Advertisement

Image Reading and Interpretation

  • Elizabeth A. Krupinski
Chapter

Abstract

The interpretation of medical images, including those used in catheter-based cardiovascular interventions, depends on a number of factors that impact the quality of the images, from image acquisition to display. From the perspective of clinicians, however, it is their perceptual and cognitive systems that underlie the image interpretation process that are most critical. In order to understand why and how errors are made during the interpretation process, and how to better educate our trainees, we need to understand the capabilities and limitations of the human visual system. For the most part, catheter-based cardiovascular interventions rely on the same types of images used in the majority of radiographic exams. The key difference is that these images typically involve motion or real-time imaging, adding another dimension to the interpretation process and a link between the visual system and other sensory and motor systems used during the interventional process. This chapter reviews some of the core aspects of medical image perception, from the basics of visual perception to causes of error, ways to study error, and ways to optimize the clinical reading environment.

References

  1. 1.
    Birkelo CC, Chamberlain WE, Phelps PS. Tuberculosis case finding. A comparison of the effectiveness of various roentgenographic and photofluorographic methods. JAMA. 1947;133:359–66.CrossRefGoogle Scholar
  2. 2.
    Garland LH. On the scientific evaluation of diagnostic procedures. Radiology. 1949;52:309–28.CrossRefPubMedGoogle Scholar
  3. 3.
    Newell RR, Chamberlain WE, Rigler L. Descriptive classification of pulmonary shadows. Revelation of unreliability in roentgenographic diagnosis of tuberculosis. Am Rev Tuberc. 1954;69:566–84.PubMedGoogle Scholar
  4. 4.
    Bruno MA, Walker EA, Abujudeh HH. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics. 2015;35:1668–776.CrossRefPubMedGoogle Scholar
  5. 5.
    Pinto A, Caranci F, Romano L, Carrafiello G, Fonio P, Brunese L. Learning from errors in radiology: a comprehensive review. Semin Ultrasound CT MRI. 2012;33:379–82.CrossRefGoogle Scholar
  6. 6.
    Brady A, O’Laoide R, McCarthy P, McDermott R. Discrepancy and error in radiology: concepts, causes, and consequences. Ulster Med J. 2012;81:3–9.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee CS, Nagy PG, Weaver SJ, Newman-Toker DE. Cognitive and system factors contributing to diagnostic errors in radiology. Am J Roentgenol. 2013;201:611–7.CrossRefGoogle Scholar
  8. 8.
    Detre KM, Wright E, Murphy ML, Takaro T. Observer agreement in evaluating coronary arteriograms. Circulation. 1975;52:979–9886.CrossRefPubMedGoogle Scholar
  9. 9.
    Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interobserver variability in coronary arteriography. Circulation. 1976;53:627–32.CrossRefPubMedGoogle Scholar
  10. 10.
    DeRouen TA, Murphy JA, Owen W. Variability in the analysis of coronary arteriograms. Circulation. 1977;55:324–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Sanmarco ME, Brooks SH, Blankenhorn DH. Reproducibility of a consensus panel in the interpretation of coronary angiograms. Am Heart J. 1978;96:430–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Meier B, Gruentzig AR, Goebel N, Pyle R, von Gosslar W, Schlumph F. Assessment of stenosis in coronary angioplasty: inter- and intraobserver variability. Int J Cardiol. 1983;3:159–69.CrossRefPubMedGoogle Scholar
  13. 13.
    Beauman GJ, Vogel RA. Accuracy of individual and panel visual interpretations of coronary arteriograms: implications for clinical decisions. J Am Coll Cardiol. 1990;16:108–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Fleming RM, Kirkeeide RL, Smalling RW, Gould L, Stuart Y. Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography. J Am Coll Cardiol. 1991;18:945–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Nallamothu NK, Spertus JA, Lansky AJ, Cohen DJ, Jones PG, Kureshi F, Dehmer GJ, Drozda JP, Walsh MN, Brush JE, Koenig GC, Waites TF, Gantt DS, Kichura F, Chazal RA, O’Brien PK, Valentine CM, Rumsfeld JS, Reiber JH, Elomre JG, Krumholz RA, Weaver WD, Krumholz HM. Comparison of clinical interpretation with visual assessment and quantitative coronary angiography in patients undergoing percutaneous coronary intervention in contemporary practice: the Assessing Aaangiography (A2) project. Circulation. 2013;127:1793–800.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Daubet MA, Yow E, Bamhart HX, Rabineau D, Crowley AL, Douglas PS. Quality improvement implementation: improving reproducibility in the echocardiography laboratory. J Am Soc Echocardiogr. 2015;28:959–68.CrossRefGoogle Scholar
  17. 17.
    Rajabi MR, Benenati MJ, Schemthaner MB, Walker G, Gandhi RT, Pena CS, Katzen BT. Reliability and accuracy of simple visual estimation in assessment of peripheral arterial stenosis. J Vasc Interv Radiol. 2015;26:890–5.CrossRefGoogle Scholar
  18. 18.
    Thavendiranathan P, Popovic ZB, Flamm SD, Dahiya A, Grimm RA, Marwick TH. Improved interobserver variability and accuracy of echocardiographic visual left ventricular ejection fraction assessment through a self-directed learning program using cardiac magnetic resonance images. J Am Soc Echocardiogr. 2013;26:1267–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Tuddenham WJ, Calvert WP. Visual search patterns in roentgen diagnosis. Radiology. 1961;76:255–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Thomas EL, Lansdown EL. Visual search patterns of radiologists in training. Radiology. 1963;81:288–92.CrossRefPubMedGoogle Scholar
  21. 21.
    Kundel HL, Nodine CF, Carmody DP. Visual scanning, pattern recognition and decision-making in pulmonary tumor detection. Investig Radiol. 1978;13:175–81.CrossRefGoogle Scholar
  22. 22.
    Kundel HL, Nodine CF. Interpreting chest radiographs with and without visual search. Radiology. 1975;116:527–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Carmody DP, Nodine CF, Kundel HL. An analysis of perceptual and cognitive factors in radiographic interpretation. Perception. 1980;9:339–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Pietrzyk MW, McEntee MF, Evanoff ME, Brennan PC, Mello-Thoms CR. Direction of an initial saccade depends of radiological expertise. Proc SPIE Med Imag. 2014;9037:90371A.CrossRefGoogle Scholar
  25. 25.
    Timberg P, Lang K, Nystrom M, Holmqvist K, Wagner P, Fornvik D, Tingberg A, Zackrisson S. Investigation of viewing procedures for interpretation of breast tomosynthesis image volumes: a detection-task study with eye tracking. Eur Radiol. 2013;23:9.CrossRefGoogle Scholar
  26. 26.
    Kotre CJ, Guibelalde E. Optimization of variable temporal averaging in digital fluoroscopy. Br J Radiol. 2004;77:675–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Berbaum KS, Franken EA, Dorfman DD, El-Khoury GY. Satisfaction of search in diagnostic radiology. Investig Radiol. 1990;25:133–40.CrossRefGoogle Scholar
  28. 28.
    Berbaum KS, Krupinski EA, Schartz KM, Caldwell RT, Madsen MT, Laroia AT, Thompson BH, Mullan BF, Franken E. Satisfaction of search in chest radiography 2015. Acad Radiol. 2015;22:1457–65.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Renfrew DL, Franken EA, Berbaum KS, Weigelt FH, Abu-Yousef MM. Error in radiology: classification and lessons in 182 cases presented at a problem case conference. Radiology. 1992;183:145–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Franken EA, Berbaum KS, Lu CH, Kannak S, Dorfman DD, Warnock N, Simonson T, Pelsang RE. Satisfaction of search in the detection of plain-film abnormalities in abdominal contrast studies. Investig Radiol. 1994;29:403–9.CrossRefGoogle Scholar
  31. 31.
    Berbaum KS, Franken EA, Dorfman DD, Miller EM, Krupinski EA, Kreinbring K, Caldwell RT, Lu CH. Cause of satisfaction of search effects in contrast studies of the abdomen. Acad Radiol. 1996;3:815–26.CrossRefPubMedGoogle Scholar
  32. 32.
    Oyster CW. The human eye: structure and function. Sunderland: Sinauer Associates; 1999.Google Scholar
  33. 33.
    Brennan PC, McEntee M, Evanoff M, Phillips P, O’Connor WT, Manning DJ. Ambient lighting: effect of illumination on soft-copy viewing of radiographs of the wrist. Am J Roentgenol. 2007;188:W177–80.CrossRefGoogle Scholar
  34. 34.
    Baxter B, Ravindra H, Normann RA. Changes in lesion detectability caused by light adaptation in retinal photoreceptors. Investig Radiol. 1982;17:394–401.CrossRefGoogle Scholar
  35. 35.
    Norweck JT, Seibert JA, Andriole KP, Clunie DA, Curran BH, Flynn MJ, Krupinski E, Lieto RP, Peck DJ, Mian TA, Wyatt M. ACR-AAPM-SIIM technical standard for electronic practice of medical imaging. J Digit Imaging. 2013;26:38–52.CrossRefPubMedGoogle Scholar
  36. 36.
    Treisman AM. Preattentive processing in vision. Comput Vis Graph Image Process. 1985;31:156–77.CrossRefGoogle Scholar
  37. 37.
    Huang L. Visual features for perception, attention, and working memory: toward a three-factor framework. Cognition. 2015;145:43–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Maunsell JHR. Neuronal mechanisms of visual attention. Ann Rev Vis Scie. 2015;1:373–91.CrossRefGoogle Scholar
  39. 39.
    Stentiford F. Bottom-up visual attention for still images: a global view. In: Mancas M, Ferrera VP, Riche N, Taylor JG, editors. From human attention to computational attention. New York: Springer; 2016. p. P123–40.CrossRefGoogle Scholar
  40. 40.
    Badano A, Revie C, Castertano A, Cheng WC, Green P, Kimpe T, Krupinski E, Sisson C, et al. Consistency and standardization of color in medical imaging: a consensus report. J Digit Imaging. 2015;28:41–52.CrossRefPubMedGoogle Scholar
  41. 41.
    Kimpe T, Avanaki A, Espig K, Rostang J, Van Hoey G, Xthona A. Influence of display characteristics on clinical performance in digital pathology. Diagr Path J. 2016;8:164.Google Scholar
  42. 42.
    Campbell WS, Talmon GA, Foster KW, Lele SM, Kozel JA, West WW. Sixty-five thousand shades of gray: importance of color in surgical pathology diagnoses. Hum Path. 2015;46:1945–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Krupinski EA, Silverstein LD, Hashmi SF, Graham AR, Weinstein RS, Roehrig H. Observer performance using virtual pathology slides: impact of LCD color reproduction accuracy. J Digit Imaging. 2012;25:738–43.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Krupinski EA. Visual scanning patterns of radiologists searching mammograms. Acad Radiol. 1996;3:137–44.CrossRefPubMedGoogle Scholar
  45. 45.
    Krupinski EA, Lund PJ. Differences in time to interpretation for evaluation of bone radiographs with monitor and film viewing. Acad Radiol. 1997;4:177–82.CrossRefPubMedGoogle Scholar
  46. 46.
    Rubin GD, Roos JE, Tall M, Harrawood B, Bag S, Ly DL, Seaman DM, Hurwitz LM, Napel S, Choudhury KR. Characterizing search, recognition, and decision in the detection of lung nodules on CT scans: elucidation with eye tracking. Radiology. 2015;274:276–86.CrossRefPubMedGoogle Scholar
  47. 47.
    Drew T, LeHoa M, Olwal A, Jacobson F, Seltzer SE, Wolfe J. Scanners and drillers: characterizing visual search through volumetric images. J Vis. 2013;13:1–13. 14CrossRefGoogle Scholar
  48. 48.
    Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdooff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Res. 2013;15:35.CrossRefGoogle Scholar
  49. 49.
    Nodine CF, Krupinski EA. Perceptual skill, radiology expertise, and visual test performance with NINA and WALDO. Acad Radiol. 1998;5:603–12.CrossRefPubMedGoogle Scholar
  50. 50.
    Toomey RJ, Hodgins S, Evanoff ME, Rainford LA. An initial investigation of radiologist eye movements in vascular imaging. Proc SPIE Med Imag. 2013;8673:86731I–1.CrossRefGoogle Scholar
  51. 51.
    Venjakob AC, Marnitz T, Phillips P, Mello-Thoms CR. Image size influences visual search and perception of hemorrhages when reading cranial CT: an eye-tracking study. Hum Factors. 2016;58:441–51.CrossRefPubMedGoogle Scholar
  52. 52.
    Phillips P, Boone D, Mallett S, Taylor SA, Altman DG, Manning D, Gale A, Halligan S. Method for tracking eye gaze during interpretation of endoluminal 3D CT colonography: technical description and proposed metrics for analysis. Radiology. 2013;267:924–31.CrossRefPubMedGoogle Scholar
  53. 53.
    Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO, Williams SM. Neuroscience. 2nd ed. Sunderland: Sinauer Associates; 2001.Google Scholar
  54. 54.
    Snowden RJ, Freeman TC. The visual perception of motion. Curr Biol. 2004;14:R828–31.CrossRefPubMedGoogle Scholar
  55. 55.
    Krupinski EA, Graham AR, Weinstein RS. Characterizing the development of visual search expertise in pathology residents viewing whole slide images. Hum Path. 2013;44:357–64.CrossRefPubMedGoogle Scholar
  56. 56.
    Mello-Thoms C, Mello CAB, Medvedeva O, Castine M, Legowski E, Gardner G, Tseutlin E, Crowley R. Perceptual analysis of the reading of dermatopathology virtual slides by pathology residents. Arch Path Lab Med. 2012;136:551–62.CrossRefPubMedGoogle Scholar
  57. 57.
    Krupinski EA, Tillack AA, Richter L, Henderson JT, Bhattacharyya AK, Scott KM, Graham AR, Descour MR, Davis JR, Weinstein RS. Eye-movement study and human performance using telepathology virtual slides. Implications for medical education and differences with experience. Hum Path. 2006;37:1543–56.CrossRefPubMedGoogle Scholar
  58. 58.
    Krupinski EA, Chao J, Hofmann-Wellenhof R, Morrison L, Curiel-Lewandrowski C. Understanding visual search patterns of dermatologists assessing pigmented skin lesions before and after online training. J Digit Imaging. 2014;27:779–85.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Krupinski EA, Berbaum KS. Measurement of visual strain in radiologists. Acad Radiol. 2009;16:947–50.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Krupinski EA, Berbaum KS, Caldwell RT, Schartz KM, Kim J. Long radiology workdays reduce detection and accommodation accuracy. J Am Coll Radiol. 2010;7:698–704.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Krupinski EA, Berbaum KS, Caldwell RT, Schartz KM, Madsen MT, Kramer DJ. Do long radiology workdays affect nodule detection in dynamic CT interpretation? J Am Coll Radiol. 2012;9:191–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Emory University Department of Radiology & Imaging ScienceAtlantaUSA

Personalised recommendations