Angiosome System and Principle

  • Vlad-Adrian Alexandrescu
  • Jean-Olivier Defraigne
Chapter

Abstract

Despite high-performance modern interventional techniques and undeniable clinical medical progress, critical limb ischemia (CLI) persists to threaten large groups of patients afflicted by peripheral arterial occlusive disease. Among new contemporary strategies for revascularization, the angiosome concept was designed to enhance ischemic tissue regeneration in below-the-knee wound-targeted revascularizations. At present, 30 years after its first description in plastic surgery and following a decade of vascular applications for limb salvage, new questions arise in with regard to use in current clinical practice. What exactly does angiosome-directed revascularization mean, what diagnostic method best matches the ischemic foot angiosomal distribution, what specific changes warrant tibial angioplasty versus bypass in topographic foot revascularization, and how do we assess clinical success among distinct phases of tissue reperfusion and cicatrization, are some of the questions challenging interventionists. Other open issues concern the technical feasibility of an angiosome-guided strategy in daily practice and indications for this approach in specific «collateral-deprived» groups of CLI patients.

Despite a lack of consistency in available clinical studies, several contemporary meta-analyses suggest that angiosome-oriented revascularization, whenever technically feasible, by using main tibial trunks, accessible foot arches and collateral channels, may enhance and stabilize post-ischemic tissue regeneration. However, modest differences in limb salvage and survival rates are reported by some authors when comparing direct versus indirect revascularization strategies. This chapter presents the main characteristics of this continuously evolving approach and highlights observations and challenges of this appealing concept in lower limb revascularization interventions.

References

  1. 1.
    Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental studies and clinical applications. Br J Plast Surg. 1987;40:113–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Taylor GI, Pan WR. Angiosomes of the leg: anatomic study and clinical implications. Plast Reconstr Surg. 1998;102(3):599–616.CrossRefPubMedGoogle Scholar
  3. 3.
    Taylor GI, Caddy CM, Watterson PA, Crock JG. The venous territories (venosomes) of the human body: experimental study and clinical implications. Plast Reconstr Surg. 1990;86(2):185–213.CrossRefPubMedGoogle Scholar
  4. 4.
    Crawford ME. Flap classification and survival factors. In: Dockery GL, Crawford ME, editors. Lower extremity soft tissue and cutaneous plastic surgery. London/New York/Oxford/Sidney: Saunders Elsevier; 2006. p. 97–104.Google Scholar
  5. 5.
    Alexandrescu V, Vincent G, Azdad K, et al. A reliable approach to diabetic neuroischemic foot wounds: below-the-knee angiosome-oriented angioplasty. J Endovasc Ther. 2011;18:376–87.CrossRefPubMedGoogle Scholar
  6. 6.
    Iida O, Takahara M, Soga Y, et al. Impact of angiosome-oriented revascularization on clinical outcomes in critical limb ischemia patients without concurrent wound infection and diabetes. J Endovasc Ther. 2014;21(5):607–15.CrossRefPubMedGoogle Scholar
  7. 7.
    Alexandrescu VA. Angiosomes applications in critical limb ischemia: in search for relevance. Torino: Minerva Medica; 2012. p. 1–30, p 71–88.Google Scholar
  8. 8.
    Attinger CE, Evans KK, Bulan E, et al. Angiosomes of the foot and ankle and clinical implications for limb salvage: reconstruction, incisions and revascularization. Plast Reconstr Surg. 2006;117(7 Suppl):261S–93S.CrossRefPubMedGoogle Scholar
  9. 9.
    Bouchet A, Cuilleret J. Topographic anatomy of the inferior limb. In: Topographic anatomy of the human body. 3rd ed. Paris: Simep Publ. Masson; 1995. p. 26–97.Google Scholar
  10. 10.
    Schaper W. Collateral circulation, past and present. Basic Res Cardiol. 2009;104(1):5–21.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ziegler MA, Distasi MR, Bills RG, et al. Marvels, mysteries and misconceptions of vascular compensation to peripheral artery occlusion. Microcirculation. 2010;17(1):3–20.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Williams PL, Warwick R, Dyson M, et al. Angiology, blood vessels. In: Williams PL, Warwick R, Dyson M, Bannister LH, editors. Gray’s anatomy. 37th ed. New York: Churchill Livingstone; 1989. p. 682–94.Google Scholar
  13. 13.
    Gulati A, Botnaru I, Garcia LA. Critical limb ischemia and its treatments: a review. J Cardiovasc Surg. 2015;56(5):775–85.Google Scholar
  14. 14.
    Lehoux S, Lévi BI. Collateral artery growth: making the most of what you have. Circ Res. 2006;99:567–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Rashid H, Slim H, Zayed H, et al. The impact of arterial pedal arch quality and angiosome revascularization on foot tissue loss healing and infrapopliteal bypass outcome. J Vasc Surg. 2013;57:1219–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Spillerova K, Biancari F, Leppäniemi A, et al. Differential impact of bypass surgery and angioplasty on angiosome-targeted infrapopliteal revascularization. Eur J Vasc Endovasc Surg. 2014;49(4):412–9.CrossRefGoogle Scholar
  17. 17.
    Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol. 2006;47(5):921–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Jörneskog G. Why critical limb ischemia criteria are not applicable to diabetic foot and what the consequences are. Scand J Surg. 2012;101(2):114–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Alexandrescu VA. Myths and proofs of angiosome applications in CLI: where do we stand? J Endovasc Ther. 2014;21:616–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Kropman RH, Kiela G, Moll FL, et al. Variations in the anatomy of the popliteal artery and its side branches. Vasc Endovasc Surg. 2011;45(6):536–40.CrossRefGoogle Scholar
  21. 21.
    Abou-Foul AK, Borumandi F. Anatomical variations of lower limb vasculature and implications for free fibula flap : systematic review and critical analysis. Microsurgery. 2016;36(2):165–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Nichols WW, O’Rurke MF, Vlachopoulos C. Generalized and metabolic arterial disease. In: Nichols WW, O’Rurke MF, Vlachopoulos C, 6th, editors. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. London: Hodder Arnold; 2011. p. 523–34.Google Scholar
  23. 23.
    Ovcharenko DV, Kaputin MI, Voronkov AA, et al. Angiographic assessment of the incidence rate of atypical variants of the development of crural and plantar arteries. Angiol Sosud Khir. 2012;18(1):57–60.PubMedGoogle Scholar
  24. 24.
    Yamada T, Gloviczki P, Bower TC, et al. Variations of the arterial anatomy of the foot. Am J Surg. 1993;166(2):130–5.CrossRefGoogle Scholar
  25. 25.
    Lee JH, Dauber W. Anatomic study of the dorsalis pedis-first dorsal metatarsal artery. Ann Plast Surg. 1997;38(1):50–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Singh BN, Burmeister W, Machado K, et al. Variations of the origin of the arcuate artery. J Am Podiatr Med Assoc. 2013;103(3):181–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Gabrielli C, Olave E, Mandiola E, et al. The deep plantar arch in humans: constitution and topography. Surg Radiol Anat. 2001;23(4):253–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Alexandrescu VA, London V. Angiosomes : the cutaneous and arterial evaluation in CLI patients. In: Mustapha JM, editor. Critical limb ischemia: diagnosis and interventions. Chicago: HMP; 2015. p. 71–88.Google Scholar
  29. 29.
    Spillerova K, Sörderström M, Albäck A, et al. The feasibility of angiosome-targeted endovascular treatment in patients with critical limb ischaemia and foot ulcer. Ann Vasc Surg. 2015;30:270–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Apelqvist J, Bakker K, van Houtum WH, et al. Practical guidelines on the management and prevention of the diabetic foot: based upon the InternationalConsensus on the Diabetic Foot (2007) Prepared by the International Working Group on the Diabetic Foot. Diabetes Metab Res Rev. 2008;24(Suppl 1):S181–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Toursarkissian B, D’Ayala M, Stefanidis D, et al. Angiographic scoring of vascular occlusive disease in the diabetic foot: relevance to bypass graft patency and limb salvage. J Vasc Surg. 2002;35(3):494–500.CrossRefPubMedGoogle Scholar
  32. 32.
    Karacagil S, Almgren B, Lorelius LE, et al. Angiographic runoff patterns in patients undergoing lower limb revascularization. Acta Chir Scand. 1989;155(1):19–24.PubMedGoogle Scholar
  33. 33.
    Ciavarella A, Silletti A, Mustacchio A, et al. Angiographic evaluation of the anatomic pattern of arterial obstructions in diabetic patients with critical limb ischemia. Diabetes Metab. 1993;19(6):586–9.Google Scholar
  34. 34.
    Santos VP, Alves CA, Fidelis C, et al. Arteriographic findings in diabetic and non- diabetic with critical limb ischemia. Rev Assoc Med Bras. 2013;59(6):557–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Aerden D, Denecker N, Gallala S, et al. Wound morphology and topography in the diabetic foot: hurdles in implementing angiosome-guided revascularization. Int J Vasc Med. 2014;2:1–5.Google Scholar
  36. 36.
    Waltenberg J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res. 2001;49:554–60.CrossRefGoogle Scholar
  37. 37.
    Guarini G, Capozza PG, Huqi A, et al. Microvascular function/dysfunction downstream a coronary stenosis. Curr Pharm Des. 2013;19(13):2366–74.CrossRefPubMedGoogle Scholar
  38. 38.
    Berguer R, Kieffer E. Mechanisms of cerebral ischemia. In: Berguer R, Kieffer E, editors. Surgery of the arteries to the head. New York/Berlin/Heidelberg/London: Springer; 1992. p. 59–66.CrossRefGoogle Scholar
  39. 39.
    Kamenskaia OV, Klinkova AS, Karpenko AA, et al. Peripheral microcirculation in patients with lower-limb atherosclerosis on the background of metabolic syndrome. Angiol Sosud Surg. 2014;20(4):22–6.Google Scholar
  40. 40.
    Scholz D, Ziegelhoeffer T, Helisch A, et al. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion. J Mol Cell Cardiol. 2002;34(7):775–87.CrossRefPubMedGoogle Scholar
  41. 41.
    Summer DS. Hemodynamics and rheology of vascular disease : applications to diagnosis and treatment. In: Ascer E, Hollier LH, Strandness Jr D, Towne JB, editors. Haimovici’s vascular surgery principles and techniques. 4th ed. Cambridge/London/Berlin: Blackwell Science; 1996. p. 104–24.Google Scholar
  42. 42.
    Kagaya Y, Ohura H, Suga H, et al. Real angiosome assessment from peripheral tissue perfusion using tissue oxygen saturation foot mapping in patients with critical limb ischemia. Eur J Vasc Endovasc Surg. 2014;47:433–41.CrossRefPubMedGoogle Scholar
  43. 43.
    Azuma N, Uchida H, Kokubo T, et al. Factors influencing wound healing of critical ischemic foot after bypass surgery : is the angiosome important in selecting bypass target artery? Eur J Vasc Endovasc Surg. 2012;43(3):322–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Neville RF, Attinger CE, Bulan EJ, et al. Revascularization of a specific angiosome for limb salvage: does the target artery matter? Ann Vasc Surg. 2009;23:367–73.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Varela C, Acin NF, Haro JD, et al. The role of foot collateral vessels on ulcer healing and limb salvage after successful endovascular and surgical distal procedures according to an angiosome model. Vasc Endovasc Surg. 2010;44:654–60.CrossRefGoogle Scholar
  46. 46.
    Biancari F, Juvonen T. Angiosome-targeted lower limb revascularization for ischemic foot wounds: systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2014;47(5):517–22.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bosanquet DC, Glasbey JC, Williams IM, et al. Systematic review and meta-analysis of direct versus indirect angiosomal revascularization of infrapopliteal arteries. Eur J Vasc Endovasc Surg. 2014;48(1):88–97.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Norgreen L, Hiatt WR, Dormandy JA, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(Suppl 1):S1–S75.CrossRefGoogle Scholar
  49. 49.
    Guzman RJ, Brinkley M, Schumacher PM, et al. Tibial artery calcification score as a marker of amputation risk in patients with peripheral arterial disease. J Am Coll Cardiol. 2008;51(2):1967–74.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Alexandrescu VA, Hubermont G, Philips Y, et al. Selective primary angioplasty following an angiosome model of reperfusion in the treatment of Wagner 1–4 diabetic foot lesions: practice in a multidisciplinary diabetic limb service. J Endovasc Ther. 2008;15:580–93.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ohtake T, Oka M, Ikee R, et al. Impact of lower limbs’ arterial calcification on the prevalence and severity of PAD in patients on hemodialysis. J Vasc Surg. 2011;53(3):676–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Bell PRF, Charlesworth D, DePalma RG, et al. The definition of critical ischemia of a limb. Br J Surg. 1982;69(Suppl):S2–3.Google Scholar
  53. 53.
    Alexandrescu V, Letawe A. Critical limb ischemia strategies in diabetics: present deeds and future challenges. Curr Res Diabetes Obes J. 2015;1(1):553–5.Google Scholar
  54. 54.
    Chin JA, Sumpio BE. New advances in limb salvage. Surg Technol Int. 2014;25:212–6.PubMedGoogle Scholar
  55. 55.
    O’Neal LW. Surgical pathology of the foot and clinicopathologic correlations. In: Bowker JH, Pfeifer MA, editors. Levin and O’Neal’s the diabetic foot. 7th ed. Philadelphia: Mosby Elsevier; 2007. p. 367–401.Google Scholar
  56. 56.
    Dangwal S, Stratmann B, Bang C, et al. Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating micro RNA patterns via inflammatory cytokines. Arterioscler Thromb Vasc Biol. 2015;35(6):1480–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Conway KP, Harding KG. Wound healing in the diabetic foot. In: Bowker JH, Pfeifer MA, 7th, editors. Levin and O’Neal’s the diabetic foot. Philadelphia: Mosby Elsevier; 2007. p. 319–29.Google Scholar
  58. 58.
    Defraigne JO. A central pathophysiological mechanism explaining diabetic complications? Rev Med Liege. 2005;60(5–6):472–8.PubMedGoogle Scholar
  59. 59.
    Iida O, Nanto S, Uematsu M, et al. Importance of the angiosome concept for endovascular therapy in patients with critical limb ischemia. Catheter Cardiovasc Interv. 2010;75:830–6.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Deguchi J, Kitaoka T, Yamamoto K, et al. Impact of angiosome on treatment of diabetic foot with paramalleolar bypass. J Jpn Coll Angiol. 2010;50:687–91.Google Scholar
  61. 61.
    Blanes O, Riera V, Puigmacia L, et al. Percutaneous revascularization of specific angiosome in critical limb ischemia. Angeologia. 2011;63:11–7.CrossRefGoogle Scholar
  62. 62.
    Lejay A, Georg Y, Tartaglia E, et al. Long-term outcomes of direct and indirect below-the-knee open revascularization based on the angiosome concept in diabetic patients with critical limb ischemia. Ann Vasc Surg. 2014;28(4):983–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Zheng XT, Zeng RC, Huang JY, et al. The use of the angiosome concept for treating infrapopliteal critical limb ischemia through interventional therapy and determining the clinical significance of collateral vessels. Ann Vasc Surg. 2016;32:41–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Osawa S, Terashi H, Tsuji Y, et al. Importance of the six angiosomes concept through arterial-arterial connections in CLI. Int Angiol. 2013;32(4):375–85.PubMedGoogle Scholar
  65. 65.
    Pavé M, Benadiba L, Berger L, et al. Below-the-knee angioplasty for critical limb ischemia: results of a series of 157 procedures and impact of the angiosome concept. Ann Vasc Surg. 2016;36:199–207.CrossRefPubMedGoogle Scholar
  66. 66.
    Soares Rde A, Brochado Neto FC, Matielo MF, et al. Concept of angiosome does not affect limb salvage in infrapopliteal angioplasty. Ann Vasc Surg. 2016;32:34–40.CrossRefPubMedGoogle Scholar
  67. 67.
    Palena LM, Garcia LF, Brigato C, et al. Angiosomes : how do they affect my treatment? Tech Vasc Interv Radiol. 2014;17(3):155–69.CrossRefPubMedGoogle Scholar
  68. 68.
    Jens S, Conijn AP, Koelemay MJ, et al. Randomized trials for endovascular treatment of infrainguinal arterial disease: systematic review and meta-analysis (part 2: below the knee). Eur J Vasc Endovasc Surg. 2014;47(5):536–44.CrossRefPubMedGoogle Scholar
  69. 69.
    Hughes K, Domenig CM, Hamdan AD, et al. Bypass to plantar and tarsal arteries: an acceptable approach to limb salvage. J Vasc Surg. 2004;40(6):1149–57.CrossRefPubMedGoogle Scholar
  70. 70.
    Brochado-Neto FC, Cury MV, Bonadiman SS, et al. Vein bypass to branches of pedal arteries. J Vasc Surg. 2012;55(3):746–52.CrossRefPubMedGoogle Scholar
  71. 71.
    Park SW, Kim JS, Yun IJ, et al. Clinical outcomes of endovascular treatments for critical limb ischemia with chronic total occlusive lesions limited to below-the-knee arteries. Acta Radiol. 2013;54(7):785–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Jaff MR, White CJ, Hiatt WR, et al. An update on methods for revascularization and expansion of the TASC lesion classification to include below-the-knee arteries: a supplement to the inter-society consensus for the management of peripheral arterial disease (TASC II). J Endovasc Surg. 2015;20(5):465–78.Google Scholar
  73. 73.
    McCallum JC, Lane JS 3rd. Angiosome-directed revascularization for critical limb ischemia. Semin Vasc Surg. 2014;27(1):32–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Benitez E, Sumpio BJ, Chin J, et al. Contemporary assessment of foot perfusion in patients with critical limb ischemia. Semin Vasc Surg. 2014;27(1):3–15.CrossRefPubMedGoogle Scholar
  75. 75.
    Kinlay S. Management of critical limb ischemia. Circ Cardiovasc Interv. 2016;9(2):46–52.CrossRefGoogle Scholar
  76. 76.
    Huang TY, Huang TS, Wang YC, et al. Direct revascularization with the angiosome concept for lower limb ischemia : a systematic review and meta- analysis. Medicine (Baltimore). 2015;94(34):1427.CrossRefGoogle Scholar
  77. 77.
    Azuma N, Koya A, Uchida D, et al. Ulcer healing after peripheral intervention, can we predict it before revascularization? Circ J. 2014;78(8):1791–800.CrossRefPubMedGoogle Scholar
  78. 78.
    Shiraki T, Iida O, Takahara M, et al. Predictors of delayed wound healing after endovascular therapy of isolated infrapopliteal lesions underlying critical limb ischemia in patients with high prevalence of diabetes mellitus and hemodialysis. Eur J Vasc Endovasc Surg. 2015;49(5):565–73.CrossRefPubMedGoogle Scholar
  79. 79.
    Faglia E, Clerici G, Caminiti M, et al. Heel ulcer and blood flow: the importance of the angiosome concept. Int J Low Extrem Wounds. 2013;12(3):226–30.CrossRefPubMedGoogle Scholar
  80. 80.
    Brodmann M. The angiosome concept in clinical practice : implications for patient-specific recanalization procedures. J Cardiovasc Surg. 2013;54(5):567–71.Google Scholar
  81. 81.
    Diehm N. Intra-arterial digital subtraction angiography : what you see is not always what you get. J Endovasc Ther. 2015;22(2):252–3.CrossRefPubMedGoogle Scholar
  82. 82.
    Cooper KJ, Pena C, Benenati J. Determining end-points for critical limb ischemia interventions. Tech Vasc Interv Radiol. 2016;19(2):104–12.CrossRefPubMedGoogle Scholar
  83. 83.
    Jeon EY, Cho YK, Yoon DY, et al. Clinical outcome of angiosome infrapopliteal percutaneous transluminal angioplasty for isolated infrapopliteal lesions in patients with critical limb ischemia. Diagn Interv Radiol. 2016;22(1):52–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Bunte MC, Shishehbor MH. Treatment of infrapopliteal critical limb ischemia in 2013 : the wound perfusion approach. Curr Cardiol Rep. 2013;15(6):363–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Suh HS, Oh TS, Lee HS, et al. A new approach for reconstruction of diabetic foot wounds using the angiosome ans supermicrosurgery concept. Plast Reconstr Surg. 2016;38(4):702–9.CrossRefGoogle Scholar
  86. 86.
    Gvazava T, Smirnov G, Petrova V, et al. Improving the performance of small amputations in complicated forms of diabetic foot. Georgian Med News. 2015;240:7–11.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vlad-Adrian Alexandrescu
    • 1
  • Jean-Olivier Defraigne
    • 1
  1. 1.Cardio-Vascular and Thoracic Surgery DepartmentCHU Sart Tilman Hospital, University of MedicineLiègeBelgium

Personalised recommendations