T-Rex: A Milano Retinex Implementation Based on Intensity Thresholding

  • Michela Lecca
  • Carla M. Modena
  • Alessandro Rizzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10213)


We present T-Rex (from the words Threshold and REtineX), a new Milano Retinex implementation, based on an intensity thresholding strategy. Like all the algorithms of the Retinex family, T-Rex takes as input a color image and processes its channels separately. For each channel, T-Rex re-scales the chromatic intensity of each pixel x by the average of a set of pixels whose intensity, weighted by a function of the distance from x, exceeds the intensity of x. The main novelty of this approach is devised by the usage of the pixel intensity as a threshold for selecting the pixels relevant to Retinex. Here we show an application of T-Rex as image enhancer, showing that, as a member of the Retinex family, it equalizes the dynamic range of any input picture and makes its details more evident.


  1. 1.
    Banic, N., Loncaric, S.: Light random sprays retinex: exploiting the noisy illumination estimation. IEEE Signal Process. Lett. 20(12), 1240–1243 (2013)CrossRefGoogle Scholar
  2. 2.
    Creutzfeldt, O., Lange-Malecki, B., Wortmann, K.: Darkness induction, retinex and cooperative mechanisms in vision. Exp. Brain Res. 67(2), 270–283 (1987)CrossRefGoogle Scholar
  3. 3.
    Gianini, G., Lecca, M., Rizzi, A.: A population based approach to point-sampling spatial color algorithms. J. Opt. Soc. Am. A 33(12), 2396–2413 (2016)CrossRefGoogle Scholar
  4. 4.
    Gianini, G., Manenti, A., Rizzi, A.: QBRIX: a quantile-based approach to retinex. J. Opt. Soc. Am. A 31(12), 2663–2673 (2014)CrossRefGoogle Scholar
  5. 5.
    Gianini, G., Rizzi, A., Damiani, E.: A retinex model based on absorbing markov chains. Inf. Sci. 327, 149–174 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kolås, Ø., Farup, I., Rizzi, A.: Spatio-temporal retinex-inspired envelope with stochastic sampling: a framework for spatial color algorithms. J. Imaging Sci. Technol. 55(4), 40503-1–40503-10 (2011)Google Scholar
  7. 7.
    Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 1, 1–11 (1971)CrossRefGoogle Scholar
  8. 8.
    Lecca, M., Rizzi, A.: Tuning the locality of filtering with a spatially weighted implementation of random spray retinex. JOSA A 32(10), 1876–1887 (2015)CrossRefGoogle Scholar
  9. 9.
    Lecca, M., Rizzi, A., Gianini, G.: Energy-driven path search for termite retinex. JOSA A 33(1), 31–39 (2016)CrossRefGoogle Scholar
  10. 10.
    Marini, D., Rizzi, A.: Color constancy and optical illusions: a computer simulation with Retinex theory. In: ICIAP 1993 7th International Conference on Image Analysis and Processing, Monopoli, Italy, pp. 657–660 (1993)Google Scholar
  11. 11.
    Marini, D., Rizzi, A.: A computational approach to color adaptation effects. Image Vis. Comput. 18(13), 1005–1014 (2000)CrossRefGoogle Scholar
  12. 12.
    McCann, J., Rizzi, A.: The Art and Science of HDR Imaging. Wiley, New York (2011)CrossRefGoogle Scholar
  13. 13.
    McCann, J.J., (ed.): Special session on retinex at 40. J. Electron. Imaging 13(1), 6–145 (2004)Google Scholar
  14. 14.
    Montagna, R., Finlayson, G.D.: Constrained Pseudo-Brownian motion and its application to image enhancement. J. Opt. Soc. Am. A 28(8), 1677–1688 (2011)CrossRefGoogle Scholar
  15. 15.
    Provenzi, E., De Carli, E., Rizzi, A., Marini, D.: Mathematical definition and analysis of the retinex algorithm. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22(12), 2613–2621 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random spray retinex: a new retinex implementation to investigate the local properties of the model. Trans. Img. Proc. 16(1), 162–171 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rizzi, A.: Designator retinex, milano retinex and the locality issue. Electron. Imaging 2016(6), 1–5 (2016)CrossRefGoogle Scholar
  18. 18.
    Rizzi, A., Algeri, T., Medeghini, G., Marini, D.: A proposal for contrast measure in digital images. In: CGIV 2004 - Second European Conference on Color in Graphics, Imaging, and Vision and Sixth International Symposium on Multispectral Color Science, Aachen, pp. 187–192 (2004)Google Scholar
  19. 19.
    Rizzi, A., McCann, J.J.: Computer algorithms that mimic human vision must respond to the spatial content in images. In: SPIE Electronic Imaging & Signal Processing (2007)Google Scholar
  20. 20.
    Rizzi, A., McCann, J.J.: On the behavior of spatial models of color. In: Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, vol. 6493 (2007)Google Scholar
  21. 21.
    Rizzi, A., McCann, J.J., Bertalmio, M., Gianini, G. (eds.): Retinex at 50. Special issue on Journal of Electronic Imaging, vol. 26(3) (2017)Google Scholar
  22. 22.
    Simone, G., Audino, G., Farup, I., Albregtsen, F., Rizzi, A.: Termite retinex: a new implementation based on a colony of intelligent agents. J. Electron. Imaging 23(1), 013006 (2014)Google Scholar
  23. 23.
    Simone, G., Cordone, R., Lecca, M., Serapioni, R.P.: On edge-aware path-based color spatial sampling for retinex: from termite retinex to light-energy driven termite retinex. J. Electron. Imaging 26(3), 031203 (2017). Special Issue, Retinex at 50Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michela Lecca
    • 1
  • Carla M. Modena
    • 1
  • Alessandro Rizzi
    • 2
  1. 1.Center for Information and Communication Technology, Technologies of VisionFondazione Bruno KesslerTrentoItaly
  2. 2.Dipartimento di InformaticaUniversitá degli Studi di MilanoMilanoItaly

Personalised recommendations