Skip to main content

Costs of Nutrient Management with Technological Development and Climate Change

  • Chapter
  • First Online:
Book cover Environmental Challenges in the Baltic Region
  • 313 Accesses

Abstract

This chapter examines the implications for the cost-effective management of nitrogen and phosphorus, in the presence of uncertain climate change effects on nutrient pools in a eutrophied sea. It investigates the impact of uncertain development on nutrient abatement technologies. A dynamic cost-effectiveness model to account for differences in the sea’s adjustment to the loads of the two nutrients is used to study uncertain climate change effects with probabilistic constraints on nutrient pool targets and uncertain technological development in a mean–variance framework. Empirical application to the Baltic Sea indicates that climate change and technological development can reduce total abatement cost by half, but also increase it by 125% when uncertainty is included. Poland faces the largest cost burden—approximately 50% of the total cost in all scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlvik, L., & Pavlova, Y. (2013). A strategic analysis of eutrophication abatement in the Baltic Sea. Environmental & Resource Economics, 56(3), 353–378.

    Article  Google Scholar 

  • Azar, S. A. (2010). Bounds to the coefficient of relative risk aversion. Banking and Finance Letters, 2(4), 391–398.

    Google Scholar 

  • Baumol, J. W., & Oates, W. E. (1988). The theory of environmental policy. Cambridge, UK: University Press.

    Book  Google Scholar 

  • Birge, J., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.

    Google Scholar 

  • Bramoullé, Y., & Olson, L. J. (2005). Allocation of pollution abatement under learning by doing. Journal of Public Economics, 89(9–10), 1935–1960.

    Article  Google Scholar 

  • Byström, O., Andersson, H., & Gren, I.-M. (2000). Economic criteria for restoration of wetlands under uncertainty. Ecological Economics, 35(1), 35–45.

    Article  Google Scholar 

  • Carraro, C., De Cian, E., Nicita, L., Massetti, E., & Verdoloni, E. (2010). Environmental policy and technical change: A survey. International Review of Environmental and Resource Economics, 4(2), 163–219.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1964). Deterministic equivalents for optimizing and satisfying under chance constraints. Operations Research, 11(1), 18–39.

    Article  Google Scholar 

  • Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B., et al. (2009). Hypoxia-related processes in the Baltic Sea. Environmental Science and Technology, 43(10), 3412–3420.

    Article  Google Scholar 

  • Elmgren, R., & Larsson, U. (2001). Eutrophication in the Baltic Sea area. Integrated coastal management issues. In B. von Bodungen & R. K. Turner (Eds.), Science and integrated coastal management (pp. 15–35). Berlin: Dahlem University Press.

    Google Scholar 

  • Elofsson, K. (2006). Cost-effective control of interdependent water pollutants. Environmental Management, 37(1), 54–68.

    Article  Google Scholar 

  • Elofsson, K. (2007). Cost uncertainty and unilateral abatement. Environmental and Resources Economics, 36(2), 143–162.

    Article  Google Scholar 

  • Elofsson, K. (2003). Cost-effective reductions of stochastic agricultural nitrogen loads to the Baltic Sea. Ecological Economics, 47(1), 13–31.

    Article  Google Scholar 

  • Gilbert, P. M. (2007). Eutrophication and harmful algal blooms: A complex global issue, examples from the Arabian Seas and including Kuwait Bay and an introduction to the global ecology and oceanography of harmful algal blooms (GEOHAB) Programme. International Journal of Oceans and Oceanography, 2(1), 157–169.

    Google Scholar 

  • Gren, I.-M. (2010). Climate change and the water framework directive: Cost-effectiveness and policy design for water management in the Swedish Mälar region. Climatic Change, 100(3), 463–484.

    Article  Google Scholar 

  • Gren, I.-M., Elofsson, K., & Jannke, P. (1997). Cost-effective nutrient reductions to the Baltic Sea. Environmental & Resource Economics, 10(4), 341–362.

    Article  Google Scholar 

  • Gren, I.-M., Carlsson, M., Munnich, M., & Elofsson, K. (2012). The role of stochastic carbon sink for the EU emission trading system. Energy Economics, 34, 1523–1531.

    Article  Google Scholar 

  • Gren, I.-M., Savchuck, O., & Jansson, T. (2013). Dynamic and spatial cost-effective mitigation of Baltic Sea eutrophication. Marine Resource Economics, 28(3), 263–284.

    Article  Google Scholar 

  • Gren, I. M., Baxter, P., Mikusinski, G., & Possingham, H. (2014). Cost-effective biodiversity restoration with uncertain growth in forest habitat quality. Journal of Forest Economics, 20(1), 77–92.

    Article  Google Scholar 

  • Gren, I.-M., & Lindkvist, M. (2014). Cost-effective management of a eutrophied sea in the presence of uncertain climate change and technological development. Working paper no. 2014–1. Department of Economics, Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Hart, R., & Brady, M. (2002). Nitrogen in the Baltic Sea—policy implication of stock effects. Journal of Environmental Management, 66(1), 91–103.

    Article  Google Scholar 

  • Hart, R. (2003). Dynamic pollution control. Ecological Economics, 47(1), 79–93.

    Article  Google Scholar 

  • Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., et al. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1), 3–13.

    Article  Google Scholar 

  • HELCOM. (1988, 2007, 2013). Baltic Sea Action Plan. Helsinki Commission, Helsinki, Finland. http://www.helcom.fi/baltic-sea-action-plan/nutrient-reduction-scheme/. Accessed 7 January 2014.

  • Held, H., Kriegler, E., Lessman, K., & Edenhofer, O. (2009). Efficient climate policies under technology and climate uncertainty. Energy Economics, 31(1), S50–S61.

    Article  Google Scholar 

  • Helin, J., Laukkanen, M., & Koikkalainen, K. (2008). Abatement costs for agricultural nitrogen and phosphorus loads: A case study of crop farming in south-western Finland. Agricultural and Food Science, 15(4), 351–374.

    Article  Google Scholar 

  • Jamasb, T. (2007). Technical change theory and learning curves: Patterns of progress in electricity generation technologies. The Energy Journal, 28(3), 51–72.

    Article  Google Scholar 

  • Kabel, K., Moros, M., Prosche, P., Neumann, T., Adolphi, F., Andersen, T. J., et al. (2012). Impact of climate change on the Baltic Sea ecosystem over the past 1000 years. Nature Climate Change, 2, 871–874.

    Article  Google Scholar 

  • Kataria, M., Elofsson, K., & Hasler, B. (2010). Distributional assumptions in chance constrained programming models of stochastic water pollution. Environmental Modeling and Assessment, 15(4), 273–281.

    Article  Google Scholar 

  • Laukkanen, M., & Huhtala, A. (2008). Optimal management of a eutrophied coastal ecosystem: Balancing agricultural and municipal abatement measures. Environmental & Resource Economics, 39(2), 139–159.

    Article  Google Scholar 

  • Laukkanen, M., Ekholm, P., Huhtala, A., Pitkänen, H., Kiirikki, M., Rantanen, P., et al. (2009). Integrating ecological and economic modelling of eutrophication: Toward optimal solutions for a coastal area suffering from sediment release of phosphorus. Ambio, 38(4), 225–235.

    Article  Google Scholar 

  • Lindkvist, M., Gren, I.-M., & Elofsson, K. (2013). A study of climate change and cost-effective mitigation of eutrophication in the Baltic Sea. In B. R. Singh (Ed.), Climate change—Realities, impacts over ice cap, sea level and risk (pp. 459–480). Prague: INTECH.

    Google Scholar 

  • Lindkvist, M., & Gren, I.-M. (2013). Cost-effective nutrient abatement for the Baltic Sea under learning-by-doing induced technical change. Working paper 01/2103, Department of Economics, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

  • MacDonald, A., & Schrattenholzer, L. (2001). Learning rates for energy technologies. Energy Policy, 29(4), 255–261.

    Article  Google Scholar 

  • Mäler, K.-G., Xepapadeas, A., & de Zeeuw, A. (2003). The economics of shallow lakes. Environmental and Resource Economics, 26(4), 603–624.

    Article  Google Scholar 

  • Ollikainen, M., & Honkatukla, J. (2001). Towards efficient pollution control in the Baltic Sea: An anatomy of current failure with suggestions for change. Ambio, 30(4–5), 245–253.

    Article  Google Scholar 

  • Panzar, J., & Willig, R. (1981). Economies of scope. American Economic Review, 71(2), 268–272.

    Google Scholar 

  • Pyle, D., & Turnovsky, S. (1970). Safety-first and expected utility maximization in a mean-standard deviation portfolio analysis. Review of Economics and Statistics, 52(1), 75–81.

    Article  Google Scholar 

  • Rasmussen, T. N. (2001). CO2 abatement policy with learning-by-doing in renewable energy. Resource and Energy Economics, 23(4), 297–325.

    Article  Google Scholar 

  • Robertsson, M., BenDor, T., Lave, R., Riggsbee, A., Ruhl, J. B., & Doyle, M. (2014). Stacking ecosystem services. Frontiers in Ecology and the Environment, 12(3), 186–193.

    Article  Google Scholar 

  • Rosendahl, K. E. (2004). Cost-effective environmental policy: Implications of induced technical change. Journal of Environmental Economics and Management, 48(3), 1099–1121.

    Article  Google Scholar 

  • Rosenthal, R. (2008). Gams—A user’s guide. Washington, DC: GAMS Development Corporation.

    Google Scholar 

  • Savchuk, O. P., & Wulff, F. (2007). Modeling the Baltic Sea eutrophication in a decision support system. Ambio, 36(2–3), 141–148.

    Article  Google Scholar 

  • Savchuk, O. P., & Wulff, F. (2009). Long-term modelling of large-scale nutrient cycles in the entire Baltic Sea. Hydrobiologia, 629(1), 209–224.

    Article  Google Scholar 

  • Schmidt, M., Lorenz, A., Held, H., & Kriegler, E. (2011). Climate targets under uncertainty: Challenges and remedies. Climatic Change, 104(3), 783–791.

    Article  Google Scholar 

  • Shortle, J. (1990). The allocative efficiency implications of water pollution abatement cost comparisons. Water Resources Research, 26(5), 793–797.

    Article  Google Scholar 

  • Taha, H. (2007). Operations research. An introduction (8th ed.). London: Macmillan Publishing Co.

    Google Scholar 

  • Tesler, L. G. (1955–56). Safety-first and hedging. Review of Economic Studies, 23(1): 1–16.

    Google Scholar 

Download references

Acknowledgements

We are much indebted to the EU-funded BONUS project BaltCoast and to the Swedish Environmental Protection Agency Grant No. 15/24 for financial support, and to Tomasz Zylicz for valuable comments at the workshop on environmental challenges in the Baltic region at Södertörn University, 11 May 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ing-Marie Gren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Gren, IM. (2017). Costs of Nutrient Management with Technological Development and Climate Change. In: Bali Swain, R. (eds) Environmental Challenges in the Baltic Region. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-56007-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56007-6_3

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-319-56006-9

  • Online ISBN: 978-3-319-56007-6

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics