Biomaterials for Cell Encapsulation: Progress Toward Clinical Applications

  • Gurbinder Kaur
  • Francesco Baino
  • John C. Mauro
  • Vishal Kumar
  • Gary Pickrell
  • Nammalwar Sriranganathan
  • Steven Grant Waldrop


Cell microencapsulation is a technique to treat a wide range of diseases through the continuous and controlled delivery of therapeutic products. This technique can also treat multiple diseases in the absence of immunosuppression. Over the past few years, the quality of life of patients has improved remarkably as a direct result of microencapsulation technology, as this technology eliminates the requirement of an immunosuppressant. However, much additional research needs to be conducted in order to commercialize and clinically apply more widely this life-saving technology.


Encapsulation Alginates Chitosan Microcapsules Microcarriers Immobilization Polymer matrices 


  1. 1.
    Chang TMS. Semipermeable microcapsules. Science. 1964;146:524–5.CrossRefGoogle Scholar
  2. 2.
    Chick WL, et al. Beta cell culture on synthetic capillaries: an artificial endocrine pancreas. sScience. 1975;187:847–84.CrossRefGoogle Scholar
  3. 3.
    Sun YL, et al. Normalization of diabetes in spontaneously diabetic cynomologous monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest. 1996;98:1417–22.CrossRefGoogle Scholar
  4. 4.
    Orive G, Hernández RM, Rodríguez Gascón A, Calafiore R, Chang TMS, De Vos P, … Pedraz JL. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol. 2004;22(2):87–92. 10.1016/j.tibtech.2003.11.004.Google Scholar
  5. 5.
    Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release. 2008;132(2):76–83. CrossRefGoogle Scholar
  6. 6.
    Orive G, et al. Microencapsulation of an anti VE-cadherin antibody secreting 1B5 hybridoma cells. Biotechnol Bioeng. 2001;76:285–94.CrossRefGoogle Scholar
  7. 7.
    Sharkawy AA, et al. Engineering the tissue which encapsulates subcutaneous implants. Diffusion properties. J Biomed Mater Res. 1997;37:401–12.CrossRefGoogle Scholar
  8. 8.
    Hunkeler D, et al. Objectively assessing bioartificial organs. Ann N Y Acad Sci. 2001;944:456–71.CrossRefGoogle Scholar
  9. 9.
    Bisceglie V. Uber die antineoplastische immunitat; heterologe Einpflnzung von Tumoren in Huhner-embryonen. Ztschr Krebsforsch. 1933;40:122–40.CrossRefGoogle Scholar
  10. 10.
    Hernández RM, Orive G, Murua A, Pedraz JL. Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev. 2010;62(7–8):711–30. CrossRefGoogle Scholar
  11. 11.
    Kulig KM, Vacanti JP. Hepatic tissue engineering. Transpl Immunol. 2004;12:303–10.CrossRefGoogle Scholar
  12. 12.
    Street CN, Rajotte RV, Korbutt GS. Stem cells: a promising source of pancreatic islets for transplantation in type 1 diabetes. Curr Top Dev Biol. 2003;58:111–36.CrossRefGoogle Scholar
  13. 13.
    Orive G, de Castro M, Ponce S, Hernández RM, Gascón AR, Bosch M, Alberch J, Pedraz JL. Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol Ther. 2005;12:283–9.CrossRefGoogle Scholar
  14. 14.
    Caruso F. Hollow capsule processing through colloidal templating and selfassembly. Chemistry. 2000;6:413–9.CrossRefGoogle Scholar
  15. 15.
    Li RH. Materials for immunoisolated cell transplantation. Adv Drug Deliv Rev. 1998;33:87–109.CrossRefGoogle Scholar
  16. 16.
    Qiu C, Chen M, Yan H, Wu HK. Generation of uniformly sized alginate microparticles for cell encapsulation by using a soft-lithography approach. Adv Mater. 2007;19:1603–7.CrossRefGoogle Scholar
  17. 17.
    Murua A, de Castro M, Orive G, Hernández RM, Pedraz JL. In vitro characterization and in vivo functionality of erythropoietin-secreting cell immobilized in alginate–poly-L-lysine–alginate microcapsules. Biomacromolecules. 2007;8:3302–7.CrossRefGoogle Scholar
  18. 18.
    Orive G, Hernandez RM, Gascon AR, Pedraz JL. Challenges in cell encapsulation. In: Nedovic V, Willaert R, editors. Applications of cell immobilization biotechnology, vol. 8B. Dordrecht: Springer; 2005. p. 185–96.CrossRefGoogle Scholar
  19. 19.
    Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210:908–10.CrossRefGoogle Scholar
  20. 20.
    Consiglio S, Martino D, Dolcetta G, Cusella M, Conese S, Marchesini G, Benaglia L, Wrabetz A, Orlacchio N, Déglon P, Aebischer GM, Severini C. Bordignon, metabolic correction in oligodendrocytes derived from metachromatic leukodystrophy mouse model by using encapsulated recombinant myoblasts. J Neurol Sci. 2007;255:7–16.CrossRefGoogle Scholar
  21. 21.
    Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73.CrossRefGoogle Scholar
  22. 22.
    Antosiak-Iwańska M, Sitarek E, Sabat M, Godlewska E, Kinasiewicz J, Weryński A. Isolation, banking, encapsulation and transplantation of different types of Langerhans islets. Pol Arch Med Wewn. 2009;119:311–6.Google Scholar
  23. 23.
    Stover NP, Watts RL. Spheramine for treatment of Parkinson’s disease. Neurotherapeutics. 2008;5:252–9.CrossRefGoogle Scholar
  24. 24.
    Orive G, Tam SK, Pedraz JL, Hallé JP. Biocompatibility of alginate–poly-Llysine microcapsules for cell therapy. Biomaterials. 2006;20:3691–700.CrossRefGoogle Scholar
  25. 25.
    Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater. 2008;7:816–82.CrossRefGoogle Scholar
  26. 26.
    Falk S, Zhang SJ. Sherman, pigment epithelium derived factor (PEDF) is neuroprotective in two in vitro models of Parkinson’s disease. Neurosci Lett. 2009;458:49–52.CrossRefGoogle Scholar
  27. 27.
    Tatard VM, Venier-Julienne MC, Saulnier P, Prechter E, Benoit JP, Meneia P, Montero-Menei CN. Pharmacologically active microcarriers: a tool for cell therapy. Biomaterials. 2005;26:3727–37.CrossRefGoogle Scholar
  28. 28.
    Sommar P, Pettersson S, Ness C, Johnson H, Kratz G, Junker JPE. Engineering three-dimensional cartilage- and bonelike tissues using human dermal fibroblasts and macroporous gelatine microcarriers. J Plast Reconstr Aesthet Surg. 2010;63:1036–46.CrossRefGoogle Scholar
  29. 29.
    Sun ZJ, Lu GJ, Li SY, Yu WT, Wang W, Xie YB, Ma X. Differential role of microenvironment in microencapsulation for improved cell tolerance to stress. Appl Microbiol Biotechnol. 2007;75:1419–27.CrossRefGoogle Scholar
  30. 30.
    Herrero EP, Martín del Valle EM, Galán MA. Immobilization of mesenchymal stem cells and monocytes in biocompatible microcapsules to cell therapy. Biotechnol Prog. 2007;23:940–5.CrossRefGoogle Scholar
  31. 31.
    Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput. 2000;38:211–8.CrossRefGoogle Scholar
  32. 32.
    Rosenblatt J, Devereux B, Wallace DG. Injectable collagen as a pH-sensitive hydrogel. Biomaterials. 1994;15:985–95.CrossRefGoogle Scholar
  33. 33.
    Senuma Y, Franceschin S, Hilborn JG, Tissieres P, Bisson I, Frey P. Bioresorbable microspheres by spinning disk atomization as injectable cell carrier: from preparation to in vitro evaluation. Biomaterials. 2000;21:1135–44.CrossRefGoogle Scholar
  34. 34.
    De Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev. 2014;67–68:15–34. CrossRefGoogle Scholar
  35. 35.
    Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev. 2014;67–68:35–73. CrossRefGoogle Scholar
  36. 36.
    Orive G, Gascón AR, Hernández RM, Igartua M, Pedraz JL. Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci. 2003;24(5):207–10. CrossRefGoogle Scholar
  37. 37.
    Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev. 2014;67–68:111–30. CrossRefGoogle Scholar
  38. 38.
    Calafiore R, Basta G. Clinical application of microencapsulated islets: actual prospectives on progress and challenges. Adv Drug Deliv Rev. 2014;67–68:84–92. CrossRefGoogle Scholar
  39. 39.
    Abbah SA, Lu WW, Chan D, Cheung KMC, Liu WG, Zhao F, Li ZY, Leong JCY, Luk KDK. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem Biophys Res Commun. 2006;347:185–91.CrossRefGoogle Scholar
  40. 40.
    Maguire T, Davidovich AE, Wallenstein EJ, Novik E, Sharma N, Pedersen H, Androulakis IP, Schloss R, Yarmush M. Control of hepatic differentiation via cellular aggregation in an alginate microenvironment. Biotechnol Bioeng. 2007;98:631–44.CrossRefGoogle Scholar
  41. 41.
    Dulieu C, Bazile D. Influence of lipid nanocapsules composition on their aptness to freeze-drying. Pharm Res. 2005;22:285–92.CrossRefGoogle Scholar
  42. 42.
    Iwata H, Amemiya H, Hayashi R, Fujii S, Akutsu T. The use of photocrosslinkable polyvinyl alcohol in the immunoisolation of pancreatic islets. Transplant Proc. 1990;22:797–9.Google Scholar
  43. 43.
    Hymer WC, Wilbur DL, Page R, Hibbard E, Kelsey RC, Hatfield JM. Pituitary hollow fiber units in vivo and in vitro. Neuroendocrinology. 1981;32:339–49.CrossRefGoogle Scholar
  44. 44.
    Qi Z, Shen Y, Yanai G, Yang K, Shirouzu Y, Hiura A, Sumi S. The in vivo performance of polyvinyl alcohol macro-encapsulated islets. Biomaterials. 2010;31:4026–31.CrossRefGoogle Scholar
  45. 45.
    Winn SR, Lindner MD, Lee A, Haggett G, Francis JM, Emerich DF. Polymer-encapsulated genetically modified cells continue to secrete human nerve growth factor for over one year in rat ventricles: behavioral and anatomical consequences. Exp Neurol. 1996;140:126–38.CrossRefGoogle Scholar
  46. 46.
    Vrana NE, O’Grady A, Kay E, Cahill PA, McGuinness GB. Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med. 2009;3:567–72.CrossRefGoogle Scholar
  47. 47.
    Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, Hiura A, Sumi S, Inoue K. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials. 2004;25:5885–92.CrossRefGoogle Scholar
  48. 48.
    Kaur G. Biaoctive glasses:potential biomaterials for future therapy. Heidelberg: Springer; 2017.CrossRefGoogle Scholar
  49. 49.
    Zalipsky S, Mullah N, Harding JA, Gittelman J, Guo L, DeFrees SA. Poly(ethylene glycol)-grafted liposomes with oligopeptide or oligosaccharide ligands appended to the termini of the polymer chains. Bioconjug Chem. 1997;8:111–8.CrossRefGoogle Scholar
  50. 50.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.CrossRefGoogle Scholar
  51. 51.
    Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307–14.CrossRefGoogle Scholar
  52. 52.
    Hubbell JA, Pathak CP, Sawhney AS, Desai NP, Hossainy SFA. Gels for encapsulation of biological materials. US Patent US 5801033 A, CA, USA, 2004.Google Scholar
  53. 53.
    Chang SJ, Lee CH, Hsu CY, Wang YJ. Biocompatible microcapsules with enhanced mechanical strength. J Biomed Mater Res A. 2002;59:118–26.CrossRefGoogle Scholar
  54. 54.
    Nuttelman CR, Rice MA, Rydholm AE, Salinas CN, Shah DN, Anseth KS. Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Prog Polym Sci. 2008;33:167–79.CrossRefGoogle Scholar
  55. 55.
    Andrade JD, Hlady V. Plasma protein adsorption: the big twelve. Ann N Y Acad Sci. 1987;516:158–72.CrossRefGoogle Scholar
  56. 56.
    Sabnis A, Rahimi M, Chapman C, Nguyen KT. Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. J Biomed Mater Res A. 2009;91:52–9.CrossRefGoogle Scholar
  57. 57.
    Cellesi F, Tirelli N, Hubbell JA. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical crosslinking. Biomaterials. 2004;25:5115–24.CrossRefGoogle Scholar
  58. 58.
    Cellesi F, Tirelli N. A new process for cell microencapsulation and other biomaterial applications: thermal gelation and chemical cross-linking in “tandem”. J Mater Sci Mater Med. 2005;16:559–65.CrossRefGoogle Scholar
  59. 59.
    Lin CC, Metters AT, Anseth KS. Functional PEG–peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNFalpha. Biomaterials. 2009;30:4907–14.CrossRefGoogle Scholar
  60. 60.
    Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 1998;19:1287–94.CrossRefGoogle Scholar
  61. 61.
    Sawhney AS, Pathak CP, Hubbell JA. Interfacial photopolymerization of poly(ethylene glycol)-based hydrogels upon alginate–poly(L-lysine) microcapsules for enhanced biocompatibility. Biomaterials. 1993;14:1008–16.CrossRefGoogle Scholar
  62. 62.
    Jang JY, Lee DY, Park SJ, Byun Y. Immune reactions of lymphocytes and macrophages against PEG-grafted pancreatic islets. Biomaterials. 2004;25:3663–9.CrossRefGoogle Scholar
  63. 63.
    Lamberton P, Lipsky M, McMillan P. Use of semipermeable polyurethane hollow fibers for pituitary organ culture. In Vitro Cell Dev Biol. 1988;24:500–4.CrossRefGoogle Scholar
  64. 64.
    Kim YT, Hitchcock R, Broadhead KW, Messina DJ, Tresco PA. A cell encapsulation device for studying soluble factor release from cells transplanted in the rat brain. J Control Release. 2005;102:101–11.CrossRefGoogle Scholar
  65. 65.
    Seymour RB, Kauffman GB. Polyurethanes: a class of modern versatile materials. J Chem Educ. 1992;69:909–14.CrossRefGoogle Scholar
  66. 66.
    Takebe K, Shimura T, Munkhbat B, Hagihara M, Nakanishi H, Tsuji K. Xenogeneic (pig to rat) fetal liver fragment transplantation using macrocapsules for immunoisolation. Cell Transplant. 1996;5:S31–3.CrossRefGoogle Scholar
  67. 67.
    Granicka LH, Kawiak JW, Glowacka E, Werynski A. Encapsulation of OKT3 cells in hollow fibers. ASAIO J. 1996;42:M863–6.CrossRefGoogle Scholar
  68. 68.
    Petersen P, Lembert N, Stenglein S, Planck H, Ammon HP, Becker HD. Insulin secretion from cultured islets encapsulated in immuno- and virus-protective capillaries. Transplant Proc. 2001;33:3520–2.CrossRefGoogle Scholar
  69. 69.
    Deglon N, Heyd B, Tan SA, Joseph JM, Zurn AD, Aebischer P. Central nervous system delivery of recombinant ciliary neurotrophic factor by polymer encapsulated differentiated C2C12 myoblasts. Hum Gene Ther. 1996;7:2135–46.CrossRefGoogle Scholar
  70. 70.
    Ronel SH, D’Andrea MJ, Hashiguchi H, Klomp GF, Dobelle WH. Macroporous hydrogel membranes for a hybrid artificial pancreas. I. Synthesis and chamber fabrication. J. Biomed Mater Res A. 1983;17:855–64.CrossRefGoogle Scholar
  71. 71.
    Sefton MV, May MH, Lahooti S, Babensee JE. Making microencapsulation work: conformal coating, immobilization gels and in vivo performance. J Control Release. 2000;65:173–86.CrossRefGoogle Scholar
  72. 72.
    Fleming AJ, Sefton MV. Viability of hydroxyethyl methacrylate–methyl methacrylate-microencapsulated PC12 cells after omental pouch implantation within agarose gels. Tissue Eng. 2003;9:1023–36.CrossRefGoogle Scholar
  73. 73.
    Gharapetian H, Davies NA, Sun AM. Encapsulation of viable cells within polyacrylate membranes. Biotechnol Bioeng. 1986;28:1595–600.CrossRefGoogle Scholar
  74. 74.
    Sugamori ME, Sefton MV. Microencapsulation of pancreatic islets in a water insoluble polyacrylate. ASAIO Trans. 1989;35:791–9.Google Scholar
  75. 75.
    Lahooti S, Sefton MV. Methods for microencapsulation with HEMA–MMA. Methods Mol Med. 1999;18:331–48.Google Scholar
  76. 76.
    Wells GD, Fisher MM, Sefton MV. Microencapsulation of viable hepatocytes in HEMA–MMA microcapsules: a preliminary study. Biomaterials. 1993;14:615–20.CrossRefGoogle Scholar
  77. 77.
    Uludag H, Sefton MV. Metabolic activity of CHO fibroblasts in HEMA–MMA microcapsules. Biotechnol Bioeng. 1992;39:672–8.CrossRefGoogle Scholar
  78. 78.
    Sukhorukov GB, Donath E, Moya S, Susha AS, Voigt A, Hartmann J, Mohwald H. Microencapsulation by means of step-wise adsorption of polyelectrolytes. J Microencapsul. 2000;17:177–85.CrossRefGoogle Scholar
  79. 79.
    Georgieva R, Moya S, Donath E, Baumler H. Permeability and conductivity of red blood cell templated polyelectrolyte capsules coated with supplementary layers. Langmuir. 2004;20:1895–900.CrossRefGoogle Scholar
  80. 80.
    Brown LF, Detmar M, Claffey K, Nagy JA, Feng D, Dvorak AM, Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS. 1997;79:233–69.Google Scholar
  81. 81.
    Krol S, del Guerra S, Grupillo M, Diaspro A, Gliozzi A, Marchetti P. Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett. 2006;6:1933–9.CrossRefGoogle Scholar
  82. 82.
    Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–85.CrossRefGoogle Scholar
  83. 83.
    Bruni S, Chang TM. Hepatocytes immobilised by microencapsulation in artificial cells: effects on hyperbilirubinemia in Gunn rats. Biomater Artif Cells Artif Organs. 1989;17:403–11.CrossRefGoogle Scholar
  84. 84.
    Teramura Y, Oommen OP, Olerud J, Hilborn J, Nilsson B. Microencapsulation of cells, including islets, within stable ultra-thin membranes of maleimideconjugated PEG-lipid with multifunctional crosslinkers. Biomaterials. 2013;34:2683–93.CrossRefGoogle Scholar
  85. 85.
    Lanza RP, Ecker D, KÅhtreiber WM, Staruk JE, Marsh J, Chick WL. A simple method for transplanting discordant islets into rats using alginate gel spheres. Transplantation. 1995;59:1485–7.CrossRefGoogle Scholar
  86. 86.
    Fu XW, Sun AM. Microencapsulated parathyroid cells as a bioartificial parathyroid. In vivo studies. Transplantation. 1989;47:432–5.CrossRefGoogle Scholar
  87. 87.
    Stokke BT, Smidsroed O, Bruheim P, Skjaak-Braek G. Distribution of urinate residues in alginate chains in relation to alginate gelling properties. Macromolecules. 1991;24:4637–45.CrossRefGoogle Scholar
  88. 88.
    Morch YA, Donati I, Strand BL, Skjak Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006;7:1471–80.CrossRefGoogle Scholar
  89. 89.
    Sobol M, Bartkowiak A, de Haan B, de Vos P. Cytotoxicity study of novel water-soluble chitosan derivatives applied as membrane material of alginate microcapsules. J Biomed Mater Res A. 2013;101:1907–14.CrossRefGoogle Scholar
  90. 90.
    Zhu JH, Wang XW, Ng S, Quek CH, Ho HT, Lao XJ, Yu H. Encapsulating live cells with water-soluble chitosan in physiological conditions. J Biotechnol. 2005;117:355–65.CrossRefGoogle Scholar
  91. 91.
    Haque T, Chen H, Ouyang W, Martoni C, Lawuyi B, Urbanska AM, Prakash S. In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett. 2005;27:317–22.CrossRefGoogle Scholar
  92. 92.
    Karle P, Muller P, Renz R, Jesnowski R, Saller R, von Rombs K, Nizze H, Liebe S, Gunzburg WH, Salmons B, Lohr M. Intratumoral injection of encapsulated cells producing an oxazaphosphorine activating cytochrome P450 for targeted chemotherapy. Adv Exp Med Biol. 1998;451:97–106.CrossRefGoogle Scholar
  93. 93.
    Kubota N, Tatsumoto N, Sano T, Toya K. A simple preparation of half N-acetylated chitosan highly soluble inwater and aqueous organic solvents. Carbohydr Res. 2000;324:268–74.CrossRefGoogle Scholar
  94. 94.
    Gupta S, Kim SK, Vemuru RP, Aragona E, Yerneni PR, Burk RD, Rha CK. Hepatocyte transplantation: an alternative system for evaluating cell survival and immunoisolation. Int J Artif Organs. 1993;16:155–63.Google Scholar
  95. 95.
    Lee BR, Lee KH, Kang E, Kim DS, Lee SH. Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics. 2011;5:22208.CrossRefGoogle Scholar
  96. 96.
    Ruel-Gariepy E, Leclair G, Hildgen P, Gupta A, Leroux JC. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release. 2002;82:373–83.CrossRefGoogle Scholar
  97. 97.
    Dautzenberg H, Schuldt U, Grasnick G, Karle P, Muller P, Lohr M, Pelegrin M, Piechaczyk M, Rombs KV, Gunzburg WH, Salmons B, Saller RM. Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications. Ann N Y Acad Sci. 1999;875:46–63.CrossRefGoogle Scholar
  98. 98.
    Stadlbauer V, Stiegler PB, Schaffellner S, Hauser O, Halwachs G, Iberer F, Tscheliessnigg KH, Lackner C. Morphological and functional characterization of a pancreatic beta-cell line microencapsulated in sodium cellulose sulfate/ poly(diallyldimethylammonium chloride). Xenotransplantation. 2006;13:337–44.CrossRefGoogle Scholar
  99. 99.
    Weber W, Rinderknecht M, Daoud-El Baba M, de Glutz FN, Aubel D, Fussenegger M. CellMAC: a novel technology for encapsulation of mammalian cells in cellulose sulfate/pDADMAC capsules assembled on a transient alginate/Ca2+ scaffold. J Biotechnol. 2004;114:315–26.CrossRefGoogle Scholar
  100. 100.
    Schaffellner S, Stadlbauer V, Stiegler P, Hauser O, Halwachs G, Lackner C, Iberer F, Tscheliessnigg KH. Porcine islet cells microencapsulated in sodium cellulose sulfate. Transplant Proc. 2005;37:248–52.CrossRefGoogle Scholar
  101. 101.
    Yang H, Zhao K, Ye Y, Deng S. Study of macroencapsulated islet xenografts for treatment of diabetes in mice. Hua Xi Yi Ke Da Xue Xue Bao. 1998;29:132–5.Google Scholar
  102. 102.
    Scheirer W, Nilsson K, Merten OW, Katinger HW, Mosbach K. Entrapment of animal cells for the production of biomolecules such as monoclonal antibodies. Dev Biol Stand. 1983;55:155–61.Google Scholar
  103. 103.
    Jain K, Yang H, Cai BR, Haque B, Hurvitz AI, Diehl C, Miyata T, Smith BH, Stenzel K, Suthanthiran M, et al. Retrievable, replaceable, macroencapsulated pancreatic islet xenografts Long-term engraftment without immunosuppression. Transplantation. 1995;59:319–24.CrossRefGoogle Scholar
  104. 104.
    Yin C, Chia SM, Quek CH, Yu H, Zhuo RX, Leong KW, Mao HQ. Microcapsules with improved mechanical stability for hepatocyte culture. Biomaterials. 2003;24:1771–80.CrossRefGoogle Scholar
  105. 105.
    Lahooti S, Sefton MV. Microencapsulation of normal and transfected L929 fibroblasts in a HEMA–MMA copolymer. Tissue Eng. 2000;6:139–49.CrossRefGoogle Scholar
  106. 106.
    Wu FJ, Friend JR, Lazar A, Mann HJ, Remmel RP, Cerra FB, Hu WS. Hollow fiber bioartificial liver utilizing collagen-entrapped porcine hepatocyte spheroids. Biotechnol Bioeng. 1996;52:34–44.CrossRefGoogle Scholar
  107. 107.
    Vendruscolo CW, Andreazza IF, Ganter JL, Ferrero C, Bresolin TM. Xanthan and galactomannan (from M. scabrella) matrix tablets for oral controlled delivery of theophylline. Int J Pharm. 2005;296:1–11.CrossRefGoogle Scholar
  108. 108.
    Mendes AC, Baran ET, Pereira RC, Azevedo HS, Reis RL. Encapsulation and survival of a chondrocyte cell line within xanthan gum derivative. Macromol Biosci. 2012;12:350–9.CrossRefGoogle Scholar
  109. 109.
    Zanin MP, Pettingill LN, Harvey AR, Emerich DF, Thanos CG, Shepherd RK. The development of encapsulated cell technologies as therapies for neurological and sensory diseases. J Control Release. 2012;160(1):3–13. CrossRefGoogle Scholar
  110. 110.
    Hasse C, Zielke A, Klöck G, Schlosser A, Barth P, Zimmermann U, … Rothmund M. Amitogenic alginates: key to first clinical application of microencapsulation technology. World J Surg. 1998;22(7):659–65.
  111. 111.
    Giri J, Li WJ, Tuan RS, Cicerone MT. Stabilization of proteins by nanoencapsulation in sugar-glass for tissue engineering and drug delivery applications. Adv Mater. 2011;23(42):4861–7. Scholar
  112. 112.
    Emerich DF, Orive G, Thanos C, Tornoe J, Wahlberg LU. Encapsulated cell therapy for neurodegenerative diseases: from promise to product. Adv Drug Deliv Rev. 2014;67–68:131–41. CrossRefGoogle Scholar
  113. 113.
    Bhujbal SV, de Vos P, Niclou SP. Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev. 2014;67–68:142–53. CrossRefGoogle Scholar
  114. 114.
    Downing R. Historical review of pancreatic islet transplantation. World J Surg. 1984;8:137–42.CrossRefGoogle Scholar
  115. 115.
    Papaspyros NS. The history of diabetes mellitus. Stuttgart: George Thieme Verlag; 1964.Google Scholar
  116. 116.
    Sorenson RL. Isolation of an insulin secretion granule rich fraction from rat islets. Anat Rec. 1968;160:498.Google Scholar
  117. 117.
    Scharp DW, Kemp CB, Knight MJ, Ballinger WF, Lacy PE. The use of Ficoll in the preparation of viable islets of Langerhans fromthe rat pancreas. Transplantation. 1973;16:686–9.CrossRefGoogle Scholar
  118. 118.
    Moskalewski S. Isolation and culture of the islets of Langerhans of the Guinea pig. Gen Comp Endocrinol. 1965;5:342–53.CrossRefGoogle Scholar
  119. 119.
    Lacy PE, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967;16:35–9.CrossRefGoogle Scholar
  120. 120.
    Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery. 1972;72:175–86.Google Scholar
  121. 121.
    Tuch BE, Keogh GW, Williams LJ, Wu W, Foster JL, Vaithilingam V, Philips R. Safety and viability of microencapsulated human islets transplanted into diabetic human. Diabetes Care. 2009;32:1887–9.CrossRefGoogle Scholar
  122. 122.
    Teramura Y, Iwata H. Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials. 2009;30:2270–5.CrossRefGoogle Scholar
  123. 123.
    Garcia P, Youssef I, Utvik JK, Florent-Béchard S, Barthélémy V, Malaplate-Armand C, Kriem B, Stenger C, Koziel V, Olivier JL, Escanye MC, Hanse M, Allouche A, Desbène C, Yen FT, Bjerkvig R, Oster T, Niclou SP, Pillot T. Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci. 2010;30:7516–27.CrossRefGoogle Scholar
  124. 124.
    Spuch C, Antequera D, Portero A, Orive G, Hernández RM, Molina JA, Bermejo-Pareja F, Pedraz JL, Carro E. The effect of encapsulated VEGF-secreting cells on brain amyloid and behavioral impairment in amouse model of Alzheimer’s disease. Biomaterials. 2010;31:5608–18.CrossRefGoogle Scholar
  125. 125.
    Emerich DF, Lindner MD, Winn SR, Chen E, Frydel B, Kordower JH. Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease. J Neurosci. 1996;1:5168–81.Google Scholar
  126. 126.
    Emerich DF, Cain CK, Greco C, Saydoff JA, Hu Z-Y, Liu H, Lindner MD. Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington’s disease. Cell Transplant. 1997;6:249–66.CrossRefGoogle Scholar
  127. 127.
    Emerich DF, Winn SR, Hantraye PM, Peschanski M, Chen E, Chu Y, McDermott P, Baetge EE, Kordower JH. Protective effects of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature. 1997;386:395–9.CrossRefGoogle Scholar
  128. 128.
    Lindvall O, Wahlberg LU. Encapsulated cell biodelivery of GDNF: a novel clinical strategy for neuroprotection and neuroregeneration in Parkinson’s disease? Exp Neurol. 2008;209:82–8.CrossRefGoogle Scholar
  129. 129.
    Zheng JS, Tang LL, Zheng SS, Zhan RY, Zhou YQ, Goudreau J, Kaufman D, Chen AF. Delayed gene therapy of glial cell line-derived neurotrophic factor is efficacious in a rat model of Parkinson’s disease. Brain Res Mol Brain Res. 2005;134:155–61.CrossRefGoogle Scholar
  130. 130.
    Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA. Functional recovery in parkinsonian monkeys treated with GDNF. Nature. 1996;380:252–5.CrossRefGoogle Scholar
  131. 131.
    Tresco PA, Winn SR, Aebischer P. Polymer encapsulated neurotransmitter secreting cells: potential treatment for Parkinson’s disease. ASAIO. 1992;38:17–23.CrossRefGoogle Scholar
  132. 132.
    Tresco PA, Winn SR, Jaeger CB, Greene LA, Aebischer P. Polymer-encapsulated PC12 cells: long-term survival and associated reduction in lesioned-induced rotational behavior. Cell Transplant. 1992;1:255–64.Google Scholar
  133. 133.
    Emerich DF, Winn SR, Harper J, Hammang JP, Baetge EE, Kordower JH. Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. J Comp Neurol. 1994;349:148–64.CrossRefGoogle Scholar
  134. 134.
    Winn SR, Hammang JP, Emerich DF, Lee A, Palmiter RD, Baetge EE. Polymer-encapsulated cells genetically modified to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons. Proc Natl Acad Sci U S A. 1994;91:2324–8.CrossRefGoogle Scholar
  135. 135.
    Lee J-L, Ahn J-H, Park SH, Lim HY, Kwon JH, Ahn S, et al. Phase II study of a cremophor-free, polymeric micelle formulation of paclitaxel for patients with advanced urothelial cancer previously treated with gemcitabine and platinum. Investig New Drugs. 2012;k30:1984–90.CrossRefGoogle Scholar
  136. 136.
    Saif MW, Podoltsev NA, Rubin MS, Figueroa JA, Lee MY, Kwon J, et al. Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer. Cancer Investig. 2010;28:186–94.CrossRefGoogle Scholar
  137. 137.
    Read TA, Sorensen DR, Mahesparan R, Enger PO, Timpl R, Olsen BR, et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol. 2001;19:29–34.CrossRefGoogle Scholar
  138. 138.
    Terzis AJA, Niclou SP, Rajcevic U, Danzeisen C, Bjerkvig R. Cell therapies for glioblastoma. Expert Opin Biol Ther. 2006;6:739–49.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gurbinder Kaur
    • 1
  • Francesco Baino
    • 2
  • John C. Mauro
    • 3
  • Vishal Kumar
    • 4
  • Gary Pickrell
    • 5
  • Nammalwar Sriranganathan
    • 6
  • Steven Grant Waldrop
    • 6
  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  2. 2.Institute of Materials Physics and Engineering, Applied Science and Technology Department (DISAT), Politecnico di TorinoTorinoItaly
  3. 3.Science and Technology DivisionCorning IncorporatedCorningUSA
  4. 4.Sri Guru Granth Sahib World UniversityFatehGarh SahibIndia
  5. 5.Department of Material Science and EngineeringHolden Hall, Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  6. 6.Department of Biomedical Sciences and PathobiologyVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations