Color Vision Is a Spatial Process: The Retinex Theory

  • Michela LeccaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10213)


Born through the work of Edwin H. Land and John J. McCann more than 40 years ago, Retinex theory proposes a computational model to explain and estimate the human color sensation, i.e. the color perception that human vision system produces when oberving a scene. Retinex is founded on a series of experiments, evidencing that the human color sensation at any observed point does not depend merely on the photometric cues of that point, but also on those of the surrounding regions and on their spatial arrangement. Indeed, human color vision is a spatial process. This paper presents the conceptual framework of Retinex, the main challenges it faced and solved, and some algorithmic procedures implementing it.


Human Vision System Color Channel Human Color Color Sensation Color Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Banic, N., Loncaric, S.: Light random sprays retinex: exploiting the noisy illumination estimation. IEEE Signal Process. Lett. 20(12), 1240–1243 (2013)CrossRefGoogle Scholar
  2. 2.
    Banić, N., Lončarić, S.: Smart light random memory sprays retinex: a fast retinex implementation for high-quality brightness adjustment and color correction. JOSA A 32(11), 2136–2147 (2015)CrossRefGoogle Scholar
  3. 3.
    Barlow, H.B.: Summation and inhibition in the frog’s retina. J. Physiol. 119(1), 69 (1953)CrossRefGoogle Scholar
  4. 4.
    Ciocca, G., Marini, D., Rizzi, A., Schettini, R., Zuffi, S.: Retinex preprocessing of uncalibrated images for color-based image retrieval. J. Electron. Imaging 12(1), 161–172 (2003)CrossRefGoogle Scholar
  5. 5.
    Creutzfeldt, O., Lange-Malecki, B., Wortmann, K.: Darkness induction, retinex and cooperative mechanisms in vision. Exp. Brain Res. 67(2), 270–283 (1987)CrossRefGoogle Scholar
  6. 6.
    Daw, N.W.: Goldfish retina: organization for simultaneous color contrast. Science 158(3803), 942–944 (1967)CrossRefGoogle Scholar
  7. 7.
    De Valois, R.L., De Valois, K.K.: Spatial vision. Ann. Rev. Psychol. 31(1), 309–341 (1980)CrossRefzbMATHGoogle Scholar
  8. 8.
    De Valois, R.L., Morgan, H., Snodderly, D.M.: Psychophysical studies of monkey vision-iii. spatial luminance contrast sensitivity tests of macaque and human observers. Vision Res. 14(1), 75–81 (1974)CrossRefGoogle Scholar
  9. 9.
    Dowling, J.E.: The Retina: An Approachable Part of the Brain. Harvard University Press (1987)Google Scholar
  10. 10.
    Gabriele, G., Lecca, M., Rizzi, A.: A population-based approach to point-sampling spatial color algorithms. J. Opt. Soc. Am. A 33(12), 2396–2413 (2016)CrossRefGoogle Scholar
  11. 11.
    Geusebroek, J.-M., van den Boomgaard, R., Smeulders, A.W.M., Gevers, T.: Color constancy from physical principles. Pattern Recogn. Lett. 24(11), 1653–1662 (2003)CrossRefGoogle Scholar
  12. 12.
    Gianini, G., Manenti, A., Rizzi, A.: Qbrix: a quantile-based approach to retinex. JOSA A 31(12), 2663–2673 (2014)CrossRefGoogle Scholar
  13. 13.
    Hanumantharaju, M.C., Ravishankar, M., Rameshbabu, D.R., Ramachandran, S.: Color image enhancement using multiscale retinex with modified color restoration technique. In: 2nd Conference on Emerging Applications of Information Technology (EAIT), pp. 93–97. IEEE (2011)Google Scholar
  14. 14.
    Islam, A., Farup, I.: Enhancing the output of spatial color algorithms. In: 2nd European Workshop on Visual Information Processing (EUVIP), pp. 7–12. IEEE (2010)Google Scholar
  15. 15.
    Jang, J.H., Kim, S.D., Ra, J.B.: Enhancement of optical remote sensing images by subband-decomposed multiscale retinex with hybrid intensity transfer function. IEEE Geosci. Remote Sens. Lett. 8(5), 983–987 (2011)CrossRefGoogle Scholar
  16. 16.
    Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)CrossRefGoogle Scholar
  17. 17.
    Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)CrossRefGoogle Scholar
  18. 18.
    Kolås, Ø., Farup, I., Rizzi, A.: Spatio-temporal retinex-inspired envelope with stochastic sampling a framework for spatial color algorithms. J. Imaging Sci. Technol. 55(4), 40503-1–40503-10 (2011)CrossRefGoogle Scholar
  19. 19.
    Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16(1), 37–68 (1953)Google Scholar
  20. 20.
    Land, E.: Recent advances in retinex theory (1985)Google Scholar
  21. 21.
    Land, E.H.: An alternative technique for the computation of the designator in the retinex theory of color vision. Proc. Nat. Acad. Sci. U.S.A. 83(10), 3078–3080 (1986)CrossRefGoogle Scholar
  22. 22.
    Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Optical Soc. Am. 1, 1–11 (1971)CrossRefGoogle Scholar
  23. 23.
    Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–128 (1977)CrossRefGoogle Scholar
  24. 24.
    Lecca, M., Rizzi, A., Gianini, G.: Energy-driven path search for termite retinex. J. Opt. Soc. Am. A 33, 1 (2016)CrossRefGoogle Scholar
  25. 25.
    Lu, H., Yang, S., Zhang, H., Zheng, Z.: A robust omnidirectional vision sensor for soccer robots. Mechatronics 21(2), 373–389 (2011)CrossRefGoogle Scholar
  26. 26.
    Marini, D., Rizzi, A.: Colour constancy and optical illusions: a computer simulation with Retinex theory. In: Proceeding of ICIAP, pp. 657–660, Monopoli, Italy, September 1993Google Scholar
  27. 27.
    McCann, J., Rizzi, A.: The Art and Science of HDR Imaging. Wiley (2011)Google Scholar
  28. 28.
    McCann, J.J.: Retinex algorithms: many spatial processes used to solve many different problems. Electron. Imaging 2016(6), 1–10 (2016)CrossRefGoogle Scholar
  29. 29.
    McCann, J.J., Savoy, R.: Measurements of lightness: dependence on the position of a white in the field of view. In: Electronic Imaging 1991, San Jose, CA, pp. 402–411. International Society for Optics and Photonics (1991)Google Scholar
  30. 30.
    McCann, J.J., McKee, S.P., Taylor, T.H.: Quantitative studies in retinex theory a comparison between theoretical predictions and observer responses to the color mondrian experiments. Vision Res. 16(5), 445–IN3 (1976)Google Scholar
  31. 31.
    Montagna, R., Finlayson, G.D.: Constrained pseudo-Brownian motion and its application to image enhancement. J. Opt. Soc. Am. A 28(8), 1677–1688 (2011)CrossRefGoogle Scholar
  32. 32.
    Optical Society of America: Committee on Colorimetry. The Science of Color. Crowell, New York (1953)Google Scholar
  33. 33.
    Provenzi, E., De Carli, E., Rizzi, A., Marini, D.: Mathematical definition and analysis of the Retinex algorithm. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 22(12), 2613–2621 (2005)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random spray retinex: a new Retinex implementation to investigate the local properties of the model. Trans. Img. Proc. 16(1), 162–171 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rahman, Z., Jobson, D.J., Woodell, G.A.: A multiscale retinex for color rendition and dynamic range compression. In: SPIE International Symposium on Optical Science, Engineering and Instrumentation, Applications of Digital Image Processing XIX, vol. 2847, pp. 183–191 (1996)Google Scholar
  36. 36.
    Rahman, Z., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100–110 (2004)CrossRefGoogle Scholar
  37. 37.
    Rahman, Z., Woodell, G.A., Jobson, D.J.: Retinex image enhancement: application to medical images. In: NASA Workshop on New Partnerships in Medical Diagnostic Imaging (2001)Google Scholar
  38. 38.
    Schettini, R., Ciocca, G., Zuffi, S., et al.: A survey of methods for colour image indexing and retrieval in image databases. In: Color Imaging Science: Exploiting Digital Media, pp. 183–211 (2001)Google Scholar
  39. 39.
    Simone, G., Audino, G., Farup, I., Albregtsen, F., Rizzi, A.: Termite Retinex: a new implementation based on a colony of intelligent agents. J. Electron. Imaging 23(1), 013006-1–013006-13 (2014)Google Scholar
  40. 40.
    Simone, G., Cordone, R., Lecca, M., Serapioni, R.P.: On Edge-aware path-based color spatial sampling for retinex: from Termite Retinex to light-energy driven Termite Retinex. J. Electron. Imaging (to appear). Special Issue, Retinex at 50Google Scholar
  41. 41.
    Vázquez, S.G., Barreira, N., Penedo, M.G., Saez, M., Pose-Reino, A.: Using retinex image enhancement to improve the artery/vein classification in retinal images. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6112, pp. 50–59. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13775-4_6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Information and Communication Technology, Technologies of VisionFondazione Bruno KesslerTrentoItaly

Personalised recommendations