Tumor Treatment

  • Srikanth R. Boddu
  • Thomas W. Link
  • Athos Patsalides


The role of endovascular therapy in tumor management has significantly increased over the past decade as a result of improved technology, better understanding of tumor pathology, and evolution of chemotherapy regimens. The role of endovascular therapy has a broad spectrum in tumor management, from emergency treatment of a life-threatening carotid blowout to elective preoperative tumor embolization. The multifaceted role of tumor embolization ranges from adjuvant treatment in meningiomas and diffuse pontine gliomas to primary treatment in retinoblastoma, with selective ophthalmic artery chemosurgery.

Through knowledge of intracranial and extracranial anastomotic pathways, understanding of vascular anatomy, identification of high-flow shunts within the tumor, and awareness of personal and procedural limitations all help to minimize adverse outcomes. Utilizing cerebral hemispheric dose calculations and appropriate catheter placement and injection techniques is vital to enable an increase in local dosage using IA chemotherapy and improve bioavailability, with neurotoxicity comparable to conventional intravenous chemotherapy. With the developments in technology for early tumor detection and radio isotope labeling of target tumor cells based on angioneogenesis and tumor-specific characteristics, IA chemotherapy is evolving as a promising selective target tumor treatment.


  1. 1.
    Hilal SK, Michelsen JW. Therapeutic percutaneous embolization for extra-axial vascular lesions of the head, neck, and spine. J Neurosurg. 1975;43(3):275–87.  https://doi.org/10.3171/jns.1975.43.3.0275.CrossRefPubMedGoogle Scholar
  2. 2.
    Vaidya S, Tozer KR, Chen J. An overview of embolic agents. Semin Interv Radiol. 2008;25(3):204–15.  https://doi.org/10.1055/s-0028-1085930.CrossRefGoogle Scholar
  3. 3.
    Deshmukh VR, Fiorella DJ, McDougall CG, Spetzler RF, Albuquerque FC. Preoperative embolization of central nervous system tumors. Neurosurg Clin N Am. 2005;16(2):411–432., xi.  https://doi.org/10.1016/j.nec.2004.08.010.CrossRefPubMedGoogle Scholar
  4. 4.
    Luessenhop AJ, Gibbs M, Velasquez AC. Cerebrovascular response to emboli. Observations in patients with arteriovenous malformations. Arch Neurol. 1962;7:264–74.CrossRefGoogle Scholar
  5. 5.
    George B, Casasco A, Deffrennes D, Houdart E. Intratumoral embolization of intracranial and extracranial tumors: technical note. Neurosurgery. 1994;35(4):771–3. discussion 773–774CrossRefGoogle Scholar
  6. 6.
    Duffis EJ, Gandhi CD, Prestigiacomo CJ, et al. Head, neck, and brain tumor embolization guidelines. J Neurointerventional Surg. 2012;4(4):251–5.  https://doi.org/10.1136/neurintsurg-2012-010350.CrossRefGoogle Scholar
  7. 7.
    Abud DG, Mounayer C, Benndorf G, Piotin M, Spelle L, Moret J. Intratumoral injection of cyanoacrylate glue in head and neck paragangliomas. Am J Neuroradiol. 2004;25(9):1457–62.PubMedGoogle Scholar
  8. 8.
    Quadros RS, Gallas S, Delcourt C, Dehoux E, Scherperel B, Pierot L. Preoperative embolization of a cervicodorsal paraganglioma by direct percutaneous injection of onyx and endovascular delivery of particles. Am J Neuroradiol. 2006;27(9):1907–9.PubMedGoogle Scholar
  9. 9.
    Casasco A, Herbreteau D, Houdart E, et al. Devascularization of craniofacial tumors by percutaneous tumor puncture. Am J Neuroradiol. 1994;15(7):1233–9.PubMedGoogle Scholar
  10. 10.
    Sekhar LN, Biswas A, Hallam D, Kim LJ, Douglas J, Ghodke B. Neuroendovascular management of tumors and vascular malformations of the head and neck. Neurosurg Clin N Am. 2009;20(4):453–85.  https://doi.org/10.1016/j.nec.2009.07.007.CrossRefPubMedGoogle Scholar
  11. 11.
    Chaloupka JC, Mangla S, Huddle DC, et al. Evolving experience with direct puncture therapeutic embolization for adjunctive and palliative management of head and neck hypervascular neoplasms. Laryngoscope. 1999;109(11):1864–72.  https://doi.org/10.1097/00005537-199911000-00028.CrossRefPubMedGoogle Scholar
  12. 12.
    Jindal G, Gemmete J, Gandhi D. Interventional neuroradiology applications in otolaryngology, head and neck surgery. Otolaryngol Clin N Am. 2012;45(6):1423–49.  https://doi.org/10.1016/j.otc.2012.08.010.CrossRefGoogle Scholar
  13. 13.
    Casasco A, Houdart E, Biondi A, et al. Major complications of percutaneous embolization of skull-base tumors. Am J Neuroradiol. 1999;20(1):179–81.PubMedGoogle Scholar
  14. 14.
    Dean BL, Flom RA, Wallace RC, et al. Efficacy of endovascular treatment of meningiomas: evaluation with matched samples. Am J Neuroradiol. 1994;15(9):1675–80.PubMedGoogle Scholar
  15. 15.
    Gupta R, Thomas AJ, Horowitz M. Intracranial head and neck tumors: endovascular considerations, present and future. Neurosurgery. 2006;59(5 Suppl 3):S251–60. discussion S3–S13. doi:10.1227/01.NEU.0000239249.65742.1C PubMedGoogle Scholar
  16. 16.
    Macpherson P. The value of pre-operative embolisation of meningioma estimated subjectively and objectively. Neuroradiology. 1991;33(4):334–7.CrossRefGoogle Scholar
  17. 17.
    American Society of Interventional and Therapeutic Neuroradiology. Head, neck, and brain tumor embolization. Am J Neuroradiol. 2001;22(8 Suppl):S14–5.Google Scholar
  18. 18.
    Akai H, Kiryu S, Takao H, et al. Efficacy of double-arterial phase gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced liver magnetic resonance imaging compared with double-arterial phase multi-detector row helical computed tomography. J Comput Assist Tomogr. 2009;33(6):887–92.  https://doi.org/10.1097/RCT.0b013e3181a1ca7e.CrossRefPubMedGoogle Scholar
  19. 19.
    Altenbernd J, Heusner TA, Ringelstein A, Ladd SC, Forsting M, Antoch G. Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity. Eur Radiol. 2011;21(4):738–43.  https://doi.org/10.1007/s00330-010-1964-7.CrossRefPubMedGoogle Scholar
  20. 20.
    Aschenbach R, Basche S, Esser D, Vogl TJ. Usefulness of ultrafast dynamic 3D-T1w data acquisition in detection of hypervascular lesions of the middle ear: first experience. Eur J Radiol. 2012;81(2):257–61.  https://doi.org/10.1016/j.ejrad.2010.11.011.CrossRefPubMedGoogle Scholar
  21. 21.
    Chung J, Yu J-S, Kim DJ, Chung J-J, Kim JH, Kim KW. Hypervascular hepatocellular carcinoma in the cirrhotic liver: diffusion-weighted imaging versus superparamagnetic iron oxide-enhanced MRI. Magn Reson Imaging. 2011;29(9):1235–43.  https://doi.org/10.1016/j.mri.2011.07.025.CrossRefPubMedGoogle Scholar
  22. 22.
    de Bazelaire C, Calmon R, Chapellier M, Pluvinage A, Frija J, de Kerviler E. CT and MRI imaging in tumoral angiogenesis. Bull Cancer. 2010;97(1):79–90.  https://doi.org/10.1684/bdc.2010.0961.CrossRefPubMedGoogle Scholar
  23. 23.
    Kanematsu M, Kondo H, Goshima S, et al. Imaging liver metastases: review and update. Eur J Radiol. 2006;58(2):217–28.  https://doi.org/10.1016/j.ejrad.2005.11.041.CrossRefPubMedGoogle Scholar
  24. 24.
    Silva AC, Evans JM, McCullough AE, Jatoi MA, Vargas HE, Hara AK. MR imaging of hypervascular liver masses: a review of current techniques. Radiographics. 2009;29(2):385–402.  https://doi.org/10.1148/rg.292085123.CrossRefPubMedGoogle Scholar
  25. 25.
    Ellis JA, D’Amico R, Sisti MB, et al. Pre-operative intracranial meningioma embolization. Expert Rev Neurother. 2011;11(4):545–56.  https://doi.org/10.1586/ern.11.29.CrossRefPubMedGoogle Scholar
  26. 26.
    Chun JY, McDermott MW, Lamborn KR, Wilson CB, Higashida R, Berger MS. Delayed surgical resection reduces intraoperative blood loss for embolized meningiomas. Neurosurgery. 2002;50(6):1231–5. discussion 1235–1237PubMedGoogle Scholar
  27. 27.
    Kuroiwa T, Tanaka H, Ohta T, Tsutsumi A. Preoperative embolization of highly vascular brain tumors: clinical and histopathological findings. Noshuyo Byori. 1996;13(1):27–36.PubMedGoogle Scholar
  28. 28.
    Brodsky SV, Mendelev N, Melamed M, Ramaswamy G. Vascular density and VEGF expression in hepatic lesions. J Gastrointest Liver Dis. 2007;16(4):373–7.Google Scholar
  29. 29.
    Chao Y, Li C-P, Chau G-Y, et al. Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol. 2003;10(4):355–62.CrossRefGoogle Scholar
  30. 30.
    Finn RS, Zhu AX. Targeting angiogenesis in hepatocellular carcinoma: focus on VEGF and bevacizumab. Expert Rev Anticancer Ther. 2009;9(4):503–9.  https://doi.org/10.1586/era.09.6.CrossRefPubMedGoogle Scholar
  31. 31.
    Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS. Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol. 2000;20(19):7282–91.CrossRefGoogle Scholar
  32. 32.
    Ikeda N, Adachi M, Taki T, et al. Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer. 1999;79(9–10):1553–63.  https://doi.org/10.1038/sj.bjc.6690248.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pauw BK, Makek MS, Fisch U, Valavanis A. Preoperative embolization of paragangliomas (glomus tumors) of the head and neck: histopathologic and clinical features. Skull Base Surg. 1993;3(1):37–44.CrossRefGoogle Scholar
  34. 34.
    Qureshi AI. Endovascular treatment of cerebrovascular diseases and intracranial neoplasms. Lancet. 2004;363(9411):804–13.  https://doi.org/10.1016/S0140-6736(04)15697-3.CrossRefPubMedGoogle Scholar
  35. 35.
    Tadavarthy SM, Knight L, Ovitt TW, Snyder C, Amplatz K. Therapeutic transcatheter arterial embolization. Radiology. 1974;112(1):13–6.  https://doi.org/10.1148/112.1.13.CrossRefPubMedGoogle Scholar
  36. 36.
    Horton JA, Marano GD, Kerber CW, Jenkins JJ, Davis S. Polyvinyl alcohol foam-Gelfoam for therapeutic embolization: a synergistic mixture. Am J Neuroradiol. 1983;4(2):143–7.PubMedGoogle Scholar
  37. 37.
    Loffroy R, Guiu B, D’Athis P, et al. Arterial embolotherapy for endoscopically unmanageable acute gastroduodenal hemorrhage: predictors of early rebleeding. Clin Gastroenterol Hepatol. 2009;7(5):515–23.  https://doi.org/10.1016/j.cgh.2009.02.003.CrossRefPubMedGoogle Scholar
  38. 38.
    Latchaw RE, Gold LH. Polyvinyl foam embolization of vascular and neoplastic lesions of the head, neck, and spine. Radiology. 1979;131(3):669–79.  https://doi.org/10.1148/131.3.669.CrossRefPubMedGoogle Scholar
  39. 39.
    Djindjian R, Cophignon J, Théron J, Merland JJ, Houdart R. Embolization by superselective arteriography from the femoral route in neuroradiology. Review of 60 cases. 1. Technique, indications, complications. Neuroradiology. 1973;6(1):20–6.CrossRefGoogle Scholar
  40. 40.
    Speakman TJ. Internal occlusion of a carotid-cavernous fistula. J Neurosurg. 1964;21:303–5.  https://doi.org/10.3171/jns.1964.21.4.0303.CrossRefPubMedGoogle Scholar
  41. 41.
    Light RU, Prentice HR. Gelatin sponge; surgical investigation of a new matrix used in conjunction with thrombin in hemostasis. Arch Surg. 1945;51:69–77.CrossRefGoogle Scholar
  42. 42.
    Tomashefski JF, Cohen AM, Doershuk CF. Longterm histopathologic follow-up of bronchial arteries after therapeutic embolization with polyvinyl alcohol (Ivalon) in patients with cystic fibrosis. Hum Pathol. 1988;19(5):555–61.CrossRefGoogle Scholar
  43. 43.
    Bendszus M, Klein R, Burger R, Warmuth-Metz M, Hofmann E, Solymosi L. Efficacy of trisacryl gelatin microspheres versus polyvinyl alcohol particles in the preoperative embolization of meningiomas. Am J Neuroradiol. 2000;21(2):255–61.PubMedGoogle Scholar
  44. 44.
    Rodiek SO, Stölzle A, Lumenta CB. Preoperative embolization of intracranial meningiomas with Embosphere microspheres. Minim Invasive Neurosurg. 2004;47(5):299–305.  https://doi.org/10.1055/s-2004-830069.CrossRefPubMedGoogle Scholar
  45. 45.
    Bendszus M, Martin-Schrader I, Schlake HP, Solymosi L. Embolisation of intracranial meningiomas without subsequent surgery. Neuroradiology. 2003;45(7):451–5.  https://doi.org/10.1007/s00234-003-1005-1.CrossRefPubMedGoogle Scholar
  46. 46.
    Hamada J, Kai Y, Nagahiro S, Hashimoto N, Iwata H, Ushio Y. Embolization with cellulose porous beads, II: clinical trial. Am J Neuroradiol. 1996;17(10):1901–6.PubMedGoogle Scholar
  47. 47.
    Kai Y, Hamada J-I, Morioka M, et al. Clinical evaluation of cellulose porous beads for the therapeutic embolization of meningiomas. Am J Neuroradiol. 2006;27(5):1146–50.PubMedGoogle Scholar
  48. 48.
    Pollak JS, White RI. The use of cyanoacrylate adhesives in peripheral embolization. J Vasc Interv Radiol. 2001;12(8):907–13.CrossRefGoogle Scholar
  49. 49.
    Shi Z-S, Feng L, Jiang X-B, Huang Q, Yang Z, Huang Z-S. Therapeutic embolization of meningiomas with onyx for delayed surgical resection. Surg Neurol. 2008;70(5):478–81.  https://doi.org/10.1016/j.surneu.2007.05.031.CrossRefPubMedGoogle Scholar
  50. 50.
    Lefkowitz M, Giannotta SL, Hieshima G, et al. Embolization of neurosurgical lesions involving the ophthalmic artery. Neurosurgery. 1998;43(6):1298–303.PubMedGoogle Scholar
  51. 51.
    Eller JL, Hopkins LN. Use of vascular plug devices in the management of neurovascular emergencies. World Neurosurg. 2015;83(1):9–10.  https://doi.org/10.1016/j.wneu.2013.09.031.CrossRefPubMedGoogle Scholar
  52. 52.
    Mangini M, Laganà D, Fontana F, et al. Use of Amplatzer vascular plug (AVP) in emergency embolisation: preliminary experience and review of literature. Emerg Radiol. 2008;15(3):153–60.  https://doi.org/10.1007/s10140-007-0696-8.CrossRefPubMedGoogle Scholar
  53. 53.
    Shankar JJS, Maloney WJ, Vandorpe R. Amplatzer vascular plug for occlusion of parent artery in carotid blowout with active extravasation. Interv Neuroradiol. 2011;17(2):224–7.CrossRefGoogle Scholar
  54. 54.
    Geyik S, Yavuz K, Ergun O, Koc O, Cekirge S, Saatci I. Endovascular treatment of intracranial aneurysms with bioactive Cerecyte coils: effects on treatment stability. Neuroradiology. 2008;50(9):787–93.  https://doi.org/10.1007/s00234-008-0399-1.CrossRefPubMedGoogle Scholar
  55. 55.
    Gralla J, Schroth G, Kickuth R, El-Koussy M, Do D-D, Brekenfeld C. Closing the gap between coil and balloon in the neurointerventional armamentarium? Initial clinical experience with a nitinol vascular occlusion plug. Neuroradiology. 2008;50(8):709–14.  https://doi.org/10.1007/s00234-008-0396-4.CrossRefPubMedGoogle Scholar
  56. 56.
    Ong CK, Lam DV, Ong MT, Power MA, Parkinson RJ, Wenderoth JD. Neuroapplication of amplatzer vascular plug for therapeutic sacrifice of major craniocerebral arteries: an initial clinical experience. Ann Acad Med Singap. 2009;38(9):763–8.PubMedGoogle Scholar
  57. 57.
    Schirmer CM, Hoit DA, Malek AM. Amplatzer-onyx sandwich: a method for impermeable proximal cerebral vessel occlusion. J Vasc Interv Radiol. 2008;19(3):459–60.  https://doi.org/10.1016/j.jvir.2007.11.017.CrossRefPubMedGoogle Scholar
  58. 58.
    Maran AG, Amin M, Wilson JA. Radical neck dissection: a 19-year experience. J Laryngol Otol. 1989;103(8):760–4.CrossRefGoogle Scholar
  59. 59.
    Chaloupka JC, Putman CM, Citardi MJ, Ross DA, Sasaki CT. Endovascular therapy for the carotid blowout syndrome in head and neck surgical patients: diagnostic and managerial considerations. Am J Neuroradiol. 1996;17(5):843–52.PubMedGoogle Scholar
  60. 60.
    Citardi MJ, Chaloupka JC, Son YH, Ariyan S, Sasaki CT. Management of carotid artery rupture by monitored endovascular therapeutic occlusion (1988-1994). Laryngoscope. 1995;105(10):1086–92.  https://doi.org/10.1288/00005537-199510000-00015.CrossRefPubMedGoogle Scholar
  61. 61.
    Patsalides A, Fraser JF, Smith MJ, Kraus D, Gobin YP, Riina HA. Endovascular treatment of carotid blowout syndrome: who and how to treat. J Neurointerv Surg. 2010;2(1):87–93.  https://doi.org/10.1136/jnis.2009.001131.CrossRefPubMedGoogle Scholar
  62. 62.
    Wan WS, Lai V, Lau HY, Wong YC, Poon WL, Tan CB. Endovascular treatment paradigm of carotid blowout syndrome: review of 8-years experience. Eur J Radiol. 2013;82(1):95–9.  https://doi.org/10.1016/j.ejrad.2011.01.061.CrossRefPubMedGoogle Scholar
  63. 63.
    Chang FC, Luo CB, Lirng JF, et al. Complications of carotid blowout syndrome in patients with head and neck cancers treated by covered stents. Interv Neuroradiol. 2008;14(Suppl 2):29–33.CrossRefGoogle Scholar
  64. 64.
    Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neuro-Oncol. 2010;99(3):307–14.  https://doi.org/10.1007/s11060-010-0386-3.CrossRefGoogle Scholar
  65. 65.
    Gruber A, Killer M, Mazal P, Bavinzski G, Richling B. Preoperative embolization of intracranial meningiomas: a 17-years single center experience. Minim Invasive Neurosurg. 2000;43(1):18–29.  https://doi.org/10.1055/s-2000-8812.CrossRefPubMedGoogle Scholar
  66. 66.
    Hekster RE, Matricali B, Luyendijk W. Presurgical transfemoral catheter embolization to reduce operative blood loss. Technical note. J Neurosurg. 1974;41(3):396–8.  https://doi.org/10.3171/jns.1974.41.3.0396.CrossRefPubMedGoogle Scholar
  67. 67.
    Manelfe C, Lasjaunias P, Ruscalleda J. Preoperative embolization of intracranial meningiomas. Am J Neuroradiol. 1986;7(5):963–72.PubMedGoogle Scholar
  68. 68.
    Richter HP, Schachenmayr W. Preoperative embolization of intracranial meningiomas. Neurosurgery. 1983;13(3):261–8.CrossRefGoogle Scholar
  69. 69.
    Teasdale E, Patterson J, McLellan D, Macpherson P. Subselective preoperative embolization for meningiomas. A radiological and pathological assessment. J Neurosurg. 1984;60(3):506–11.  https://doi.org/10.3171/jns.1984.60.3.0506.CrossRefPubMedGoogle Scholar
  70. 70.
    Neumann HP, Eggert HR, Weigel K, Friedburg H, Wiestler OD, Schollmeyer P. Hemangioblastomas of the central nervous system. A 10-year study with special reference to von Hippel-Lindau syndrome. J Neurosurg. 1989;70(1):24–30.  https://doi.org/10.3171/jns.1989.70.1.0024.CrossRefPubMedGoogle Scholar
  71. 71.
    Eskridge JM, McAuliffe W, Harris B, Kim DK, Scott J, Winn HR. Preoperative endovascular embolization of craniospinal hemangioblastomas. Am J Neuroradiol. 1996;17(3):525–31.PubMedGoogle Scholar
  72. 72.
    Horton JA, Eelkema E, Albright AL. Preoperative embolization of a hemangioblastoma. Am J Neuroradiol. 1989;10(1):203.PubMedGoogle Scholar
  73. 73.
    Jagannathan J, Lonser RR, Smith R, DeVroom HL, Oldfield EH. Surgical management of cerebellar hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg. 2008;108(2):210–22.  https://doi.org/10.3171/JNS/2008/108/2/0210.CrossRefPubMedGoogle Scholar
  74. 74.
    Kanno H, Yamamoto I, Nishikawa R, et al. Spinal cord hemangioblastomas in von Hippel-Lindau disease. Spinal Cord. 2009;47(6):447–52.  https://doi.org/10.1038/sc.2008.151.CrossRefPubMedGoogle Scholar
  75. 75.
    Parker F, Aghakhani N, Ducati LG, et al. Results of microsurgical treatment of medulla oblongata and spinal cord hemangioblastomas: a comparison of two distinct clinical patient groups. J Neuro-Oncol. 2009;93(1):133–7.  https://doi.org/10.1007/s11060-009-9861-0.CrossRefGoogle Scholar
  76. 76.
    Takeuchi S, Tanaka R, Fujii Y, Abe H, Ito Y. Surgical treatment of hemangioblastomas with presurgical endovascular embolization. Neurol Med Chir (Tokyo). 2001;41(5):246–51. discussion 251–252CrossRefGoogle Scholar
  77. 77.
    Abo-Al Hassan A, Ismail M, Panda SM. Pre-operative endovascular embolization of a cerebellar haemangioblastoma. A case report. Med Princ Pract. 2006;15(6):459–62.  https://doi.org/10.1159/000095495.CrossRefPubMedGoogle Scholar
  78. 78.
    Erickson D, Kudva YC, Ebersold MJ, et al. Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients. J Clin Endocrinol Metab. 2001;86(11):5210–6.  https://doi.org/10.1210/jcem.86.11.8034.CrossRefPubMedGoogle Scholar
  79. 79.
    Persky MS, Setton A, Niimi Y, Hartman J, Frank D, Berenstein A. Combined endovascular and surgical treatment of head and neck paragangliomas – a team approach. Head Neck. 2002;24(5):423–31.  https://doi.org/10.1002/hed.10068.CrossRefPubMedGoogle Scholar
  80. 80.
    Welander J, Söderkvist P, Gimm O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer. 2011;18(6):R253–76.  https://doi.org/10.1530/ERC-11-0170.CrossRefPubMedGoogle Scholar
  81. 81.
    Barnes L, Hunt J, Michaels L. Tumours of the paraganglionic system: introduction. In: World Health Organization classification of tumours: pathology and genetics of head and neck tumours. Lyon: IARC; 2005. p. 362.Google Scholar
  82. 82.
    Kretzschmar K, Milewski C, Dienes HP. The risk of endocrine activation in interventional procedures on paraganglioma of the head and neck. Radiology. 1988;28(11):497–502.Google Scholar
  83. 83.
    Tikkakoski T, Luotonen J, Leinonen S, et al. Preoperative embolization in the management of neck paragangliomas. Laryngoscope. 1997;107(6):821–6.CrossRefGoogle Scholar
  84. 84.
    Gullane PJ, Davidson J, O’Dwyer T, Forte V. Juvenile angiofibroma: a review of the literature and a case series report. Laryngoscope. 1992;102(8):928–33.  https://doi.org/10.1288/00005537-199208000-00014.CrossRefPubMedGoogle Scholar
  85. 85.
    Garcia-Cervigon E, Bien S, Rüfenacht D, et al. Pre-operative embolization of naso-pharyngeal angiofibromas. Report of 58 cases. Neuroradiology. 1988;30(6):556–60.CrossRefGoogle Scholar
  86. 86.
    Neel HB, Whicker JH, Devine KD, Weiland LH. Juvenile angiofibroma. Review of 120 cases. Am J Surg. 1973;126(4):547–56.CrossRefGoogle Scholar
  87. 87.
    English GM, Hemenway WG, Cundy RL. Surgical treatment of invasive angiofibroma. Arch Otolaryngol. 1972;96(4):312–8.CrossRefGoogle Scholar
  88. 88.
    Gemmete JJ, Ansari SA, McHugh J, Gandhi D. Embolization of vascular tumors of the head and neck. Neuroimaging Clinics. 2009;19(2):181–98.  https://doi.org/10.1016/j.nic.2009.01.008.CrossRefPubMedGoogle Scholar
  89. 89.
    Beltramello A, Benati A, Perini S, Maschio A. Interventional angiography in neuropediatrics. Childs Nerv Syst. 1989;5(2):87–93.CrossRefGoogle Scholar
  90. 90.
    Christensen NP, Smith DS, Barnwell SL, Wax MK. Arterial embolization in the management of posterior epistaxis. Otolaryngol--Head Neck Surg. 2005;133(5):748–53.  https://doi.org/10.1016/j.otohns.2005.07.041.CrossRefPubMedGoogle Scholar
  91. 91.
    Fields JN, Halverson KJ, Devineni VR, Simpson JR, Perez CA. Juvenile nasopharyngeal angiofibroma: efficacy of radiation therapy. Radiology. 1990;176(1):263–5.  https://doi.org/10.1148/radiology.176.1.2162070.CrossRefPubMedGoogle Scholar
  92. 92.
    Batsakis JG, Klopp CT, Newman W. Fibrosarcoma arising in a juvenile nasopharyngeal angiofibroma following extensive radiation therapy. Am Surg. 1955;21(8):786–93.PubMedGoogle Scholar
  93. 93.
    Moulin G, Chagnaud C, Gras R, et al. Juvenile nasopharyngeal angiofibroma: comparison of blood loss during removal in embolized group versus nonembolized group. Cardiovasc Intervent Radiol. 1995;18(3):158–61.PubMedGoogle Scholar
  94. 94.
    Prabhu VC, Bilsky MH, Jambhekar K, et al. Results of preoperative embolization for metastatic spinal neoplasms. J Neurosurg. 2003;98(2 Suppl):156–64.PubMedGoogle Scholar
  95. 95.
    Berkefeld J, Scale D, Kirchner J, Heinrich T, Kollath J. Hypervascular spinal tumors: influence of the embolization technique on perioperative hemorrhage. Am J Neuroradiol. 1999;20(5):757–63.PubMedGoogle Scholar
  96. 96.
    Manke C, Bretschneider T, Lenhart M, et al. Spinal metastases from renal cell carcinoma: effect of preoperative particle embolization on intraoperative blood loss. Am J Neuroradiol. 2001;22(5):997–1003.PubMedGoogle Scholar
  97. 97.
    Kallmes DF, Evans AJ, Kaptain GJ, et al. Hemorrhagic complications in embolization of a meningioma: case report and review of the literature. Neuroradiology. 1997;39(12):877–80.CrossRefGoogle Scholar
  98. 98.
    Adler JR, Upton J, Wallman J, Winston KR. Management and prevention of necrosis of the scalp after embolization and surgery for meningioma. Surg Neurol. 1986;25(4):357–60.CrossRefGoogle Scholar
  99. 99.
    Chan RC, Thompson GB. Ischemic necrosis of the scalp after preoperative embolization of meningeal tumors. Neurosurgery. 1984;15(1):76–81.CrossRefGoogle Scholar
  100. 100.
    Wright JC. Cancer chemotherapy: past, present, and future – part I. J Natl Med Assoc. 1984;76(8):773–84.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Levin MH, Gombos DS, O’Brien JM. Intra-arterial chemotherapy for advanced retinoblastoma: is the time right for a prospective clinical trial? Arch Ophthalmol. 2011;129(11):1487–9.  https://doi.org/10.1001/archophthalmol.2011.304.CrossRefPubMedGoogle Scholar
  102. 102.
    Dropcho EJ. Novel chemotherapeutic approaches to brain tumors. Hematol Oncol Clin North Am. 2001;15(6):1027–52.CrossRefGoogle Scholar
  103. 103.
    Gelman M, Chakeres DW, Newton HB. Brain tumors: complications of cerebral angiography accompanied by intraarterial chemotherapy. Radiology. 1999;213(1):135–40.  https://doi.org/10.1148/radiology.213.1.r99oc04135.CrossRefPubMedGoogle Scholar
  104. 104.
    Kochi M, Ushio Y. Chemo-radiotherapy for malignant brain tumors. Gan To Kagaku Ryoho. 2002;29(5):669–76.PubMedGoogle Scholar
  105. 105.
    Kumagai T, Takeda N, Fukase S, et al. Intra-arterial chemotherapy for malignant tumors of head and neck region using three types of modified injection method. Interv Neuroradiol. 2003;9(Suppl 1):113–23.CrossRefGoogle Scholar
  106. 106.
    Lallana EC, Abrey LE. Update on the therapeutic approaches to brain tumors. Expert Rev Anticancer Ther. 2003;3(5):655–70.  https://doi.org/10.1586/14737140.3.5.655.CrossRefPubMedGoogle Scholar
  107. 107.
    Newton HB. Intra-arterial chemotherapy of primary brain tumors. Curr Treat Options in Oncol. 2005;6(6):519–30.CrossRefGoogle Scholar
  108. 108.
    Cloughesy TF, Gobin YP, Black KL, et al. Intra-arterial carboplatin chemotherapy for brain tumors: a dose escalation study based on cerebral blood flow. J Neuro-Oncol. 1997;35(2):121–31.CrossRefGoogle Scholar
  109. 109.
    Stewart DJ, Grahovac Z, Hugenholtz H, et al. Feasibility study of intraarterial vs intravenous cisplatin, BCNU, and teniposide combined with systemic cisplatin, teniposide, cytosine arabinoside, glycerol and mannitol in the treatment of primary and metastatic brain tumors. J Neuro-Oncol. 1993;17(1):71–9.CrossRefGoogle Scholar
  110. 110.
    Abramson DH. Chemosurgery for retinoblastoma: what we know after 5 years. Arch Ophthalmol. 2011;129(11):1492–4.  https://doi.org/10.1001/archophthalmol.2011.354.CrossRefPubMedGoogle Scholar
  111. 111.
    Abramson DH, Dunkel IJ, Brodie SE, Kim JW, Gobin YP. A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology. 2008;115(8):1398–404.  https://doi.org/10.1016/j.ophtha.2007.12.014.CrossRefPubMedGoogle Scholar
  112. 112.
    Abramson DH, Marr BP, Brodie SE, Dunkel I, Palioura S, Gobin YP. Ophthalmic artery chemosurgery for less advanced intraocular retinoblastoma: five year review. PLoS One. 2012;7(4):e34120.  https://doi.org/10.1371/journal.pone.0034120.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Bianciotto C, Shields CL, Iturralde JC, Sarici A, Jabbour P, Shields JA. Fluorescein angiographic findings after intra-arterial chemotherapy for retinoblastoma. Ophthalmology. 2012;119(4):843–9.  https://doi.org/10.1016/j.ophtha.2011.09.040.CrossRefPubMedGoogle Scholar
  114. 114.
    Choi S, Han JW, Kim H, et al. Combined chemotherapy and intra-arterial chemotherapy of retinoblastoma. Korean J Pediatr. 2013;56(6):254–9.  https://doi.org/10.3345/kjp.2013.56.6.254.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Francis JH, Gobin YP, Brodie SE, Marr BP, Dunkel IJ, Abramson DH. Experience of intra-arterial chemosurgery with single agent carboplatin for retinoblastoma. Br J Ophthalmol. 2012;96(9):1270–1.  https://doi.org/10.1136/bjophthalmol-2012-301686.CrossRefPubMedGoogle Scholar
  116. 116.
    Gobin YP, Dunkel IJ, Marr BP, Brodie SE, Abramson DH. Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience. Arch Ophthalmol. 2011;129(6):732–7.  https://doi.org/10.1001/archophthalmol.2011.5.CrossRefPubMedGoogle Scholar
  117. 117.
    Marr BP, Brodie SE, Dunkel IJ, Gobin YP, Abramson DH. Three-drug intra-arterial chemotherapy using simultaneous carboplatin, topotecan and melphalan for intraocular retinoblastoma: preliminary results. Br J Ophthalmol. 2012;96(10):1300–3.  https://doi.org/10.1136/bjophthalmol-2012-301925.CrossRefPubMedGoogle Scholar
  118. 118.
    Shields CL, Fulco EM, Arias JD, et al. Retinoblastoma frontiers with intravenous, intra-arterial, periocular, and intravitreal chemotherapy. Eye (Lond). 2013;27(2):253–64.  https://doi.org/10.1038/eye.2012.175.CrossRefGoogle Scholar
  119. 119.
    Klufas MA, Gobin YP, Marr B, Brodie SE, Dunkel IJ, Abramson DH. Intra-arterial chemotherapy as a treatment for intraocular retinoblastoma: alternatives to direct ophthalmic artery catheterization. Am J Neuroradiol. 2012;33(8):1608–14.  https://doi.org/10.3174/ajnr.A3019.CrossRefPubMedGoogle Scholar
  120. 120.
    Jabbour P, Chalouhi N, Tjoumakaris S, et al. Pearls and pitfalls of intraarterial chemotherapy for retinoblastoma. J Neurosurg Pediatr. 2012;10(3):175–81.  https://doi.org/10.3171/2012.5.PEDS1277.CrossRefPubMedGoogle Scholar
  121. 121.
    Gobin YP, Cloughesy TF, Chow KL, et al. Intraarterial chemotherapy for brain tumors by using a spatial dose fractionation algorithm and pulsatile delivery. Radiology. 2001;218(3):724–32.  https://doi.org/10.1148/radiology.218.3.r01mr41724.CrossRefPubMedGoogle Scholar
  122. 122.
    Lehane DE, Bryan RN, Horowitz B, et al. Intraarterial cis-platinum chemotherapy for patients with primary and metastatic brain tumors. Cancer Drug Deliv. 1983;1(1):69–77.CrossRefGoogle Scholar
  123. 123.
    Tfayli A, Hentschel P, Madajewicz S, et al. Toxicities related to intraarterial infusion of cisplatin and etoposide in patients with brain tumors. J Neuro-Oncol. 1999;42(1):73–7.CrossRefGoogle Scholar
  124. 124.
    Ensminger WD, Gyves JW. Regional chemotherapy of neoplastic diseases. Pharmacol Ther. 1983;21(2):277–93.CrossRefGoogle Scholar
  125. 125.
    Hodozuka A, Sako K, Nakai H, Tomabechi M, Suzuki N, Yonemasu Y. Delivery of a novel nitrosourea, MCNU, to the brain tissue in glioma-bearing rats. Intracarotid versus intravenous infusion. J Neuro-Oncol. 1993;15(1):79–86.CrossRefGoogle Scholar
  126. 126.
    Collins JM. Pharmacologic rationale for regional drug delivery. J Clin Oncol. 1984;2(5):498–504.  https://doi.org/10.1200/jco.1984.2.5.498.CrossRefPubMedGoogle Scholar
  127. 127.
    Stewart DJ. Pros and cons of intra-arterial chemotherapy. Oncology (Williston Park). 1989;3(10):20–6. discussion 26–27, 30, 32Google Scholar
  128. 128.
    Blacklock JB, Wright DC, Dedrick RL, et al. Drug streaming during intra-arterial chemotherapy. J Neurosurg. 1986;64(2):284–91.  https://doi.org/10.3171/jns.1986.64.2.0284.CrossRefPubMedGoogle Scholar
  129. 129.
    Lutz RJ, Dedrick RL, Boretos JW, Oldfield EH, Blacklock JB, Doppman JL. Mixing studies during intracarotid artery infusions in an in vitro model. J Neurosurg. 1986;64(2):277–83.  https://doi.org/10.3171/jns.1986.64.2.0277.CrossRefPubMedGoogle Scholar
  130. 130.
    Lutz RJ, Epstein AH, Cook JA, Dedrick RL. An in vitro flow model to study streaming during pelvic intra-arterial drug infusions. Gynecol Oncol. 1995;59(2):288–96.  https://doi.org/10.1006/gyno.1995.0024.CrossRefPubMedGoogle Scholar
  131. 131.
    Lutz RJ, Warren K, Balis F, Patronas N, Dedrick RL. Mixing during intravertebral arterial infusions in an in vitro model. J Neuro-Oncol. 2002;58(2):95–106.CrossRefGoogle Scholar
  132. 132.
    Lutz RJ, Miller DL. Mixing studies during hepatic artery infusion in an in vitro model. Cancer. 1988;62(6):1066–73.CrossRefGoogle Scholar
  133. 133.
    Aoki S, Terada H, Kosuda S, et al. Supraophthalmic chemotherapy with long tapered catheter: distribution evaluated with intraarterial and intravenous Tc-99m HMPAO. Radiology. 1993;188(2):347–50.  https://doi.org/10.1148/radiology.188.2.8327676.CrossRefPubMedGoogle Scholar
  134. 134.
    Hamza SM, Kaufman S. A vibrator prevents streaming during close-arterial infusion into the kidney. Am J Physiol Renal Physiol. 2004;286(4):F643–6.  https://doi.org/10.1152/ajprenal.00290.2003.CrossRefPubMedGoogle Scholar
  135. 135.
    Lambert CR, Leone JE, Rowland SM. Local drug delivery catheters: functional comparison of porous and microporous designs. Coron Artery Dis. 1993;4(5):469–75.CrossRefGoogle Scholar
  136. 136.
    Saris SC, Wright DC, Oldfield EH, Blasberg RG. Intravascular streaming and variable delivery to brain following carotid artery infusions in the Sprague-Dawley rat. J Cereb Blood Flow Metab. 1988;8(1):116–20.  https://doi.org/10.1038/jcbfm.1988.15.CrossRefPubMedGoogle Scholar
  137. 137.
    Saris SC, Blasberg RG, Carson RE, et al. Intravascular streaming during carotid artery infusions. Demonstration in humans and reduction using diastole-phased pulsatile administration. J Neurosurg. 1991;74(5):763–72.  https://doi.org/10.3171/jns.1991.74.5.0763.CrossRefPubMedGoogle Scholar
  138. 138.
    Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-Oncol. 2000;2(1):45–59.CrossRefGoogle Scholar
  139. 139.
    Neuwelt EA, Maravilla KR, Frenkel EP, Rapaport SI, Hill SA, Barnett PA. Osmotic blood-brain barrier disruption. Computerized tomographic monitoring of chemotherapeutic agent delivery. J Clin Invest. 1979;64(2):684–8.  https://doi.org/10.1172/JCI109509.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Rapoport SI, Hori M, Klatzo I. Reversible osmotic opening of the blood-brain barrier. Science. 1971;173(4001):1026–8.CrossRefGoogle Scholar
  141. 141.
    Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999;36(2–3):179–94.CrossRefGoogle Scholar
  142. 142.
    Schinkel AH. The roles of P-glycoprotein and MRP1 in the blood-brain and blood-cerebrospinal fluid barriers. Adv Exp Med Biol. 2001;500:365–72.CrossRefGoogle Scholar
  143. 143.
    Tang SC, Lagas JS, Lankheet NAG, et al. Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer. 2012;130(1):223–33.  https://doi.org/10.1002/ijc.26000.CrossRefPubMedGoogle Scholar
  144. 144.
    Terada T, Nakamura Y, Tsuura M, et al. MRI changes in embolized meningiomas. Neuroradiology. 1992;34(2):162–7.CrossRefGoogle Scholar
  145. 145.
    Doolittle ND, Petrillo A, Bell S, Cummings P, Eriksen S. Blood-brain barrier disruption for the treatment of malignant brain tumors: the National Program. J Neurosci Nurs. 1998;30(2):81–90.CrossRefGoogle Scholar
  146. 146.
    Siegal T, Zylber-Katz E. Strategies for increasing drug delivery to the brain: focus on brain lymphoma. Clin Pharmacokinet. 2002;41(3):171–86.  https://doi.org/10.2165/00003088-200241030-00002.CrossRefPubMedGoogle Scholar
  147. 147.
    Abramson DH, Schefler AC. Update on retinoblastoma. Retina. 2004;24(6):828–48.CrossRefGoogle Scholar
  148. 148.
    Gobin YP, Rosenstein LM, Marr BP, Brodie SE, Abramson DH. Radiation exposure during intra-arterial chemotherapy for retinoblastoma. Arch Ophthalmol. 2012;130(3):403–404; author reply 404–5. doi: https://doi.org/10.1001/archopthalmol.2011.2717.CrossRefPubMedGoogle Scholar
  149. 149.
    Brodie SE, Pierre Gobin Y, Dunkel IJ, Kim JW, Abramson DH. Persistence of retinal function after selective ophthalmic artery chemotherapy infusion for retinoblastoma. Doc Ophthalmol. 2009;119(1):13–22.  https://doi.org/10.1007/s10633-008-9164-3.CrossRefPubMedGoogle Scholar
  150. 150.
    Palioura S, Gobin YP, Brodie SE, Marr BP, Dunkel IJ, Abramson DH. Ophthalmic artery chemosurgery for the management of retinoblastoma in eyes with extensive (>50%) retinal detachment. Pediatr Blood Cancer. 2012;59(5):859–64.  https://doi.org/10.1002/pbc.24170.CrossRefPubMedGoogle Scholar
  151. 151.
    Zuniga RM, Torcuator R, Jain R, et al. Rebound tumour progression after the cessation of bevacizumab therapy in patients with recurrent high-grade glioma. J Neuro-Oncol. 2010;99(2):237–42.  https://doi.org/10.1007/s11060-010-0121-0.CrossRefGoogle Scholar
  152. 152.
    Matsumoto Y, Freund KB, Peiretti E, Cooney MJ, Ferrara DCAC, Yannuzzi LA. Rebound macular edema following bevacizumab (Avastin) therapy for retinal venous occlusive disease. Retina. 2007;27(4):426–31.  https://doi.org/10.1097/IAE.0b013e31804a7af2.CrossRefPubMedGoogle Scholar
  153. 153.
    Yasuda S, Kondo M, Kachi S, et al. Rebound of macular edema after intravitreal bevacizumab therapy in eyes with macular edema secondary to branch retinal vein occlusion. Retina. 2011;31(6):1075–82.  https://doi.org/10.1097/IAE.0b013e318206cf4b.CrossRefPubMedGoogle Scholar
  154. 154.
    Narita Y. Drug review: safety and efficacy of bevacizumab for glioblastoma and other brain tumors. Jpn J Clin Oncol. 2013;43(6):587–95.  https://doi.org/10.1093/jjco/hyt051.CrossRefPubMedGoogle Scholar
  155. 155.
    Boockvar JA, Tsiouris AJ, Hofstetter CP, et al. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg. 2011;114(3):624–32.  https://doi.org/10.3171/2010.9.JNS101223.CrossRefPubMedGoogle Scholar
  156. 156.
    Burkhardt J-K, Shin BJ, Schlaff CD, Riina H, Boockvar JA. Cost analysis of intra-arterial versus intra-venous delivery of bevacizumab for the treatment of recurrent glioblastoma multiforme. J Exp Ther Oncol. 2011;9(3):183–6.PubMedGoogle Scholar
  157. 157.
    Barrett T, Brechbiel M, Bernardo M, Choyke PL. MRI of tumor angiogenesis. J Magn Reson Imaging. 2007;26(2):235–49.  https://doi.org/10.1002/jmri.20991.CrossRefPubMedGoogle Scholar
  158. 158.
    Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2003;17(5):509–20.  https://doi.org/10.1002/jmri.10304.CrossRefPubMedGoogle Scholar
  159. 159.
    Imbesi F, Marchioni E, Benericetti E, et al. A randomized phase III study: comparison between intravenous and intraarterial ACNU administration in newly diagnosed primary glioblastomas. Anticancer Res. 2006;26(1B):553–8.PubMedGoogle Scholar
  160. 160.
    Silvani A, Eoli M, Salmaggi A, Erbetta A, Fariselli L, Boiardi A. Intra-arterial ACNU and carboplatin versus intravenous chemotherapy with cisplatin and BCNU in newly diagnosed patients with glioblastoma. Neurol Sci. 2002;23(5):219–24.  https://doi.org/10.1007/s100720200044.CrossRefPubMedGoogle Scholar
  161. 161.
    Doweck I, Robbins KT, Vieira F. Analysis of risk factors predictive of distant failure after targeted chemoradiation for advanced head and neck cancer. Arch Otolaryngol Head Neck Surg. 2001;127(11):1315–8.CrossRefGoogle Scholar
  162. 162.
    Sakashita T, Homma A, Oridate N, et al. Evaluation of nodal response after intra-arterial chemoradiation for node-positive head and neck cancer. Eur Arch Otorhinolaryngol. 2012;269(6):1671–6.  https://doi.org/10.1007/s00405-011-1814-5.CrossRefPubMedGoogle Scholar
  163. 163.
    Bertino G, Occhini A, Falco CE, et al. Concurrent intra-arterial carboplatin administration and radiation therapy for the treatment of advanced head and neck squamous cell carcinoma: short term results. BMC Cancer. 2009;9:313.  https://doi.org/10.1186/1471-2407-9-313.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Sassler AM, Esclamado RM, Wolf GT. Surgery after organ preservation therapy. Analysis of wound complications. Arch Otolaryngol Head Neck Surg. 1995;121(2):162–5.CrossRefGoogle Scholar
  165. 165.
    Lavertu P, Bonafede JP, Adelstein DJ, et al. Comparison of surgical complications after organ-preservation therapy in patients with stage III or IV squamous cell head and neck cancer. Arch Otolaryngol Head Neck Surg. 1998;124(4):401–6.CrossRefGoogle Scholar
  166. 166.
    Morgan JE, Breau RL, Suen JY, Hanna EY. Surgical wound complications after intensive chemoradiotherapy for advanced squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg. 2007;133(1):10–4.  https://doi.org/10.1001/archotol.133.1.10.CrossRefPubMedGoogle Scholar
  167. 167.
    Newman JP, Terris DJ, Pinto HA, Fee WE, Goode RL, Goffinet DR. Surgical morbidity of neck dissection after chemoradiotherapy in advanced head and neck cancer. Ann Otol Rhinol Laryngol. 1997;106(2):117–22.CrossRefGoogle Scholar
  168. 168.
    Damascelli B, Patelli GL, Lanocita R, et al. A novel intraarterial chemotherapy using paclitaxel in albumin nanoparticles to treat advanced squamous cell carcinoma of the tongue: preliminary findings. Am J Roentgenol. 2003;181(1):253–60.  https://doi.org/10.2214/ajr.181.1.1810253.CrossRefGoogle Scholar
  169. 169.
    Damascelli B, Patelli G, Tichá V, et al. Feasibility and efficacy of percutaneous transcatheter intraarterial chemotherapy with paclitaxel in albumin nanoparticles for advanced squamous-cell carcinoma of the oral cavity, oropharynx, and hypopharynx. J Vasc Interv Radiol. 2007;18(11):1395–403.  https://doi.org/10.1016/j.jvir.2007.06.009.CrossRefPubMedGoogle Scholar
  170. 170.
    Tsimberidou AM, Ye Y, Wheler J, et al. A phase I study of hepatic arterial infusion of nab-paclitaxel in combination with intravenous gemcitabine and bevacizumab for patients with advanced cancers and predominant liver metastases. Cancer Chemother Pharmacol. 2013;71(4):955–63.  https://doi.org/10.1007/s00280-013-2088-y.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Desai N, Trieu V, Damascelli B, Soon-Shiong P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl Oncol. 2009;2(2):59–64.CrossRefGoogle Scholar
  172. 172.
    Chlenski A, Cohn SL. Modulation of matrix remodeling by SPARC in neoplastic progression. Semin Cell Dev Biol. 2010;21(1):55–65.  https://doi.org/10.1016/j.semcdb.2009.11.018.CrossRefPubMedGoogle Scholar
  173. 173.
    Meyer PN, Fu K, Greiner T, et al. The stromal cell marker SPARC predicts for survival in patients with diffuse large B-cell lymphoma treated with rituximab. Am J Clin Pathol. 2011;135(1):54–61.  https://doi.org/10.1309/AJCPJX4BJV9NLQHY.CrossRefPubMedGoogle Scholar
  174. 174.
    Volk LD, Flister MJ, Chihade D, Desai N, Trieu V, Ran S. Synergy of nab-paclitaxel and bevacizumab in eradicating large orthotopic breast tumors and preexisting metastases. Neoplasia. 2011;13(4):327–38.CrossRefGoogle Scholar
  175. 175.
    Happold C, Roth P, Wick W, et al. ACNU-based chemotherapy for recurrent glioma in the temozolomide era. J Neuro-Oncol. 2009;92(1):45–8.  https://doi.org/10.1007/s11060-008-9728-9.CrossRefGoogle Scholar
  176. 176.
    Numa Y, Kasai H, Imahori T, Tsuchida T, Kawamoto K. Effective measures against side effects by increasing ACNU dose for malignant glioma: effects on digestive organs. Gan To Kagaku Ryoho. 1994;21(12):2029–33.PubMedGoogle Scholar
  177. 177.
    Wakabayashi T, Yoshida J, Mizuno M, Kajita Y. Intratumoral microinfusion of nimustine (ACNU) for recurrent glioma. Brain Tumor Pathol. 2001;18(1):23–8.CrossRefGoogle Scholar
  178. 178.
    Miyagami M, Tsubokawa T. Chemotherapy with ACNU and radiation therapy in malignant glioma in cerebral hemisphere of adult. Gan To Kagaku Ryoho. 1990;17(8 Pt 1):1447–53.PubMedGoogle Scholar
  179. 179.
    Sonoda Y, Matsumoto K, Kakuto Y, et al. Primary CNS lymphoma treated with combined intra-arterial ACNU and radiotherapy. Acta Neurochir. 2007;149(11):1183–1189.; discussion 1189.  https://doi.org/10.1007/s00701-007-1277-z.CrossRefPubMedGoogle Scholar
  180. 180.
    Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 2006;28(11):1779–802.  https://doi.org/10.1016/j.clinthera.2006.11.015.CrossRefPubMedGoogle Scholar
  181. 181.
    Riina HA, Fraser JF, Fralin S, Knopman J, Scheff RJ, Boockvar JA. Superselective intraarterial cerebral infusion of bevacizumab: a revival of interventional neuro-oncology for malignant glioma. J Exp Ther Oncol. 2009;8(2):145–50.PubMedGoogle Scholar
  182. 182.
    Eminowicz GK, Raman R, Conibear J, Plowman PN. Bevacizumab treatment for vestibular schwannomas in neurofibromatosis type two: report of two cases, including responses after prior gamma knife and vascular endothelial growth factor inhibition therapy. J Laryngol Otol. 2012;126(1):79–82.  https://doi.org/10.1017/S0022215111002805.CrossRefPubMedGoogle Scholar
  183. 183.
    Plotkin SR, Merker VL, Halpin C, et al. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol Neurotol. 2012;33(6):1046–52.  https://doi.org/10.1097/MAO.0b013e31825e73f5.CrossRefPubMedGoogle Scholar
  184. 184.
    Wong HK, Lahdenranta J, Kamoun WS, et al. Anti-vascular endothelial growth factor therapies as a novel therapeutic approach to treating neurofibromatosis-related tumors. Cancer Res. 2010;70(9):3483–93.  https://doi.org/10.1158/0008-5472.CAN-09-3107.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Nagulić M, Nagulic I, Vujnić V. Implantation of radioactive isotopes in intracranial tumors. Acta Chir Iugosl. 1989;36(2):203–18.PubMedGoogle Scholar
  186. 186.
    Bargellini I, Florio F, Golfieri R, Grosso M, Lauretti DL, Cioni R. Trends in utilization of transarterial treatments for hepatocellular carcinoma: results of a survey by the Italian Society of Interventional Radiology. Cardiovasc Intervent Radiol. 2014;37(2):438–44.  https://doi.org/10.1007/s00270-013-0656-5.CrossRefPubMedGoogle Scholar
  187. 187.
    Lewandowski RJ, Kulik LM, Riaz A, et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant. 2009;9(8):1920–8.  https://doi.org/10.1111/j.1600-6143.2009.02695.x.CrossRefPubMedGoogle Scholar
  188. 188.
    Mulcahy MF, Lewandowski RJ, Ibrahim SM, et al. Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer. 2009;115(9):1849–58.  https://doi.org/10.1002/cncr.24224.CrossRefPubMedGoogle Scholar
  189. 189.
    Rafi S, Piduru SM, El-Rayes B, et al. Yttrium-90 radioembolization for unresectable standard-chemorefractory intrahepatic cholangiocarcinoma: survival, efficacy, and safety study. Cardiovasc Intervent Radiol. 2013;36(2):440–8.  https://doi.org/10.1007/s00270-012-0463-4.CrossRefPubMedGoogle Scholar
  190. 190.
    Ricke J, Großer O, Amthauer H. Y90-radioembolization of lung metastases via the bronchial artery: a report of 2 cases. Cardiovasc Intervent Radiol. 2013;36(6):1664–9.  https://doi.org/10.1007/s00270-013-0690-3.CrossRefPubMedGoogle Scholar
  191. 191.
    Salem R, Lewandowski RJ, Mulcahy MF, et al. Radioembolization for hepatocellular carcinoma using yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2010;138(1):52–64.  https://doi.org/10.1053/j.gastro.2009.09.006.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Srikanth R. Boddu
    • 1
  • Thomas W. Link
    • 1
  • Athos Patsalides
    • 1
  1. 1.Division of Interventional Neuroradiology, Department of Neurological SurgeryWeill Cornell Medical Center/New York Presbyterian HospitalNew YorkUSA

Personalised recommendations