Quality Measures for Visual Point Clustering in Geospatial Mapping

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10181)


Visualizing large amounts of point data in a way that resembles the density of the distribution is a complex problem if the size of the drawing area is constrained. Naïvely drawing points on top of each other leads to occlusion and therefore a loss of information. An intuitive approach is combining close points as clusters that resemble their size as well as their geographic location. However, traditional clustering algorithms are not designed for visual clusterings rather than minimizing an error function independent of a graphical representation. This paper introduces measures for the quality of circle representations based on clustering outputs. Our experimental evaluation revealed that all methods had weaknesses regarding at least one of these criteria.


Geographic visualization Point clustering Evaluation 



This work was supported by DFG grant no. SE 553/7-2.


  1. 1.
    Kelling, S., Hochachka, W., Fink, D., et al.: Data-intensive science: a new paradigm for biodiversity studies. BioScience 59(7), 613–620 (2009)CrossRefGoogle Scholar
  2. 2.
    Jetz, W., McPherson, J., Guralnick, R.: Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27(3), 151–159 (2012)CrossRefGoogle Scholar
  3. 3.
    Corvalan, C., Hales, S., McMichael, A.: Ecosystems and Human Well-Being: Health Synthesis. World Health Organization, Geneva (2005)Google Scholar
  4. 4.
    Diepenbroek, M., Glöckner, F., Grobe, P., et al.: Towards an integrated biodiversity and ecological research data management and archiving platform: the German federation for the curation of biological data (GFBio). In: GI-Jahrestagung, pp. 1711–1721 (2014)Google Scholar
  5. 5.
    Authmann, C., Beilschmidt, C., Drönner, J., Mattig, M., Seeger, B.: Rethinking spatial processing in data-intensive science. In: BTW Workshops (2015)Google Scholar
  6. 6.
    Authmann, C., Beilschmidt, C., Drönner, J., Mattig, M., Seeger, B.: VAT: a system for visualizing, analyzing and transforming spatial data in science. Datenbank-Spektrum 15(3), 175–184 (2015)CrossRefGoogle Scholar
  7. 7.
    Wang, H., Huang, W., Zhang, Q., Xu, D.: An improved algorithm for the packing of unequal circles within a larger containing circle. Eur. J. Oper. Res. 141(2), 440–453 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jänicke, S., Heine, C., Stockmann, R., Scheuermann, G.: Comparative visualization of geospatial-temporal data. In: Proceedings of IVAPP, pp. 613–625 (2012)Google Scholar
  9. 9.
    Mazza, R.: Introduction to Information Visualization. Springer, New York (2009)Google Scholar
  10. 10.
    Das Sarma, A., Lee, H., Gonzalez, H., Madhavan, J., Halevy, A.: Consistent thinning of large geographical data for map visualization. ACM Trans. Database Syst. (TODS) 38(4), 22 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math. Program. 79(1–3), 191–215 (1997)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(1), 86–97 (2012)CrossRefGoogle Scholar
  13. 13.
    Jänicke, S., Heine, C., Scheuermann, G.: GeoTemCo: comparative visualization of geospatial-temporal data with clutter removal based on dynamic delaunay triangulations. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 160–175. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38241-3_11 CrossRefGoogle Scholar
  14. 14.
    Bereuter, P., Weibel, R.: Real-time generalization of point data in mobile and web mapping using quadtrees. Cartogr. Geogr. Inf. Sci. 40(4), 271–281 (2013)CrossRefGoogle Scholar
  15. 15.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. Learn. Syst. 16(3), 645–678 (2005)CrossRefGoogle Scholar
  16. 16.
    Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD), pp. 226–231 (1996)Google Scholar
  17. 17.
    Gan, J., Tao, Y.: DBSCAN revisited: mis-claim, un-fixability, and approximation. In: Proceedings of ACM SIGMOD, pp. 519–530. ACM (2015)Google Scholar
  18. 18.
    Slocum, T., McMaster, R., Kessler, F., Howard, H.: Thematic Cartography and Geovisualization. Pearson Prentice Hall, Upper Saddle River (2009)Google Scholar
  19. 19.
    Herman, I., Melançon, G., Marshall, M.: Graph visualization and navigation in information visualization: a survey. IEEE Trans. Vis. Comput. Graph. 6(1), 24–43 (2000)CrossRefGoogle Scholar
  20. 20.
    Lopes, R., Reid, I., Hobson, P.: The two-dimensional kolmogorov-smirnov test. In: Proceedings of Science (2007)Google Scholar
  21. 21.
    Das Sarma, A., Lee, H., Gonzalez, H., Madhavan, J., Halevy, A.: Efficient spatial sampling of large geographical tables categories and subject descriptors. In: Proceedings of ACM SIGMOD, pp. 193–204 (2012)Google Scholar
  22. 22.
    Achtert, E., Goldhofer, S., Kriegel, H., Schubert, E., Zimek, A.: Evaluation of clusterings - metrics and visual support. In: ICDE, pp. 1285–1288. IEEE CS (2012)Google Scholar
  23. 23.
    Fober, T., Cheng, W., Hüllermeier, E.: Focusing search in multiobjective evolutionary optimization through preference learning from user feedback. In: Proceedings of Workshop Computational Intelligence, vol. 40, p. 107 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of MarburgMarburgGermany

Personalised recommendations