Skip to main content

Botulinum Toxins: Molecular Structures and Synaptic Physiology

  • Chapter
  • First Online:
Botulinum Toxin Treatment in Clinical Medicine
  • 1197 Accesses

Abstract

Botulinum neurotoxins are produced by neurotoxigenic spore-forming Clostridia in several dozens of variants that cause a generalized flaccid paralysis of botulism by inactivating neurotransmitter release at peripheral nerve terminals. Botulinum neurotoxins are a marvel of protein design whose unique biological properties have led them to become not only the most potent toxins known but also highly effective and successful therapeutic agents for the therapy of a variety of human medical syndromes. The increased understanding of the detailed structures of the different toxins, combined with an improved understanding of their unique biological properties, will open up a huge opportunity to identify new therapeutic BoNTs with an improved feature with respect to the toxins available on the market or to be exploited for new clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol. 2014;12:535–49.

    Article  CAS  PubMed  Google Scholar 

  2. Montecucco C, Rasotto MB. On botulinum neurotoxin variability. MBio. 2015;6:e02131–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smith TJ, Hill KK, Raphael BH. Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol. 2015;166:290–302.

    Article  PubMed  Google Scholar 

  4. Blitzer A, Binder WJ. Cosmetic uses of botulinum neurotoxin type A: an overview. Arch Facial Plast Surg. 2002;4:214–20.

    Article  PubMed  Google Scholar 

  5. Dressler D. Clinical applications of botulinum toxin. Curr Opin Microbiol. 2012;15:325–36.

    Article  PubMed  Google Scholar 

  6. Hallett M, Albanese A, Dressler D, Segal KR, Simpson DM, Truong D, et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon. 2013;67:94–114.

    Article  CAS  PubMed  Google Scholar 

  7. Scott AB. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology. 1980;87:1044–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wise JB, Greco T. Injectable treatments for the aging face. Facial Plast Surg. 2006;22:140–6.

    Article  CAS  PubMed  Google Scholar 

  9. Naumann M, Dressler D, Hallett M, Jankovic J, Schiavo G, Segal KR, et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. Toxicon. 2013;67:141–52.

    Article  CAS  PubMed  Google Scholar 

  10. Jabbari B. Botulinum toxin treatment of pain disorders. New York: Springer; 2015.

    Book  Google Scholar 

  11. Hasegawa K, Watanabe T, Suzuki T, Yamano A, Oikawa T, Sato Y, et al. A novel subunit structure of Clostridium botulinum serotype D toxin complex with three extended arms. J Biol Chem. 2007;282:24777–83.

    Article  CAS  PubMed  Google Scholar 

  12. Benefield DA, Dessain SK, Shine N, Ohi MD, Lacy DB. Molecular assembly of botulinum neurotoxin progenitor complexes. Proc Natl Acad Sci USA. 2013;110:5630–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee K, Gu S, Jin L, Le TT, Cheng LW, Strotmeier J, Kruel AM, Yao G, Perry K, Rummel A, Jin R. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog. 2013;9:e1003690.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fujinaga Y, Sugawara Y, Matsumura T. Uptake of botulinum neurotoxin in the intestine. Curr Top Microbiol Immunol. 2013;364:45–59.

    CAS  PubMed  Google Scholar 

  15. Simpson LL. The life history of a botulinum toxin molecule. Toxicon. 2013;68:40–59.

    Article  CAS  PubMed  Google Scholar 

  16. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998;5:898–902.

    Article  CAS  PubMed  Google Scholar 

  17. Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S. Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol. 2009;386:233–45.

    Article  CAS  PubMed  Google Scholar 

  18. Swaminathan S, Eswaramoorthy S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol. 2000;7:693–9.

    Article  CAS  PubMed  Google Scholar 

  19. Binz T, Rummel A. Cell entry strategy of clostridial neurotoxins. J Neurochem. 2009;109:1584–95.

    Article  CAS  PubMed  Google Scholar 

  20. Dolly JO, Black J, Williams RS, Melling J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature. 1984;307:457–60.

    Article  CAS  Google Scholar 

  21. Rummel A. Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol. 2013;364:61–90.

    CAS  PubMed  Google Scholar 

  22. Yao G, Zhang S, Mahrhold S, Lam KH, Stern D, Bagramyan K, et al. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat Struct Mol Biol. 2016;23:656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Colasante C, Rossetto O, Morbiato L, Pirazzini M, Molgo J, Montecucco C. Botulinum neurotoxin type A is internalized and translocated from small synaptic vesicles at the neuromuscular junction. Mol Neurobiol. 2013;48:120–7.

    Article  CAS  PubMed  Google Scholar 

  24. Haucke V, Neher E, Sigrist SJ. Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nat Rev Neurosci. 2011;12:127–38.

    Article  CAS  PubMed  Google Scholar 

  25. Harper CB, Papadopulos A, Martin S, Matthews DR, Morgan GP, Nguyen TH, et al. Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles. Sci Rep. 2016;6:19654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazzocchio R, Caleo M. More than at the neuromuscular synapse: actions of botulinum neurotoxin A in the central nervous system. Neuroscientist. 2015;21:44–61.

    Article  PubMed  Google Scholar 

  27. Montal M. Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem. 2010;79:591–617.

    Article  CAS  PubMed  Google Scholar 

  28. Pirazzini M, Azarnia Tehran D, Leka O, Zanetti G, Rossetto O, Montecucco C. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochem Biophys Acta. 2016;1858:467–74.

    Article  CAS  PubMed  Google Scholar 

  29. Fischer A, Montal M. Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem. 2007;282:29604–11.

    Article  CAS  PubMed  Google Scholar 

  30. Azarnia Tehran D, Pirazzini M, Leka O, Mattarei A, Lista F, Binz T, et al. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cell Microbiol. 2016; doi:10.1111/cmi.12647.

  31. Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, et al. The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol. 2003;160:1139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pirazzini M, Azarnia Tehran D, Zanetti G, Megighian A, Scorzeto M, Fillo S, et al. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep. 2014;8:1870–8.

    Article  CAS  PubMed  Google Scholar 

  33. Pirazzini M, Bordin F, Rossetto O, Shone CC, Binz T, Montecucco C. The thioredoxin reductase-thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Lett. 2013;587:150–5.

    Article  CAS  PubMed  Google Scholar 

  34. Zanetti G, Azarnia Tehran D, Pirazzini M, Binz T, Shone CC, Fillo S, et al. Inhibition of botulinum neurotoxins interchain disulfide bond reduction prevents the peripheral neuroparalysis of botulism. Biochem Pharmacol. 2015;98:522–30.

    Article  CAS  PubMed  Google Scholar 

  35. Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998;395:347–53.

    Article  CAS  PubMed  Google Scholar 

  36. Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci. 2014;71(5):793–811.

    Article  CAS  PubMed  Google Scholar 

  37. Sudhof TC. The molecular machinery of neurotransmitter release (Nobel lecture). Angew Chem Int Ed Engl. 2014;53:12696–717.

    Article  PubMed  Google Scholar 

  38. Kalb SR, Baudys J, Raphael BH, Dykes JK, Luquez C, Maslanka SE, et al. Functional characterization of botulinum neurotoxin serotype H as a hybrid of known serotypes F and A (BoNT F/A). Anal Chem. 2015;87(7):3911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kalb SR, Baudys J, Webb RP, Wright P, Smith TJ, Smith LA, et al. Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5. FEBS Lett. 2012;586(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  40. Pellett S, Tepp WH, Whitemarsh RC, Bradshaw M, Johnson EA. vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1-5. Toxicon. 2015;107:37–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Whitemarsh RC, Tepp WH, Johnson EA, Pellett S. Persistence of botulinum neurotoxin a subtypes 1-5 in primary rat spinal cord cells. PLoS One. 2013;9:e90252.

    Article  Google Scholar 

  42. Binz T. Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. Curr Top Microbiol Immunol. 2013;364:139–57.

    CAS  PubMed  Google Scholar 

  43. Chen S. Clostridial neurotoxins: mode of substrate recognition and novel therapy development. Curr Protein Pept Sci. 2014;15:490–503.

    Article  CAS  PubMed  Google Scholar 

  44. Bock JB, Scheller RH. SNARE proteins mediate lipid bilayer fusion. Proc Natl Acad Sci U S A. 1999;96:12227–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000;80:717–66.

    CAS  PubMed  Google Scholar 

  46. Agarwal R, Schmidt JJ, Stafford RG, Swaminathan S. Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F. Nat Struct Mol Biol. 2009;16:789–94.

    Article  CAS  PubMed  Google Scholar 

  47. Breidenbach MA, Brunger AT. Substrate recognition strategy for botulinum neurotoxin serotype A. Nature. 2004;432:925–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kumaran D, Rawat R, Ahmed SA, Swaminathan S. Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathog. 2008;4:e1000165.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zuniga JE, Schmidt JJ, Fenn T, Burnett JC, Arac D, Gussio R, et al. A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. Structure. 2008;16:1588–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson EA, Montecucco C. Botulism. Handb Clin Neurol. 2008;91:333–68.

    Article  PubMed  Google Scholar 

  51. Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C. Different types of botulinum toxin in humans. Mov Disord. 2004;19:S53–9.

    Article  PubMed  Google Scholar 

  52. Cherington M. Clinical spectrum of botulism. Muscle Nerve. 1998;21:701–10.

    Article  CAS  PubMed  Google Scholar 

  53. Shoemaker CB, Oyler GA. Persistence of Botulinum neurotoxin inactivation of nerve function. Curr Top Microbiol Immunol. 2013;364:179–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsai YC, Maditz R, C-l K, Fishman PS, Shoemaker CB, Oyler GA, et al. Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Natl Acad Sci U S A. 2010;107:16554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Megighian A, Zordan M, Pantano S, Scorzeto M, Rigoni M, Zanini D, et al. Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction. J Cell Sci. 2013;126:3134–40.

    Article  CAS  PubMed  Google Scholar 

  56. Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett. 1998;256:135–8.

    Article  CAS  PubMed  Google Scholar 

  57. Meunier FA, Lisk G, Sesardic D, Dolly JO. Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol Cell Neurosci. 2003;22:454–66.

    Article  CAS  PubMed  Google Scholar 

  58. Raciborska DA, Charlton MP. Retention of cleaved synaptosome-associated protein of 25 kDa (SNAP-25) in neuromuscular junctions: a new hypothesis to explain persistence of botulinum A poisoning. Can J Physiol Pharmacol. 1999;77:679–88.

    Article  CAS  PubMed  Google Scholar 

  59. Juzans P, Comella JX, Molgo J, Faille L, Angaut-Petit D. Nerve terminal sprouting in botulinum type-A treated mouse levator auris longus muscle. Neuromuscul Disord. 1996;6:177–85.

    Article  CAS  PubMed  Google Scholar 

  60. Meunier FA, Schiavo G, Molgo J. Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris. 2002;96:105–13.

    Article  CAS  PubMed  Google Scholar 

  61. de Paiva A, Meunier FA, Molgó J, Aoki KR, Dolly JO. Functional repair of motor endplates after botulinum neurotoxin type A poisoning: Biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci U S A. 1999;96:3200–5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rogozhin AA, Pang KK, Bukharaeva E, Young C, Slater CR. Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A. J Physiol. 2008;586:3163–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen S, Barbieri JT. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci U S A. 2009;106:9180–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Masuyer G, Chaddock JA, Foster KA, Acharya KR. Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol. 2014;54:27–51.

    Article  CAS  PubMed  Google Scholar 

  65. Sikorra S, Litschko C, Muller C, Thiel N, Galli T, Eichner T, et al. Identification and characterization of botulinum neurotoxin A substrate binding pockets and their re-engineering for human SNAP-23. J Mol Biol. 2015;428:372–84.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is supported by grants from the University of Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ornella Rossetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rossetto, O. (2018). Botulinum Toxins: Molecular Structures and Synaptic Physiology. In: Jabbari, B. (eds) Botulinum Toxin Treatment in Clinical Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-56038-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56038-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56037-3

  • Online ISBN: 978-3-319-56038-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics