Antibacterial Properties of Bioactive Glasses



Nanosized bioactive glasses, ion and natural organic substances and blended/doped bioactive glasses have been gaining growing attention due to their superior osteoconductivity and antibacterial characteristics in contrast to conventional (micron-sized) bioactive glass materials. The combination of bioactive glass nanoparticles with various ions like silver (Ag+), copper (Cu2+), cerium (Ce2+), zinc (Zn2+) and various organic naturally occurring substances can be used in various orthopaedic, soft tissue and dental applications, including tissue engineering and regenerative medicine to treat various bacterial infections that may have been caused by bacterial species like Escherichia coli, Saprospira grandis, Streptococcus faecalis, Streptococcus aureus and Pseudomonas aeruginosa. This chapter presents the available methods for the preparation of these materials, their application, type of bioactive glasses, factors that play a vital role in enhancing their antibacterial properties against various bacterial traits and a brief detail of techniques applied to carry out antibacterial studies of nanosized bioactive glasses.


Bioactive glass Silicate glass Phosphate glass Borate glass Processing techniques Classification of bioactive glass Types of bioactive glass Metal doped bioactive glass Antibacterial properties of bioactive glass Silver Copper Cerium Zinc Surface area Morphology Simulate body fluid 


  1. 1.
    Hench LL, Wilson J. An introduction to bioceramics, vol. 1. Singapore: World Scientific; 1993.CrossRefGoogle Scholar
  2. 2.
    Aurégan J-C, Bégué T. Bioactive glass for long bone infection: a systematic review. Injury. 2015;46:S3–7.CrossRefGoogle Scholar
  3. 3.
    Hu S, et al. Study on antibacterial effect of 45S5 Bioglass®. J Mater Sci Mater Med. 2009;20(1):281–6.CrossRefGoogle Scholar
  4. 4.
    Rahaman MN, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7(6):2355–73.CrossRefGoogle Scholar
  5. 5.
    Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11(5–6):768–77.CrossRefGoogle Scholar
  6. 6.
    Donaruma LG. In: Williams DF, editor. Definitions in biomaterials. Amsterdam: Elsevier; 1987. 72 pp, 1988, Wiley Online Library.Google Scholar
  7. 7.
    Park J, Lakes RS. Biomaterials: an introduction. New York: Springer Science & Business Media; 2007.Google Scholar
  8. 8.
    Hench LL, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5(6):117–41.CrossRefGoogle Scholar
  9. 9.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15.CrossRefGoogle Scholar
  10. 10.
    Stoor P, Söderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand. 1998;56(3):161–5.CrossRefGoogle Scholar
  11. 11.
    Hench LL, Andersson O. Bioactive glasses. Adv Ser Ceram. 1993;1:41–62.Google Scholar
  12. 12.
    Leppäranta O, et al. Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med. 2008;19(2):547–51.CrossRefGoogle Scholar
  13. 13.
    Arkudas A, et al. Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng Part C Methods. 2013;19(6):479–86.CrossRefGoogle Scholar
  14. 14.
    Välimäki V-V, Aro H. Molecular basis for action of bioactive glasses as bone graft substitute. Scand J Surg. 2006;95(2):95–102.CrossRefGoogle Scholar
  15. 15.
    Coraça-Huber DC, et al. Efficacy of antibacterial bioactive glass S53P4 against S. Aureus biofilms grown on titanium discs in vitro. J Orthop Res. 2014;32(1):175–7.CrossRefGoogle Scholar
  16. 16.
    Saqaei M, et al. Effects of adding forsterite bioceramic on in vitro activity and antibacterial properties of bioactive glass-forsterite nanocomposite powders. Adv Powder Technol. 2016;27:1922–32.CrossRefGoogle Scholar
  17. 17.
    Andersson Ö, et al. Evaluation of the acceptance of glass in bone. J Mater Sci Mater Med. 1992;3(2):145–50.CrossRefGoogle Scholar
  18. 18.
    Andersson OH, et al. Models for physical properties and bioactivity of phosphate opal glasses. Glastech Ber. 1988;61(10):300–5.Google Scholar
  19. 19.
    Gross UM, Strunz V. The anchoring of glass ceramics of different solubility in the femur of the rat. J Biomed Mater Res. 1980;14(5):607–18.CrossRefGoogle Scholar
  20. 20.
    Li J, et al. In vitro biocompatibility study of calcium phosphate glass ceramic scaffolds with different trace element doping. Mater Sci Eng C. 2012;32(2):356–63.CrossRefGoogle Scholar
  21. 21.
    Li R, Clark A, Hench L. An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater. 1991;2(4):231–9.CrossRefGoogle Scholar
  22. 22.
    Franks K, et al. Investigation of thermal parameters and crytallisation in a ternary CaO–Na 2 O–P 2 O 5-based glass system. Biomaterials. 2001;22(5):497–501.CrossRefGoogle Scholar
  23. 23.
    Hench LL, Paschall H. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res. 1973;7(3):25–42.CrossRefGoogle Scholar
  24. 24.
    Abbasi Z, et al. Bioactive glasses in dentistry: a review. J Dent Biomater. 2015;2(1):1–9.Google Scholar
  25. 25.
    Sakka S. Glasses and glass-ceramics from gels. J Non-Cryst Solids. 1985;73(1–3):651–60.CrossRefGoogle Scholar
  26. 26.
    Brinker CJ, Scherer GW. Sol→ gel→ glass: I. Gelation and gel structure. J Non-Cryst Solids. 1985;70(3):301–22.CrossRefGoogle Scholar
  27. 27.
    Laudisio G, Branda F. Sol–gel synthesis and crystallisation of 3CaO· 2SiO 2 glassy powders. Thermochim Acta. 2001;370(1):119–24.CrossRefGoogle Scholar
  28. 28.
    Mortazavi V, et al. Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria. J Biomed Mater Res A. 2010;94(1):160–8.CrossRefGoogle Scholar
  29. 29.
    Greenspan D, Zhong J, LaTorre G. Evaluation of surface structure of bioactive glasses in-vitro. Bioceramics. 1995;8:477–82.Google Scholar
  30. 30.
    Sepulveda P, Jones JR, Hench LL. Characterization of melt-derived 45S5 and sol-gel–derived 58S bioactive glasses. J Biomed Mater Res. 2001;58(6):734–40.CrossRefGoogle Scholar
  31. 31.
    Wasko MK, Borens O. Antibiotic cement nail for the treatment of posttraumatic intramedullary infections of the tibia: midterm results in 10 cases. Injury. 2013;44(8):1057–60.CrossRefGoogle Scholar
  32. 32.
    Hake ME, et al. Local antibiotic therapy strategies in orthopaedic trauma: practical tips and tricks and review of the literature. Injury. 2015;46(8):1447–56.CrossRefGoogle Scholar
  33. 33.
    Arias PP, et al. Activity of bone cement loaded with daptomycin alone or in combination with gentamicin or PEG600 against Staphylococcus epidermidis biofilms. Injury. 2015;46(2):249–53.CrossRefGoogle Scholar
  34. 34.
    Brunner TJ, Grass RN, Stark WJ. Glass and bioglass nanopowders by flame synthesis. Chem Commun. 2006;13:1384–6.CrossRefGoogle Scholar
  35. 35.
    Brunner TJ, Grass RN, Stark WJ. Glass and bioactive glass nanopowders by flame synthesis. Eur Cells Mater. 2006;11:18.Google Scholar
  36. 36.
    Han J-K, et al. Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Mater Chem Phys. 2006;99(2):235–9.CrossRefGoogle Scholar
  37. 37.
    Kim W, Saito F. Sonochemical synthesis of hydroxyapatite from H 3 PO 4 solution with Ca (OH) 2. Ultrason Sonochem. 2001;8(2):85–8.CrossRefGoogle Scholar
  38. 38.
    Sarkar SK, Lee BT. Synthesis of bioactive glass by microwave energy irradiation and its In-vitro biocompatibility. Bioceram Dev Appl. 2011;1:1–3.Google Scholar
  39. 39.
    Clark DE, Pantano Jr CG, Hench LL. Corrosion of glass. New York: Books for Industry and the Glass Industry; 1979.Google Scholar
  40. 40.
    Greenspan DC. Bioactive glass: mechanisms of bone bonding. Tandläkartidningen Ǻrk. 1999;91(8):1–32.Google Scholar
  41. 41.
    Wallace K, et al. Influence of sodium oxide content on bioactive glass properties. J Mater Sci Mater Med. 1999;10(12):697–701.CrossRefGoogle Scholar
  42. 42.
    Hench LL. A genetic theory of bioactive materials. In: Key engineering materials. Uetikon-Zuerich: Trans Tech Publ.; 2001.Google Scholar
  43. 43.
    González P, et al. Raman spectroscopic study of bioactive silica based glasses. J Non-Cryst Solids. 2003;320(1):92–9.CrossRefGoogle Scholar
  44. 44.
    Vichery C, Nedelec J-M. Bioactive glass nanoparticles: from synthesis to materials design for miomedical applications. Materials. 2016;9(4):288.CrossRefGoogle Scholar
  45. 45.
    Liu S, et al. The effect of submicron bioactive glass particles on in vitro osteogenesis. RSC Adv. 2015;5(49):38830–6.CrossRefGoogle Scholar
  46. 46.
    Srivatsan T. Processing and fabrication of advanced materials, XVII: part 8: polymer-based composites and nano composites: volume two, vol. 2. New Delhi: IK International Pvt Ltd; 2009.Google Scholar
  47. 47.
    Gorustovich AA, et al. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A. 2010;92(1):232–7.CrossRefGoogle Scholar
  48. 48.
    Hench LL. Bioceramics. J Am Ceram Soc. 1998;81(7):1705–28.CrossRefGoogle Scholar
  49. 49.
    Neel EAA, et al. Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem. 2009;19(6):690–701.CrossRefGoogle Scholar
  50. 50.
    Pan H, et al. Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interf. 2009:rsif20090504.Google Scholar
  51. 51.
    Khera RA, Iqbal M. Nanoscale bioactive glasses and their composites with biocompatible polymers. Chem Int. 2015;1(1):17–34.Google Scholar
  52. 52.
    Brink M, et al. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. J Biomed Mater Res. 1997;37(1):114–21.CrossRefGoogle Scholar
  53. 53.
    Yamaguchi M, Oishi H, Suketa Y. Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol. 1987;36(22):4007–12.CrossRefGoogle Scholar
  54. 54.
    Du RL, et al. Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics. J Biomater Appl. 2006;20(4):341–60.CrossRefGoogle Scholar
  55. 55.
    Beherei HH, Mohamed KR, Mahmoud AI. Preparation, bioactivity and antibacterial effect of bioactive glass/chitosan biocomposites. In: 13th international conference on biomedical engineering. Berlin/Heidelberg: Springer; 2009.Google Scholar
  56. 56.
    Saino E, et al. In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass. Eur Cell Mater. 2011;21(2):59–72.CrossRefGoogle Scholar
  57. 57.
    Tang Z-L, et al. Role of zinc in pulmonary endothelial cell response to oxidative stress. Am J Phys Lung Cell Mol Phys. 2001;281(1):L243–9.Google Scholar
  58. 58.
    Yamaguchi M, Inamoto K, Suketa Y. Effect of essential trace metals on bone metabolism in weanling rats: comparison with zinc and other metals’ actions. Res Exp Med. 1986;186(5):337–42.CrossRefGoogle Scholar
  59. 59.
    Oki A, et al. Preparation and in vitro bioactivity of zinc containing sol-gel–derived bioglass materials. J Biomed Mater Res A. 2004;69(2):216–21.CrossRefGoogle Scholar
  60. 60.
    Courthéoux L, et al. Controlled bioactivity in zinc-doped sol-gel-derived binary bioactive glasses. J Phys Chem C. 2008;112(35):13663–7.CrossRefGoogle Scholar
  61. 61.
    Bini M, et al. SiO2− P2O5− CaO glasses and glass-ceramics with and without ZnO: relationships among composition, microstructure, and bioactivity. J Phys Chem C. 2009;113(20):8821–8.CrossRefGoogle Scholar
  62. 62.
    Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11):2757–74.CrossRefGoogle Scholar
  63. 63.
    Goh Y-F, et al. In-vitro characterization of antibacterial bioactive glass containing ceria. Ceram Int. 2014;40(1):729–37.CrossRefGoogle Scholar
  64. 64.
    Garner J, Heppell P. Cerium nitrate in the management of burns. Burns. 2005;31(5):539–47.CrossRefGoogle Scholar
  65. 65.
    Lin Y, Yang Z, Cheng J. Preparation, characterization and antibacterial property of cerium substituted hydroxyapatite nanoparticles. J Rare Earths. 2007;25(4):452–6.CrossRefGoogle Scholar
  66. 66.
    Cai X, et al. Synergistic antibacterial zinc ions and cerium ions loaded α-zirconium phosphate. Mater Lett. 2012;67(1):199–201.CrossRefGoogle Scholar
  67. 67.
    Aimei C, et al. Dissociation of outer membrane for Escherichia coli cell caused by cerium nitrate. J Rare Earths. 2010;28(2):312–5.CrossRefGoogle Scholar
  68. 68.
    Singh RK, Srinivasan A. Apatite-forming ability and magnetic properties of glass-ceramics containing zinc ferrite and calcium sodium phosphate phases. Mater Sci Eng C. 2010;30(8):1100–6.CrossRefGoogle Scholar
  69. 69.
    Zhang H, et al. Aqueous dispersed conducting polyaniline nanofibers: promising high specific capacity electrode materials for supercapacitor. J Power Sources. 2011;196(23):10484–9.CrossRefGoogle Scholar
  70. 70.
    Zhu L, et al. Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive salmonella enterica. Food Microbiol. 2012;30(1):303–10.CrossRefGoogle Scholar
  71. 71.
    Ibrahim SA, Yang H, Seo CW. Antimicrobial activity of lactic acid and copper on growth of salmonella and Escherichia coli O157: H7 in laboratory medium and carrot juice. Food Chem. 2008;109(1):137–43.CrossRefGoogle Scholar
  72. 72.
    Jaiswal S, McHale P, Duffy B. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol–gel surfaces. Colloids Surf B: Biointerfaces. 2012;94:170–6.CrossRefGoogle Scholar
  73. 73.
    Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25(13):135101.CrossRefGoogle Scholar
  74. 74.
    El-Kady MF, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science. 2012;335(6074):1326–30.CrossRefGoogle Scholar
  75. 75.
    El-Kady AM, Ali AF. Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceram Int. 2012;38(2):1195–204.CrossRefGoogle Scholar
  76. 76.
    Goh YF, et al. Bioactive glass: an in-vitro comparative study of doping with nanoscale copper and silver particles. Int J Appl Glas Sci. 2014;5(3):255–66.CrossRefGoogle Scholar
  77. 77.
    Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003;54(2):177–82.CrossRefGoogle Scholar
  78. 78.
    Prabhu M, et al. Preparation and characterization of silver-doped nanobioactive glass particles and their in vitro behaviour for biomedical applications. J Nanosci Nanotechnol. 2013;13(8):5327–39.CrossRefGoogle Scholar
  79. 79.
    Bellantone M, Coleman NJ, Hench LL. Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res. 2000;51(3):484–90.CrossRefGoogle Scholar
  80. 80.
    Bellantone M, Williams HD, Hench LL. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother. 2002;46(6):1940–5.CrossRefGoogle Scholar
  81. 81.
    Fan F-Y, et al. Preparation and characterization of silver nanocrystals decorated mesoporous bioactive glass via synchrotron X-ray reduction. J Non-Cryst Solids. 2016;450:128–34.CrossRefGoogle Scholar
  82. 82.
    Shi Z, et al. Facile fabrication and characterization of poly (tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes with conducting and antibacterial property. Appl Surf Sci. 2012;258(17):6359–65.CrossRefGoogle Scholar
  83. 83.
    Yang F-C, et al. Evaluation of the antibacterial efficacy of bamboo charcoal/silver biological protective material. Mater Chem Phys. 2009;113(1):474–9.CrossRefGoogle Scholar
  84. 84.
    Pratten J, et al. In vitro attachment of Staphylococcus epidermidis to surgical sutures with and without Ag-containing bioactive glass coating. J Biomater Appl. 2004;19(1):47–57.CrossRefGoogle Scholar
  85. 85.
    Blaker JJ, Boccaccini AR, Nazhat SN. Thermal characterizations of silver-containing bioactive glass-coated sutures. J Biomater Appl. 2005;20(1):81–98.CrossRefGoogle Scholar
  86. 86.
    Blaker J, Nazhat S, Boccaccini A. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials. 2004;25(7):1319–29.CrossRefGoogle Scholar
  87. 87.
    Balamurugan A, et al. An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent Mater. 2008;24(10):1343–51.CrossRefGoogle Scholar
  88. 88.
    Efrima S, Bronk B. Silver colloids impregnating or coating bacteria. J Phys Chem B. 1998;102(31):5947–50.CrossRefGoogle Scholar
  89. 89.
    Liau S, et al. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett Appl Microbiol. 1997;25(4):279–83.CrossRefGoogle Scholar
  90. 90.
    Solioz M, Odermatt A. Copper and silver transport by CopB-ATPase in membrane vesicles of enterococcus hirae. J Biol Chem. 1995;270(16):9217–21.CrossRefGoogle Scholar
  91. 91.
    Seuss S, Heinloth M, Boccaccini AR. Development of bioactive composite coatings based on combination of PEEK, bioactive glass and Ag nanoparticles with antibacterial properties. Surf Coat Technol. 2016;301:1–148.CrossRefGoogle Scholar
  92. 92.
    El-Kady AM, et al. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram Int. 2012;38(1):177–88.CrossRefGoogle Scholar
  93. 93.
    Waltimo T, et al. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res. 2007;86(8):754–7.CrossRefGoogle Scholar
  94. 94.
    Gentleman E, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31(14):3949–56.CrossRefGoogle Scholar
  95. 95.
    Brauer DS, et al. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses. J R Soc Interf. 2012:rsif20120647.Google Scholar
  96. 96.
    Lewis A. Drug-device combination products: delivery technologies and applications. Boca Raton: Elsevier; 2009.Google Scholar
  97. 97.
    Schierholz J, et al. The antimicrobial efficacy of a new central venous catheter with long-term broad-spectrum activity. J Antimicrob Chemother. 2000;46(1):45–50.CrossRefGoogle Scholar
  98. 98.
    Alkhraisat MH, et al. Loading and release of doxycycline hyclate from strontium-substituted calcium phosphate cement. Acta Biomater. 2010;6(4):1522–8.CrossRefGoogle Scholar
  99. 99.
    Dabsie F, et al. Does strontium play a role in the cariostatic activity of glass ionomer?: Strontium diffusion and antibacterial activity. J Dent. 2009;37(7):554–9.CrossRefGoogle Scholar
  100. 100.
    Guida A, et al. Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J Mater Sci Lett. 2003;22(20):1401–3.CrossRefGoogle Scholar
  101. 101.
    Boccaccini A, et al. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials. 2004;25(7–8):1319–29.Google Scholar
  102. 102.
    Bunting S, et al. Bioresorbable glass fibres facilitate peripheral nerve regeneration. J Hand Surg (Br Eur). 2005;30(3):242–7.CrossRefGoogle Scholar
  103. 103.
    Stanley HR, et al. Using 45S5 bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. Int J Oral Maxillofac Implants. 1997;12(1):95–105.Google Scholar
  104. 104.
    Kalmodia S, Molla AR, Basu B. In vitro cellular adhesion and antimicrobial property of SiO2–MgO–Al2O3–K2O–B2O3–F glass ceramic. J Mater Sci Mater Med. 2010;21(4):1297–309.CrossRefGoogle Scholar
  105. 105.
    Echezarreta-López M, Landin M. Using machine learning for improving knowledge on antibacterial effect of bioactive glass. Int J Pharm. 2013;453(2):641–7.CrossRefGoogle Scholar
  106. 106.
    Zhang D, et al. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A. 2010;93(2):475–83.Google Scholar
  107. 107.
    Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580–8.CrossRefGoogle Scholar
  108. 108.
    Simchi A, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol Biol Med. 2011;7(1):22–39.CrossRefGoogle Scholar
  109. 109.
    Pye A, et al. A review of dental implants and infection. J Hosp Infect. 2009;72(2):104–10.CrossRefGoogle Scholar
  110. 110.
    Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27(11):2331–9.CrossRefGoogle Scholar
  111. 111.
    Waltimo T, et al. Fine-tuning of bioactive glass for root canal disinfection. J Dent Res. 2009;88(3):235–8.CrossRefGoogle Scholar
  112. 112.
    Zehnder M, et al. Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(4):530–5.CrossRefGoogle Scholar
  113. 113.
    Misra SK, et al. Poly (3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials. 2010;31(10):2806–15.CrossRefGoogle Scholar
  114. 114.
    Gorriti MF, et al. In vitro study of the antibacterial activity of bioactive glass-ceramic scaffolds. Adv Eng Mater. 2009;11(7):B67–70.CrossRefGoogle Scholar
  115. 115.
    Xie ZP, et al. In vivo study effect of particulate bioglass® in the prevention of infection in open fracture fixation. J Biomed Mater Res B Appl Biomater. 2009;90(1):195–201.Google Scholar
  116. 116.
    Day RM, Boccaccini AR. Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. J Biomed Mater Res A. 2005;73(1):73–9.CrossRefGoogle Scholar
  117. 117.
    Verrier S, et al. PDLLA/bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials. 2004;25(15):3013–21.CrossRefGoogle Scholar
  118. 118.
    Palza H, et al. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method. Mater Sci Eng C. 2013;33(7):3795–801.CrossRefGoogle Scholar
  119. 119.
    Prabhu M, et al. Synthesis, characterization and biological response of magnesium-substituted nanobioactive glass particles for biomedical applications. Ceram Int. 2013;39(2):1683–94.CrossRefGoogle Scholar
  120. 120.
    Munukka E, et al. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med. 2008;19(1):27–32.CrossRefGoogle Scholar
  121. 121.
    Prabhu M, et al. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder. Biomed Res Int. 2014;2014:1–10.Google Scholar
  122. 122.
    Zhang D, et al. Factors controlling antibacterial properties of bioactive glasses. In: Key engineering materials. Uetikon-Zuerich: Trans Tech Publ.; 2007.Google Scholar
  123. 123.
    Zhang D, et al. Comparison of antibacterial effect of three bioactive glasses. In: Key engineering materials. Uetikon-Zuerich: Trans Tech Publ.; 2006.Google Scholar
  124. 124.
    Andersson Ö, Kangasniemi I. Calcium phosphate formation at the surface of bioactive glass in vitro. J Biomed Mater Res. 1991;25(8):1019–30.CrossRefGoogle Scholar
  125. 125.
    Allan I, Newman H, Wilson M. Antibacterial activity of particulate bioglass® against supra-and subgingival bacteria. Biomaterials. 2001;22(12):1683–7.CrossRefGoogle Scholar
  126. 126.
    Green SA. Complications of external skeletal fixation. Clin Orthop Relat Res. 1983;180:109–16.Google Scholar
  127. 127.
    Sepulveda P, Jones J, Hench L. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res. 2002;61(2):301–11.CrossRefGoogle Scholar
  128. 128.
    Seuss S, Lehmann M, Boccaccini AR. Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings. Int J Mol Sci. 2014;15(7):12231–42.CrossRefGoogle Scholar
  129. 129.
    Delben JRJ, et al. Synthesis and thermal properties of nanoparticles of bioactive glasses containing silver. J Therm Anal Calorim. 2009;97(2):433–6.CrossRefGoogle Scholar
  130. 130.
    Biswas K, et al. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci (Bangalore). 2002;82(11):1336–45.Google Scholar
  131. 131.
    Li J, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;36:254–66.CrossRefGoogle Scholar
  132. 132.
    Wang Y, et al. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry. Eur Cell Mater. 2015;29:342–55.CrossRefGoogle Scholar
  133. 133.
    Turner NJ, et al. Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction. Tissue Eng A. 2010;16(11):3309–17.CrossRefGoogle Scholar
  134. 134.
    Singelyn JM, et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol. 2012;59(8):751–63.CrossRefGoogle Scholar
  135. 135.
    Marelli B, et al. Three-dimensional mineralization of dense nanofibrillar collagen − bioglass hybrid scaffolds. Biomacromolecules. 2010;11(6):1470–9.CrossRefGoogle Scholar
  136. 136.
    Ahlborn G, Sheldon BW. Identifying the components in eggshell membrane responsible for reducing the heat resistance of bacterial pathogens. J Food Prot. 2006;69(4):729–38.CrossRefGoogle Scholar
  137. 137.
    Zhu H, et al. Preparation and antibacterial property of silver-containing mesoporous 58S bioactive glass. Mater Sci Eng C. 2014;42:22–30.CrossRefGoogle Scholar
  138. 138.
    Shih S.-J, et al. Investigation of bioactive and antibacterial effects of graphene oxide-doped bioactive glass. Adv Powder Technol. 2016;27(3):1013–20.Google Scholar
  139. 139.
    Liu Y-Z, et al. Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass. Mater Sci Eng C. 2014;41:196–205.CrossRefGoogle Scholar
  140. 140.
    Liu J, et al. Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects. Dent Mater. 2016;32(10):e221–37.CrossRefGoogle Scholar
  141. 141.
    Liu J, et al. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater. 2016;32(3):412–22.CrossRefGoogle Scholar
  142. 142.
    Vaahtio M, et al. Effect of ion release on antibacterial activity of melt-derived and sol-gel-derived reactive ceramics. In: Key engineering materials. Uetikon-Zuerich: Trans Tech Publ.; 2006.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ChemistryGovernment Degree CollegeRaiwindPakistan
  2. 2.Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations