Similarities and Differences in the Mathematical Formalizations of the Retinex Model and Its Variants

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10213)

Abstract

Edwin H. Land and John J. McCann introduced the Retinex model as a computational theory of color vision. However, they specified the details of Retinex rather algorithmically and not mathematically and this opened the way to a multitude of different interpretations of their model, many times even contradicting ones. The aim of this paper is to present a systematic and self-contained overview about these different interpretations and the corresponding mathematical formalizations in terms of variational principles and partial differential equations.

References

  1. 1.
    Banić, N., Lončarić, S.: Light random sprays Retinex: exploiting the noisy illumination estimation. IEEE Signal Process. Lett. 20, 1240–1243 (2013)CrossRefGoogle Scholar
  2. 2.
    Banić, N., Lončarić, S.: Smart light random memory sprays Retinex: a fast Retinex implementation for high-quality brightness adjustment and color correction. JOSA A 32(11), 2136–2147 (2015)CrossRefGoogle Scholar
  3. 3.
    Bertalmío, M., Caselles, V., Provenzi, E.: Issues about the Retinex theory and contrast enhancement. Int. J. Comput. Vis. 83, 101–119 (2009)CrossRefGoogle Scholar
  4. 4.
    Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. Image Process. 16, 1058–1072 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Buchsbaum, G.: A spatial processor model for object colour perception. J. Frankl. Inst. 310, 337–350 (1980)CrossRefGoogle Scholar
  6. 6.
    Cooper, T.J., Baqai, F.A.: Analysis and extensions of the Frankle-McCann Retinex algorithm. J. Electron. Imaging 13, 85–92 (2004)CrossRefGoogle Scholar
  7. 7.
    Frankle, J., McCann, J.J.: Method and apparatus for lightness imaging. US Patent 4,348,336 (1983)Google Scholar
  8. 8.
    Funt, B., Ciurea, F., McCann, J.J.: Retinex in MATLAB. J. Electron. Imaging 13(1), 48–57 (2004)CrossRefGoogle Scholar
  9. 9.
    Gianini, G., Manenti, A., Rizzi, A.: QBRIX: a quantile-based approach to Retinex. JOSA A 31(12), 2663–2673 (2014)CrossRefGoogle Scholar
  10. 10.
    Gianini, G., Rizzi, A., Damiani, E.: A Retinex model based on absorbing Markov chains. Inf. Sci. 327(10), 149–174 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Horn, B.: Determining lightness from an image. Comput. Graph. Image Process. 3, 277–299 (1974)CrossRefGoogle Scholar
  12. 12.
    Jobson, D., Rahman, Z., Woodell, G.: A multiscale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process, 6(7), 965–976 (1997)CrossRefGoogle Scholar
  13. 13.
    Jobson, D., Rahman, Z., Woodell, G.: Properties and performance of a center/surround Retinex. IEEE Trans. image process. 6(3), 451–462 (1997)CrossRefGoogle Scholar
  14. 14.
    Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for Retinex. Int. J. Comput. Vis. 52, 07–23 (2003)CrossRefMATHGoogle Scholar
  15. 15.
    Kolås, Ø., Farup, I., Rizzi, A.: Spatio-temporal Retinex-inspired envelope with stochastic sampling: a framework for spatial color algorithms. J. Imaging Sci. Technol. 55(4), 40503-1 (2011)CrossRefGoogle Scholar
  16. 16.
    von Kries, J.: Chromatic adaptation. Festschrift der Albrecht-Ludwigs-Universität, pp. 145–158 (1902)Google Scholar
  17. 17.
    Land, E.: The Retinex. Am. Sci. 52(2), 247–264 (1964)Google Scholar
  18. 18.
    Land, E.: An alternative technique for the computation of the designator in the Retinex theory of color vision. Proc. Acad. Sci. 83, 3078–3080 (1986)CrossRefGoogle Scholar
  19. 19.
    Land, E., McCann, J.: Lightness and Retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)CrossRefGoogle Scholar
  20. 20.
    Lecca, M., Rizzi, A., Gianini, G.: Energy-driven path search for termite Retinex. JOSA A 33(1), 31–39 (2016)CrossRefGoogle Scholar
  21. 21.
    Marini, D., Rizzi, A.: A computational approach to color adaptation effects. Image Vis. Comput. 18, 1005–1014 (2000)CrossRefGoogle Scholar
  22. 22.
    Morel, J., Petro, A., Sbert, C.: A PDE formalization of Retinex theory. IEEE Trans. Image Process. 19(11), 2825–2837 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Palma-Amestoy, R., Provenzi, E., Bertalmío, M., Caselles, V.: A perceptually inspired variational framework for color enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 458–474 (2009)CrossRefGoogle Scholar
  24. 24.
    Provenzi, E., Caselles, V.: A wavelet perspective on variational perceptually-inspired color enhancement. IJCV 106, 153–171 (2014)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Provenzi, E., De Carli, L., Rizzi, A., Marini, D.: Mathematical definition and analysis of the Retinex algorithm. J. Opt. Soc. Am. A 22(12), 2613–2621 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random spray Retinex: a new Retinex implementation to investigate the local properties of the model. IEEE Trans. Image Process. 16, 162–171 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Provenzi, E., Gatta, C., Fierro, M., Rizzi, A.: Spatially variant white patch and gray world method for color image enhancement driven by local contrast. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1757 (2008)CrossRefGoogle Scholar
  28. 28.
    Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recogn. Lett. 24, 1663–1677 (2003)CrossRefGoogle Scholar
  29. 29.
    Sapiro, G., Caselles, V.: Histogram modification via differential equations. J. Differ. Equ. 135, 238–266 (1997)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Simone, G., Audino, G., Farup, I., Albregtsen, F., Rizzi, A.: Termite Retinex: a new implementation based on a colony of intelligent agents. J. Electron. Imaging 23(1), 013006 (2014)CrossRefGoogle Scholar
  31. 31.
    Simone, G., Farup, I.: Spatio-temporal Retinex-like envelope with total variation. In: Conference on Colour in Graphics, Imaging, and Vision, vol. 2012, pp. 176–181. Society for Imaging Science and Technology (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire MAP5 (UMR CNRS 8145), Université Paris DescartesParisFrance

Personalised recommendations