Advertisement

How Did Bioactive Glasses Revolutionize Medical Science? A Tribute to Larry Hench

  • Gurbinder Kaur
  • John C. Mauro
  • Vishal Kumar
  • Gary Pickrell
  • Francesco Baino
Chapter

Abstract

Biomaterials influence human lives through their versatile medical applications and very promising future. A large number of pharmaceutical firms and manufacturing companies are investing in the production, development, and commercialization of new biomaterial products. The biomaterials industry is a large contributor to the overall market for medical technology, resulting in approximately $42 billion in annual sales with an anticipated growth rate of ~15–18% over the succeeding years. The rapid growth of this large industry is a direct result of its positive influence on the quality of human life. Biomaterials have already opened a large range of medical devices for the skin, bone and dental repair, artificial arteries, limb replacements, nerve guidance tubes, mechanical heart valves, stents, and pacemakers, all of which can increase the quality and length of life for people around the globe. Bioactive glasses are excellent examples of biomaterials for clinical applications owing to their high biocompatibility, bioactivity, and flexibility in compositional design and properties. The invention of Bioglass® by Prof. Larry Hench magnificently revolutionized the medical industry. Following this breakthrough, many research groups have actively engaged in developing different bioactive glasses and implementing them for scaffold generation, tissue engineering, ophthalmology, cranioplasty implants, angiogenesis, wound healing, and cardiovascular applications. The present chapter focuses on the various applications of bioactive glasses in medicine and is dedicated to the founder of this research field, Prof. Larry Hench (Prof. Larry Hench passed away on December 16, 2015, in Florida (USA), after spending his life for biomaterials research), who carried key invaluable contributions to biomaterials science and industry. The trails set by him will always be guiding researchers in this field.

Keywords

Bioactive Glass Porous Scaffolds Dental Materials Ophthalmology Bone Tissue Repair Angiogenesis Wound Healing 

References

  1. 1.
    Kaur G. Bioactive glasses: potential biomaterials for future therapy. Heidelberg: Springer; 2017.CrossRefGoogle Scholar
  2. 2.
    Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A. 2013;102:254–74.CrossRefGoogle Scholar
  3. 3.
    Williams DF. Definitions in biomaterials. In: Progress in biomedical engineering, 4. Amsterdam: Elsevier; 1987.Google Scholar
  4. 4.
    Shah R, Sinanan ACM, Knowles JC, Hunt NP, Lewis MP. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials. 2005;26:1497–505.CrossRefGoogle Scholar
  5. 5.
    Chen QZ, Harding SE, Ali NN, Lyon AR, Boccaccini A. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R-Rep. 2008;59:1–37.CrossRefGoogle Scholar
  6. 6.
    Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64.CrossRefGoogle Scholar
  7. 7.
    Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D. Review and the state of the art: sol-gel or melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater. 2016;104(6):1248–75.CrossRefGoogle Scholar
  8. 8.
    Arcos D, Regí MV. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6:2874–88.CrossRefGoogle Scholar
  9. 9.
    Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10:S96–101.CrossRefGoogle Scholar
  10. 10.
    Minardi S, Corradetti B, Taraballi F, et al. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials. 2015;62:128–37.CrossRefGoogle Scholar
  11. 11.
    Park J. Bioceramics: properties, characterizations, and applications. New York: Springer; 2008.Google Scholar
  12. 12.
    Rahaman, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.CrossRefGoogle Scholar
  13. 13.
    Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials – a review. Trends Biomater Artif Organs. 2004;18:9–17.Google Scholar
  14. 14.
    Chevalier J, Gremillard L. Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc. 2009;29:1245–55.CrossRefGoogle Scholar
  15. 15.
    Hench LL, West JK. The sol-gel process. Chem Rev. 1990;90:33–72.CrossRefGoogle Scholar
  16. 16.
    Hench LL, Wilson J. Introduction to bioceramics. Singapore: World Scientific; 1993.CrossRefGoogle Scholar
  17. 17.
    Hench LL, Polak JM. Third generation biomaterials. Science. 2002;295:1014–7.CrossRefGoogle Scholar
  18. 18.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1972;2:117–41.Google Scholar
  19. 19.
    Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.CrossRefGoogle Scholar
  20. 20.
    Ramakrishna S, Meyer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Comp Sci Tech. 2001;61:1189–224.CrossRefGoogle Scholar
  21. 21.
    Williams DF. Consensus and definitions in biomaterials, advances in biomaterials. Amsterdam: Elsevier Science; 1988. p. 11–6.Google Scholar
  22. 22.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.CrossRefGoogle Scholar
  23. 23.
    Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.CrossRefGoogle Scholar
  24. 24.
    Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res. 2003;64A:465–74.CrossRefGoogle Scholar
  25. 25.
    Kim S-S, Ahn KM, Park MS, Lee J-H, Choi CY, Kim B-S. A poly(lactide coglycolide)/ hydroxyapatite composite scaffold with enhanced osteoconductivity. J Biomed Mater Res. 2007;80A:206–15.CrossRefGoogle Scholar
  26. 26.
    Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe S. Assessment of polyglycolic acid mesh and bioactive glass for soft tissue engineering scaffolds. Biomaterials. 2004;25:5857–66.CrossRefGoogle Scholar
  27. 27.
    Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad Sci. 2002;961:83–95.CrossRefGoogle Scholar
  28. 28.
    Chen QZ, Rezwan K, Armitage D, Nazhat SN, Boccaccini AR. The surface functionalization of 45S5 bioglass®-based glass-ceramic scaffolds and its impact on bioactivity. J Mater Sci-Mater Med. 2006;17(11):979–87.CrossRefGoogle Scholar
  29. 29.
    Boccaccini AR, Blaker JJ, Maquet V, Day RM, Jéróme R. Preparation and characterisation of poly(lactide-co-grycolide) (PLGA) and PLGA/bioglass W composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng C. 2005;25:23–31.CrossRefGoogle Scholar
  30. 30.
    Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.CrossRefGoogle Scholar
  31. 31.
    Sepulveda P, Jones JR, Hench LL. Bioactive sol-gel foams for tissue repair. J Biomed Research A. 2002;49:340–8.CrossRefGoogle Scholar
  32. 32.
    Chen QZ, Liang SL, Wang J, Simon GP. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. J Mech Behav Biomed Mater. 2011;4:1805–18.CrossRefGoogle Scholar
  33. 33.
    Kaur G, Pickrell G, Kimsawatde G, Allbee H, Sriranganathan N. Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. 2014; doi: 10.1038/srep0439.Google Scholar
  34. 34.
    Kaur G, Sharma P, Kumar V, Singh K. Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater Sci Eng C. 2012;32(7):1941–7.CrossRefGoogle Scholar
  35. 35.
    Levenberg S, Langer R. Advances in tissue engineering. Curr Top Dev Biol. 2004;61:113–34.CrossRefGoogle Scholar
  36. 36.
    Huang R, Pan J, Boccaccini AR, Chen QZ. A two-scale model for simultaneous sintering and crystallization of glass-ceramic scaffolds for tissue engineering. Acta Biomater. 2008;4:1095–103.CrossRefGoogle Scholar
  37. 37.
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.CrossRefGoogle Scholar
  38. 38.
    Keshaw H, Forbes A, Day RM. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials. 2005;26:4171–9.CrossRefGoogle Scholar
  39. 39.
    Gatti AM, Valdre G, Andersson OH. Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials. 1994;15:208–12.CrossRefGoogle Scholar
  40. 40.
    Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci. 2012;37:237–80.CrossRefGoogle Scholar
  41. 41.
    Zhang Q, Lin D, Yao S. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym. 2015;132:311–22.CrossRefGoogle Scholar
  42. 42.
    Nettles DL, Chilkoti A, Setton LA. Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev. 2010;62:1479–85.CrossRefGoogle Scholar
  43. 43.
    Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater. 2003;5:1–16.CrossRefGoogle Scholar
  44. 44.
    Joseph DB. Biomedical engineering fundamentals. 3rd ed. Boca Raton: CRC press; 2006.Google Scholar
  45. 45.
    Gijpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17:103–4.CrossRefGoogle Scholar
  46. 46.
    Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35:403–40.CrossRefGoogle Scholar
  47. 47.
    Ochubiojol EM, Rodrigues A. Starch: from food to medicine. In: Scientific, health and social aspects of the food industry (InTech); 2012.Google Scholar
  48. 48.
    Agrawal CM, Athanasiou KA, Heckman JD. Biodegradable PLA/PGA polymers for tissue engineering in orthopaedica. Mater Sci Forum. 1997;250:115–28.CrossRefGoogle Scholar
  49. 49.
    Nelson JF, Stanford HG, Cutright DE. Evaluation and comparison of biodegradable substances as osteogenic agents. Oral Surg. 1977;43:836–43.CrossRefGoogle Scholar
  50. 50.
    Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopaedic tissue engineering. Biomaterials. 2000;21:2405–12.CrossRefGoogle Scholar
  51. 51.
    Darby WJ. In: Prasad AS, Oberleas D, editors. Trace elements in human health and disease, vol. 1. New York: Academic; 1976. p. 17.Google Scholar
  52. 52.
    Chandra RK. Micronutrients and immune functions: an overview. Ann N Y Acad Sci. 1990;587:9–16.CrossRefGoogle Scholar
  53. 53.
    Soetan KO, Olaiya CO, Oyewole OE. The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci. 2010;4:200–22.Google Scholar
  54. 54.
    Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med. 1998;11:119–35.CrossRefGoogle Scholar
  55. 55.
    Lang C, Murgia C, Leong M, Tan L-W, Perozzi G, Knight D, Ruffin R, Zalewski P. Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am J Phys Lung Cell Mol Phys. 2007;292:L577–84.Google Scholar
  56. 56.
    Cousins RJ. A role of zinc in the regulation of gene expression. Proc Nutr Soc. 1998;57:307–11.CrossRefGoogle Scholar
  57. 57.
    Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2006;12:301–47.CrossRefGoogle Scholar
  58. 58.
    Kohane DS, Langer R. Polym Biomater Tissue Eng Pediatr Res. 2008;63:487–91.Google Scholar
  59. 59.
    B.B. Nissan, Advances in calcium phosphate biomaterials, Springer series in biomaterials science and engineering. Springer; 2014. p. 535.Google Scholar
  60. 60.
    Hayakawa S, Tsuru K, Iida H, Ohtsuki C, Osaka A. MAS-NMR studies of Apatite Formation on 50CaO·50SiO2 Glass in a simulated body fluid. Phys Chem Glasses. 1996;37(5):188–92.Google Scholar
  61. 61.
    Mandel S, Cuneyt Tas A. Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5 °C. Mater Sci Eng C. 2010;30:245–54.CrossRefGoogle Scholar
  62. 62.
    Ryu H-S, Youn H-J, Hong KS, Chang B-S, Lee C-K, Chung S-S. An improvement in sintering property of b-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials. 2002;23:909–14.CrossRefGoogle Scholar
  63. 63.
    Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86.CrossRefGoogle Scholar
  64. 64.
    Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials. 2003;24:4609–20.CrossRefGoogle Scholar
  65. 65.
    JunWang Y, Lai C, Wei K, Chen X, Ding Y, Wang ZL. Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology. 2006;17:4405–12.CrossRefGoogle Scholar
  66. 66.
    Gross KA, Berndt CC, Herman H. Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. J Biomed Mater Res. 1998;39:407.CrossRefGoogle Scholar
  67. 67.
    Ragel CV, Vallet-Regi M, Rodriguez-Lorenzo LM. Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material. Biomaterials. 2002;23:1865–72.CrossRefGoogle Scholar
  68. 68.
    Tardei C, Grigore F, Pasuk I, Stoleriua S. The study of Mg2+/Ca2+ substitution of β -tricalciumphosphate. J Optoelectr Adv Mater. 2006;8(2):568–71.Google Scholar
  69. 69.
    Schwarz K. A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci U S A. 1973;70:1608–12.CrossRefGoogle Scholar
  70. 70.
    Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69:121–9.CrossRefGoogle Scholar
  71. 71.
    Wong CT, Chen QZ, Lu WW, Leong JCY, Chan WK, Cheung KMC, Luk KDK. Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo. J Biomed Mater Res A. 2004;70A:428–35.CrossRefGoogle Scholar
  72. 72.
    Denrya I. Liisa T. Kuhn design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater. 2016;32:43–53.CrossRefGoogle Scholar
  73. 73.
    Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(Suppl 4):467–79.CrossRefGoogle Scholar
  74. 74.
    Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E. Sequential release of bioactive IGF-I and TGF-b1 fromPLG microsphere-based scaffolds. Biomaterials. 2008;29:1518–25.CrossRefGoogle Scholar
  75. 75.
    Gentile P, Bellucci D, Sola A, Matt C, Cannillo V, Ciardelli G. Composite scaffolds for controlled drug release: role of the polyurethane nanoparticles on the physical properties and cell behavior. J Mech Behav Biomed Mater. 2015;44:53–60.CrossRefGoogle Scholar
  76. 76.
    Larrañaga A, Diamanti E, Rubio E, Palomares T, Alonso-Varona A, Aldazabal P, Martin FJ, Sarasua JR. A study of themechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles. Mater Sci Eng C. 2014;42:451–60.CrossRefGoogle Scholar
  77. 77.
    Bellucci D, Sola A, Cannillo V. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. Mater Sci Eng C Mater Biol Appl. 2013;33:2138–51.CrossRefGoogle Scholar
  78. 78.
    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–27.CrossRefGoogle Scholar
  79. 79.
    Schwartz I, Robinson BP, Hollinger JO, Szachowicz EH, Brekke J. Calvarial bone repair with porous D,L-polylactide. Otolaryngol Head Neck Surg. 1995;112:707–13.CrossRefGoogle Scholar
  80. 80.
    Blaker J, Maquet V, Jérome R, Boccaccini AR, Nazhat SN. Mechanical properties of highly porous PDLLA/bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater. 2005;1:643–52.CrossRefGoogle Scholar
  81. 81.
    Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N, et al. Development of guided bone regeneration membrane composed of [beta]-tricalcium phosphate and poly(−lactide-coglycolide-co-caprolactone) composites. Biomaterials. 2004;25:5979–86.CrossRefGoogle Scholar
  82. 82.
    Ma PX. Tissue engineering. In: Kroschwitz JI, editor. Encyclopedia of polymer science and technology, vol. 12. New York: Wiley; 2004. p. 261–91.Google Scholar
  83. 83.
    Yagmurlu MF, Korkusuz F, Guersel I, Korkusuz P, Ors U, Hasirci V. Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res. 1999;46:494–503.CrossRefGoogle Scholar
  84. 84.
    Zhang X, Wyss UP, Pichora D, Goosen MF. Biodegradable controlled antibiotic release devices for osteomyelitis: optimization of release properties. J Pharm Pharmacol. 1994;46:718–24.CrossRefGoogle Scholar
  85. 85.
    Zhang X, Wyss UP, Pichora D, Goosen MFA. Amechanistic study of antibiotic release from biodegradable poly (d, 1-lactide)cylinders. J Control Release. 1994;31:129–44.CrossRefGoogle Scholar
  86. 86.
    Kaur G, Pickrell G, Pandey OP, Singh K, Chudasama BN, Kumar V. Combined and individual doxorubicin/vancomycin drug loading, release kinetics and apatite formation for the CaO-CuO-P2O5- SiO2- B2O3 mesoporous glasses. RSC Adv. 2016;6:51046–56.CrossRefGoogle Scholar
  87. 87.
    Wu, Chang J. Interface Focus. 2012;2:292–306.CrossRefGoogle Scholar
  88. 88.
    Massaro M, Colletti CG, Noto R, Riela S, Poma P, Guernelli S, Parisi F, Milioto S, Lazzara G. Int J Pharm. 2015;478:476–85.CrossRefGoogle Scholar
  89. 89.
    Massaro M, Amorati R, Cavallaro G, Guernelli S, Lazzara G, Milioto S, Noto R, Poma P, Riela S. Colloids Surf B: Biointerfaces. 2016;140:505–13.CrossRefGoogle Scholar
  90. 90.
    Soundrapandiana C, Mahatob A, Kundu B, Datta S, Sac B, Basu D. Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system. J Mech Behav Biomed Mater. 2014;40:1–12.CrossRefGoogle Scholar
  91. 91.
    Murphy WL, Peters MC, Kohn DH, Mooney DJ. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2000;21(24):2521–7.CrossRefGoogle Scholar
  92. 92.
    Baino F, Novajra G, Miguez-Pacheco V, Boccaccini AR, Vitale-Brovarone C. Bioactive glasses: special applications outside the skeletal system. J Non-Cryst Solids. 2016;432:15–30. doi: 10.1016/j.jnoncrysol.2015.02.015.CrossRefGoogle Scholar
  93. 93.
    Miguez-Pacheco V, Hench LL, Boccaccini AR. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1–15. doi: 10.1016/j.actbio.2014.11.004.CrossRefGoogle Scholar
  94. 94.
    Rosenqvist K, Airaksinen S, Vehkamäki M, Juppo AM. Evaluating optimal combination of clodronate and bioactive glass for dental application. Int J Pharm. 2014;468:112–20.CrossRefGoogle Scholar
  95. 95.
    Bakry AS, Takahashi H, Otsuki M, Sadr A, Yamashita K, Tagami J. CO2 laser improves 45S5 bioglass interaction with dentin. J Dent Res. 2011;90(2):246–50.CrossRefGoogle Scholar
  96. 96.
    Bakry AS, Takahashid H, Otsukie M, Tagamie J. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Operat Dent Mater. 2014;30:314–20.Google Scholar
  97. 97.
    Baino F, Vitale-Brovarone C. Bioceramics in ophthalmology. Acta Biomater. 2014;10:3372–97.CrossRefGoogle Scholar
  98. 98.
    Kinnunen I, Aitasalo K, Pollonen M, Varpula M. Reconstruction of orbital fractures using bioactive glass. J Cranio-Maxillofac Surg. 2000;28:229–34.CrossRefGoogle Scholar
  99. 99.
    Aitasalo K, Kinnunen I, Palmgren J, Varpula M. Repair of orbital floor fractures with bioactive glass implants. J Oral Maxillofac Surg. 2001;59:1390–6.CrossRefGoogle Scholar
  100. 100.
    Linnola RJ, Happonen RP, Andersson OH, Vedel EA, Yli-Urpo U, Krause U, et al. Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis. Exp Eye Res. 1996;63:471–8.CrossRefGoogle Scholar
  101. 101.
    Peltola M, Kinnunen I, Aitasalo K. Reconstruction of orbital wall defects with bioactive glass plates. J Oral Maxillofac Surg. 2008;66:639–46.CrossRefGoogle Scholar
  102. 102.
    Chirila TV. An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials. 2001;22:3311–7.CrossRefGoogle Scholar
  103. 103.
    Renghini C, Giuliani A, Mazzoni S, Brun F, Larsson E, Baino F, et al. Microstructural characterization and in vitro bioactivity of porous glass ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. J Eur Ceram Soc. 2013;33:1553–65.CrossRefGoogle Scholar
  104. 104.
    Tulyaganova DU, Reddy AA, Siegelс R, Ionescud E, Riedeld R, Ferreira JMF. Synthesis and in vitro bioactivity assessment of injectable bioglass-organic pastes for bone tissue repair. Ceram Int. 2015;41:9373–82.CrossRefGoogle Scholar
  105. 105.
    Tulyaganov DU, Agathopoulos S, Valerio P, Balamurugan A, Saranti A, Karakassides MA, Ferreira JM. Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. J Mater Sci Mater Med. 2011;22:217–27.CrossRefGoogle Scholar
  106. 106.
    Tulyaganov DU, Makhkamov ME, Urazbaev A, Goel A, Ferreira JMF. Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceram Int. 2013;39:2519–26.CrossRefGoogle Scholar
  107. 107.
    Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C. 2011;31:1245–56.CrossRefGoogle Scholar
  108. 108.
    Bellucci D, Cannillo V, Sola A. Calcium and potassium addition to facilitate the sintering of bioactive glasses. Mater Lett. 2011;65:1825–7.CrossRefGoogle Scholar
  109. 109.
    Idowu B, Cama G, Deb S, DiSilvio L. In vitro osteoinductive potential of porous monetite for bone tissue engineering. J Tissue Eng. 2014;5:1–14.CrossRefGoogle Scholar
  110. 110.
    Thomson RC, Yaszemski MJ, Power JM, Mikos AG. Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials. 1998;19:1935–43.CrossRefGoogle Scholar
  111. 111.
    Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérome R. Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglassfor tissue engineering applications. Biomaterials. 2002;23:3871–8.CrossRefGoogle Scholar
  112. 112.
    Gerhardt L-C, Widdows KL, Erol MM, Burch CW, Sanz-Herrera JA, Ochoa I, et al. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials. 2011;32(17):4096–108.CrossRefGoogle Scholar
  113. 113.
    Wilson J, Pigott GH, Schoen FJ, Hench LL. J Biomed Mater Res. 1981;15(6):805–17.CrossRefGoogle Scholar
  114. 114.
    Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tiss Eng B Rev. 2010;16(2):199–207. doi: 10.1089/ten.TEB.2009.0416.CrossRefGoogle Scholar
  115. 115.
    Li H, Chang J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater. 2013;9(6):6981–91.CrossRefGoogle Scholar
  116. 116.
    Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11(5):768–77. doi: 10.1089/ten.2005.11.768.CrossRefGoogle Scholar
  117. 117.
    Kent Leach J, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials. 2006;27(17):3249–55. doi: 10.1016/j.biomaterials.2006.01.033.CrossRefGoogle Scholar
  118. 118.
    Murphy WL, Simmons CA, Kaigler D, Mooney DJ. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res. 2004;83:204–10.CrossRefGoogle Scholar
  119. 119.
    Leu A, Leach JK. Pharm Res. 2008;25:1222.CrossRefGoogle Scholar
  120. 120.
    Haro Durand L, Vargas GE, Romero NM, Vera-Mesones R, Porto-López JM, Boccaccini AR, Gorustovich A. Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J Mater Chem B. 2015;3(6):1142–8. doi: 10.1039/C4TB01840K.CrossRefGoogle Scholar
  121. 121.
    Ghosh SK, Nandi SR, Rumdu B, Datta S, De DK, Roy SR, Baseu D, Biomed J. Mater Res Part B. 2008;86B:217.CrossRefGoogle Scholar
  122. 122.
    Andrade AL, Andrade SP, Domingues RZ, Biomed J. Mater Res B. 2006;79B:122.Google Scholar
  123. 123.
    Lin Y, Brown RF, Jung SB, Day DE, Biomed J. Mater Res A. 2014;102:4491–9.Google Scholar
  124. 124.
    Mahmood J, Takita H, Ojima Y, Kobayshi M, Kohgo T, Kubole Y. J Biochem. 2001;129:163.CrossRefGoogle Scholar
  125. 125.
    Ma W, Yang X, Ma L, Wang X, Zhang L, Yang G, et al. Fabrication of bioactive glass-introduced nanofibrous membranes with multifunctions for potential wound dressing. RSC Adv. 2014;4(104):60114–22. doi: 10.1039/C4RA10232K.CrossRefGoogle Scholar
  126. 126.
    Wray P. Cotton candy that heals. Am Ceram Sec Bull. 2011;90.4:24–31.Google Scholar
  127. 127.
    Cong M, Lin C, Chen X. Enhanced healing of full-thickness diabetic wounds using bioactive glass and Yunnan baiyao ointments. J Wuhan Univ Technol Mat Sci Ed. 2014;29(5):1063–70. doi: 10.1007/s11595-014-1044-y.CrossRefGoogle Scholar
  128. 128.
    Lin C, MaO C, Jhang J, Li Y, Chen X. Healing effect of bioactive glass moment on full thickness skin wounds. Biomed Mater. 2012;7(4):045017.CrossRefGoogle Scholar
  129. 129.
    Yang Q, Chen S, Shi H, Xiao H, Ma Y. In vitro study of improved wound-healing effect of bioactive borate-based glass nano−/micro-fibers. Mater Sci Eng C. 2015;55:105–17. doi: 10.1016/j.msec.2015.05.049.CrossRefGoogle Scholar
  130. 130.
    Gillette RL, Swaim SF, Sartin EA, Bradley DM, Coolman SL. Am J Vet Res. 2001;62(7):1149–53.CrossRefGoogle Scholar
  131. 131.
    Li H, He J, Yu H, Green CR, Chang J. Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials. 2016;84:64–75. doi: 10.1016/j.biomaterials.2016.01.033.CrossRefGoogle Scholar
  132. 132.
    Rai R, Boccaccini AR. ATP Conf Proc. 2010;1255:126–8.CrossRefGoogle Scholar
  133. 133.
    Zhao S, Li L, Wang H, Zhang Y, Cheng X, Zhou N, et al. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials. 2015;53:379–91. doi: 10.1016/j.biomaterials.2015.02.112.CrossRefGoogle Scholar
  134. 134.
    Yunos DM, Bretcanu O, Boccaccini A. Polymer– bioceramic composites for tissue engineering scaffolds. J Mater Sci Mater Med. 2008;43:4433–42.CrossRefGoogle Scholar
  135. 135.
    Domingues ZR, Cortes ME, Gomes TA, Diniz HF, Freitas CS, Gomes JB, Faria AMC, Sinisterra RD. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials. 2004;25:327–33.CrossRefGoogle Scholar
  136. 136.
    Czarnobaj K. Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv. 2008;15:485–92.CrossRefGoogle Scholar
  137. 137.
    Merchant HA, Shoaib HM, Tazeen J, Yousuf RI. Once- daily tablet formulation and in vitro release evaluation of cefpodoxime using hydroxypropyl methylcellulose: a technical note. AAPS Pharm Sci Tech. 2006;7Google Scholar
  138. 138.
    Bang H-G, Kim S-J, Park S-Y. Biocompatibility and the physical properties of bio-glass ceramics in the Na2O–CaO– SiO2–P2O5 system withCaF2 and MgF2 additives. J Ceram Proc Res. 2008;9:588–90.Google Scholar
  139. 139.
    Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release. 2006;110:522–30.CrossRefGoogle Scholar
  140. 140.
    Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N, Roy S, Datta BK, Mandal TK, Basu D, Bhattacharya RN. Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res. 2010;27:1659–76. Leng, Y., Xin, R.,CrossRefGoogle Scholar
  141. 141.
    Noble L, Gray AI, Sadiq L, Uchegbu IF. A non-covalently cross-linked chitosan based hydrogel. Int J Pharm. 1999;192:173–82.CrossRefGoogle Scholar
  142. 142.
    Catauro M, Raucci MG, De Gaetano F, Marotta A. Antibacterial and bioactive silver-containing Na2O_CaO_2SiO2 glass prepared by sol–gel method. J Mater Sci Mater Med. 2004;15:831–7.CrossRefGoogle Scholar
  143. 143.
    Ragel CV, Vallet-Regí M. In vitro bioactivity and gentamicin release from glass–polymer-antibiotic composites. J Biomed Mater Res. 2000;51:424–9.CrossRefGoogle Scholar
  144. 144.
    Arcos D, Ragel CV, Vallet-Regi M. Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials. 2001;22:701–8.CrossRefGoogle Scholar
  145. 145.
    Ladrón de Guevara S, Ragel CV, Vallet-Regí M. Bioactive glass–polymer materials for controlled release of ibuprofen. Biomaterials. 2003;24:4037–43.CrossRefGoogle Scholar
  146. 146.
    Arcos D, Peña J, Vallet-Regí M. Influence of a SiO2–CaO–P2O5 sol–gel on the bioactivity and controlled release of a ceramic/polymer/antibiotic mixed materials. Chem Mater. 2003;15:4132–8.CrossRefGoogle Scholar
  147. 147.
    Arcos D, del Real RP, Vallet-Regí M. A novel bioactive and magnetic biphasic material. Biomaterials. 2002;23:2151–8.CrossRefGoogle Scholar
  148. 148.
    Ruiz E, Serrano MC, Arcos D, Vallet-Regí M. Glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. J Biomed Mater Res. 2006;79A:533–43.CrossRefGoogle Scholar
  149. 149.
    Serrano MC, Portoles MT, Pagani R, Sáez de Guinoa J, Ruíz-Fernández E, Arcos D, et al. In vitro positive biocompatibility evaluation of glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. Tissue Eng. 2008;14:617–27.CrossRefGoogle Scholar
  150. 150.
    Ragel CV, Vallet-Regí M, Rodríguez-Lorenzo LM. Preparation and in vitro bioactivity of hydroxyapatite/solgel-glass biphasic material. Biomaterials. 2002;23:1865–72.CrossRefGoogle Scholar
  151. 151.
    Vallet-Regí M, Rámila A, Padilla S, Muñoz B. Bioactive glasses as accelerators of the apatites bioactivity. J Biomed Mater Res. 2003;66:580–5.CrossRefGoogle Scholar
  152. 152.
    Vallet-Regí M. Revisiting ceramics for medical applications. Dalton Trans. 2006;44:5211–20.CrossRefGoogle Scholar
  153. 153.
    Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed. 2007;46:7548–58.CrossRefGoogle Scholar
  154. 154.
    López-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet-Regí M. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater. 2006;18:3137–44.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gurbinder Kaur
    • 1
  • John C. Mauro
    • 2
  • Vishal Kumar
    • 3
  • Gary Pickrell
    • 4
  • Francesco Baino
    • 5
  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  2. 2.Science and Technology DivisionCorning IncorporatedNew YorkUSA
  3. 3.Sri Guru Granth Sahib World UniversityFatehGarh SahibIndia
  4. 4.Department of Material Science and EngineeringHolden Hall, Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  5. 5.Institute of Materials Physics and Engineering, Applied Science and Technology Department (DISAT)Politecnico di TorinoTorinoItaly

Personalised recommendations