Scholar
  151. 151.
    Brown KL. Chemistry and enzymology of vitamin B12. Chem Rev. 2005;105:2075–149.CrossRefGoogle Scholar
  152. 152.
    Bose S, Roy M, Bandyopadhyay A, et al. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–54.CrossRefGoogle Scholar
  153. 153.
    Morcellia SR, Bulla ÉS, Terra WS, et al. Synthesis, characterization and antitumoral activity of new cobalt(II)complexes: effect of the ligand isomerism on the biological activity of the complexes. J Inorg Biochem. 2016;161:73–82.CrossRefGoogle Scholar
  154. 154.
    Singh D, Kumar K, Kumar R, et al. Template synthesis and characterization of biologically active transition metal complexes comprising 14-membered tetraaza macrocyclic ligand. J Serb Chem Soc. 2010;75:217–28.CrossRefGoogle Scholar
  155. 155.
    Vučković G, Stanić V, Sovilj SP, et al. Cobalt(II) complexes with aromatic carboxylates and N-functionalized cyclam bearing 2-pyridylmethyl pendant arms. J Serb Chem Soc. 2005;70:1121–9.CrossRefGoogle Scholar
  156. 156.
    Vučković TSB, Miodragović ZM, et al. High-spin binuclear Co(II) complexes with a pendant octaazamaclocycle and carboxylates. J Serb Chem Soc. 2007;72:1295–308.CrossRefGoogle Scholar
  157. 157.
    Peters K, Schmidt H, Unger R, et al. Paradoxical effects of hypoxia-mimicking divalent cobalt ions in human endothelial cells in vitro. Mol Cell Biochem. 2005;270:157–66.CrossRefGoogle Scholar
  158. 158.
    Chachami G, Simos G, Hatziefthimiou A, et al. Cobalt induces hypoxia-inducible factor-1α expression in airway smooth muscle cells by a reactive oxygen species- and PI3K-dependent mechanism. Am J Respir Cell Mol Biol. 2004;31:544–51.CrossRefGoogle Scholar
  159. 159.
    Pacary E, Legros H, Valable S, et al. Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci. 2006;119:2667–78.CrossRefGoogle Scholar
  160. 160.
    Amellem O, Pettersen EO. Cell inactivation and cell cycle inhibition as induced by extreme hypoxia: the possible role of cell cycle arrest as a protection against hypoxia-induced lethal damage. Cell Prolif. 1991;24:127–41.CrossRefGoogle Scholar
  161. 161.
    Mobasheria A, Proudman CJ. Cobalt chloride doping in racehorses: concerns over a potentially lethal practice. Vet J. 2015;205:335–8.CrossRefGoogle Scholar
  162. 162.
    Azevedo MM, Jell G, O’Donnell MD, et al. Synthesis and characterization of hypoxiamimicking bioactive glasses for skeletal regeneration. J Mater Chem. 2010;20:8854–64.CrossRefGoogle Scholar
  163. 163.
    Hoppe A, Jokic B, Janackovic D, et al. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces. 2014;6:2865–77.CrossRefGoogle Scholar
  164. 164.
    Kargozar S, Lotfibakhshaiesh N, Ai J, et al. Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering. J Non-Cryst Solids. 2016;449:133–40.CrossRefGoogle Scholar
  165. 165.
    Vyas VK, Kumar AS, Singh SP, et al. Effect of cobalt oxide substitution on mechanical behaviour and elastic properties of bioactive glass and glass ceramics. Trans Indian Ceram Soc. 2016;75:12–9.CrossRefGoogle Scholar
  166. 166.
    Wu C, Zhou Z, Fan W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012;33:2076–85.CrossRefGoogle Scholar
  167. 167.
    Hoppe A, Brandl A, Bleiziffer O, et al. In vitro cell response to co-containing 1393 bioactive glass. Mater Sci Eng C. 2015;57:157–63.CrossRefGoogle Scholar
  168. 168.
    Qiu ZY, Chen C, Wang XM, et al. Advances in the surface modification techniques of bone-related implants for last 10 years. Regener Biomater. 2014;1:67–79.CrossRefGoogle Scholar
  169. 169.
    RussoL TF, Lupo C, et al. Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation. Interface Focus. 2014;4:20130040.CrossRefGoogle Scholar
  170. 170.
    Brzoska JB, Azouz IB, Rondelez F, et al. Silanization of solid substrates: a step toward reproducibility. Langmuir. 1994;10:4367–73.CrossRefGoogle Scholar
  171. 171.
    Howarter JA, Youngblood JP. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir. 2006;22:11142–7.CrossRefGoogle Scholar
  172. 172.
    Paredes V, Salvagni E, Rodríguez-Castellon E, et al. Study on the use of 3-aminopropyltriethoxysilane and 3-chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti–Nb–Hf alloy. J Biomed Mater Res B. 2015;103:495–502.CrossRefGoogle Scholar
  173. 173.
    Toworfe GK, Composto RJ, Shapiro IM, et al. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials. 2006;27:631–42.CrossRefGoogle Scholar
  174. 174.
    Zucca P, Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules. 2014;19:14139–94.CrossRefGoogle Scholar
  175. 175.
    Aina V, Magistris C, Cerrato G, et al. New formulation of functionalized bioactive glasses to be used as carriers for the development of ph-stimuli responsive biomaterials for bone diseases. Langmuir. 2014;30:4703–15.CrossRefGoogle Scholar
  176. 176.
    Verne E, Vitale-Brovarone C, Bui E, et al. Surface functionalization of bioactive glasses. J Biomed Mater Res A. 2009;90:981–92.CrossRefGoogle Scholar
  177. 177.
    Ferraris S, Vitale-Brovarone C, Bretcanu O, et al. Surface functionalization of 3D glass–ceramic porous scaffolds for enhanced mineralization in vitro. Appl Surf Sci. 2013;271:412–20.CrossRefGoogle Scholar
  178. 178.
    Vernè E, Ferraris S, Cassinelli C, et al. Surface functionalization of Bioglass® with alkaline phosphatase. Surf Coat Technol. 2015;264:132–9.CrossRefGoogle Scholar
  179. 179.
    Chen QZ, Rezwan K, Francon V, et al. Surface functionalization of Bioglass®-derived porous scaffold. Acta Biomater. 2007;3:551–62.CrossRefGoogle Scholar
  180. 180.
    Zhang X, Zeng D, Li N, et al. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci Rep. 2016;6:19361.CrossRefGoogle Scholar
  181. 181.
    Sperling C, Fischer M, Maitz MF, et al. Blood coagulation on biomaterials requires the combination of distinct activation processes. Biomaterials. 2009;30:4447–56.CrossRefGoogle Scholar
  182. 182.
    Lu HH, El-Amin SF, Scott KD, et al. Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A. 2003;64:465–74.CrossRefGoogle Scholar
  183. 183.
    Zhou Z, Liu L, Liu Q, et al. Effect of surface modification of bioactive glass on properties of poly-L-lactide composite materials. J Macromol Sci B. 2012;51:1637–46.CrossRefGoogle Scholar
  184. 184.
    Roether JA, Boccaccini AR, Hench LL, et al. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglass for tissue engineering applications. Biomaterials. 2002;23:3871–8.CrossRefGoogle Scholar
  185. 185.
    Ducker RE, Montague MT, Leggetta GJ, et al. A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carbodiimide, and anhydride reagents. Biointerphases. 2008;3:59–65.CrossRefGoogle Scholar
  186. 186.
    Gruian C, Vanea E, Simon S, et al. FTIR and XPS studies of protein adsorption onto functionalized bioactive glass. Biochim Biophys Acta. 2012;1824:873–81.CrossRefGoogle Scholar
  187. 187.
    Gruian C, Vulpoi A, Steinhoff HJ, et al. Structural changes of methemoglobin after adsorption on bioactive glass, as a function of surface functionalization and salt concentration. J Mol Struct. 2012;1015:20–6.CrossRefGoogle Scholar
  188. 188.
    Gruian C, Vulpoi A, Vane E, et al. The attachment affinity of hemoglobin toward silver-containing bioactive glass functionalized with glutaraldehyde. J Phys Chem B. 2013;117:16558–64.CrossRefGoogle Scholar
  189. 189.
    Wang K, Zhou C, Hong Y, et al. A review of protein adsorption on bioceramics. Interface Focus. 2012;2:259–77.CrossRefGoogle Scholar
  190. 190.
    Eskin SG, Horbett TA, McIntire, Mitchell RN, Ratner BD, Schoen FJ, Yee A. Some background concepts. In: Ratner BD, editor. Biomaterials science: an introduction to materials in medicine. 2nd ed. San Diego: Elsevier/Academic Press; 2004. p. 237–46.Google Scholar
  191. 191.
    Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.CrossRefGoogle Scholar
  192. 192.
    El-Ghannam A, Ducheyne P, Shapiro M, et al. Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite. J Orthop Res. 1999;17:340–5.CrossRefGoogle Scholar
  193. 193.
    Schepers E, de Clercq M, Ducheyne P, et al. Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil. 1991;18:439–52.CrossRefGoogle Scholar
  194. 194.
    Higuchi A, Ling QD, Hsu ST, et al. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev. 2012;112:4507–40.CrossRefGoogle Scholar
  195. 195.
    Ballet T, Boulange L, Brechet Y, et al. Protein conformational changes induced by adsorption onto material surfaces: an important issue for biomedical applications of material science. Bull Pol Acad Sci Tech Sci. 2010;58:303–15.Google Scholar
  196. 196.
    Sousa SR, Lamghari M, Sampaio P, et al. Osteoblast adhesion and morphology on TiO2 depends on the competitive preadsorption of albumin and fibronectin. J Biomed Mater Res A. 2008;84:281290.Google Scholar
  197. 197.
    Vulpoi A, Gruian C, Vanea E, et al. Bioactivity and protein attachment onto bioactive glasses containing silver nanoparticles. J Biomed Mater Res A. 2012;100:1179–86.CrossRefGoogle Scholar
  198. 198.
    Liau SY, Read DC, Pugh WJ, et al. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol. 1997;25:279–83.CrossRefGoogle Scholar
  199. 199.
    Rosengren A, Oscarsson S, Mazzocchi M, et al. Protein adsorption onto two bioactive glass-ceramics. Biomaterials. 2003;24:147–55.CrossRefGoogle Scholar
  200. 200.
    Magyari K, Baia L, Vulpoi A, et al. Bioactivity evolution of the surface functionalized bioactive glasses. J Biomed Mater Res B. 2015;103:261–72.CrossRefGoogle Scholar
  201. 201.
    Shah FA, Brauer DS, Hill RG, et al. Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins. Mater Lett. 2015;153:143–7.CrossRefGoogle Scholar
  202. 202.
    Boyan BD, Hummert TW, Dean DD, et al. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17:137–46.CrossRefGoogle Scholar
  203. 203.
    Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.CrossRefGoogle Scholar
  204. 204.
    García AJ, Ducheyne P, Boettiger D, et al. Effect of surface reaction stage on fibronectin-mediated. J Biomed Mater Res. 1998;40:48–56.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Belgrade, Vinca Institute of Nuclear SciencesBelgradeSerbia

Personalised recommendations