Excimer Laser Coronary Atherectomy

Chapter

Abstract

Excimer laser coronary atherectomy (ELCA) was introduced in the 1980s for treatment of coronary artery disease, but use was restricted because the ELCA laser was activated with contrast medium still present in the coronary arteries, resulting in unacceptably high rates of dissection and perforation. Lasing in contrast medium leads to intense vapor bubble expansion and implosion, causing forceful dilation and invagination of the adjacent arterial wall after each excimer laser pulse, which can cause dissection and perforation. When the saline flush technique was applied in the 2000s, the use of ELCA spread because of the reduced rate of complications compared with the earlier attempts. In addition, the introduction of a smaller profile 0.9 mm ELCA catheter allowed treatment of a wider spectrum of coronary artery lesions, such as tortuous lesions, chronic total occlusions (CTOs), and balloon-uncrossable lesions. Unlike plain old balloon angioplasty and stenting, ELCA has three unique mechanisms of action: photoablation, photothermal, and photomechanical. Through these mechanisms of action, ELCA vaporizes plaque in complex coronary anatomies containing thrombus, soft atheroma, fibrous tissue, and calcium. In addition, laser energy is capable of suppressing platelet aggregation as a pleiotropic effect. The current clinical indications for ELCA are saphenous vein grafts, acute coronary syndrome, in-stent restenosis, bifurcation lesions, ostial lesions, moderately calcified lesions, CTOs, balloon-uncrossable lesions, and stent underexpanded lesions.

References

  1. 1.
    Bilodeau I, Frez EB, Taeymans Y, Koolen J, Taylor K, Hilton DJ. Novel use of a high-energy excimer laser catheter for calcified and complex coronary artery lesions. Catheter Cardiovasc Interv. 2004;62:155–61.CrossRefGoogle Scholar
  2. 2.
    Deckelbaum LI, Natarajan MK, Bittl JA, Rohlfs K, Scott J, Chisholm R, Bowman KA, Strauss BH. Effect of intracoronary saline infusion on dissection during excimer laser coronary angioplasty: a randomized trial. The Percutaneous Excimer Laser Coronary Angioplasty (PELCA) investigators. J Am Coll Cardiol. 1995;26:1264–9.CrossRefGoogle Scholar
  3. 3.
    Topaz O. Plaque removal and thrombus dissolution with the photoacoustic energy of pulse-wave lasers-biotissue interactions and their clinical manifestations. Cardiology. 1996;87:384–91.CrossRefGoogle Scholar
  4. 4.
    Topaz O, Ebersole D, Das T, Alderman EL, Madyoon H, Vora K, Baker JD, Hilton D, Dahm JB, CARMEL multicenter trial. Excimer laser angioplasty in acute myocardial infarction. (The CARMEL Multicenter Trial). Am J Cardiol. 2004;93:694–701.CrossRefGoogle Scholar
  5. 5.
    Topaz O, Minisi AJ, Bernardo NL, McPherson RA, Martin E, Carr SL, Carr ME Jr. Alterations of platelet aggregation kinetics with ultraviolet laser emission: the “stunned platelet” phenomenon. Thromb Haemost. 2001;86:1087–93.CrossRefGoogle Scholar
  6. 6.
    Douglas J. Approaches to the patient with prior bypass surgery. In: Topol EJ, editor. Textbook of cardiovascular medicine. Philadelphia: Lippincott-Raven Publishers; 1998. p. 2101–18.Google Scholar
  7. 7.
    Keeley E, Velez C, O’Neill WW, Safian RD. Long term clinical outcome and predictors of major adverse cardiac events after PCI for SVG. J Am Coll Cardiol. 2001;38:659–65.CrossRefGoogle Scholar
  8. 8.
    Hong HM, Mehran R, Dangas G, Mintz GS, Lansky AJ, Pichard AD, Kent KM, Satler LF, Stone GW, Leon NB. Creatine kinase-MB enzyme elevation following successful saphenous vein graft intervention is associated with late mortality. Circulation. 1999;100:2400–5.CrossRefGoogle Scholar
  9. 9.
    Webb J, Carere RG, Virmani R, Baim D, Teirstein PS, Whitlow P, McQueen C, Kolodgie FD, Buller E, Dodek A, Mancini GB, Oesterle S. Retrieval and analysis of particulate debris after saphenous vein graft intervention. J Am Coll Cardiol. 1999;34:468–75.CrossRefGoogle Scholar
  10. 10.
    Baim DS, Wahr D, George B, Leon MB, Greenberg J, Cuttlip DE, Kaya U, Popma JJ, Ho KK, Kuntz RE. Saphenous vein graft Angioplasty Free of Emboli Randomized (SAFER) Trial Investigators. Circulation. 2002;105:1955–61.CrossRefGoogle Scholar
  11. 11.
    Ashikaga T, Komiyama K. Pretreatment of excimer laser atherectomy for the saphenous vein graft. In: Coronary graft failure. Cham: Springer Press. p. 641–7.Google Scholar
  12. 12.
    Mathew V, Lennon RJ, Rihal CS, Breshnahan JF, Holms DR Jr. Applicability of distal protection for aortocoronary vein graft interventions in clinical practice. Catheter Cardiovasc Interv. 2004;63:148–51.CrossRefGoogle Scholar
  13. 13.
    Bittl JA, Sanborn TA, Yardley DE, Tcheng JE, Isner JM, Chokshi SK, Strauss BH, Abela GS, Walter PD, Schmindhofer M. Predictors of outcome of percutaneous excimer laser coronary angioplasty of saphenous vein graft lesions. The Percutaneous Excimer Laser Coronary Angioplasty Registry. Am J Cardiol. 1994;74:144–8.CrossRefGoogle Scholar
  14. 14.
    Ebersole DG. Excimer laser for revascularization of saphenous vein grafts. Laser Med Sci. 2001;16:78–83.CrossRefGoogle Scholar
  15. 15.
    Giugliano GR, Falcone MW, Mego D, Ebersole D, Jenkins S, Das T, Barker E, Ruggio JM, Maini B, Bailey SR. A prospective multicenter registry of laser therapy for degenerated saphenous vein graft stenosis: the Coronary graft Results following Atherectomy with Laser (CORAL) trial. Cardiovasc Revas Med. 2012;13:84–9.CrossRefGoogle Scholar
  16. 16.
    Ebersole D, Dahm JB, Das TD, Madyoon H, Vora K, Baker J, Hilton D, Alderman E, Topaz O. Excimer laser revascularization of saphenous vein grafts in acute myocardial infarction. J Invasive Cardiolo. 2004;16:177–80.Google Scholar
  17. 17.
    Lonborg J, Kelbaek H, Helqvist S, et al. The impact of distal embolization and distal protection on long-term outcome in patients with ST elevation myocardial infarction randomized to primary percutaneous coronary intervention – results from a randomized study. Eur Heart J Acute Cardiovasc Care. 2015;4:180–8.CrossRefGoogle Scholar
  18. 18.
    Sianos G, Papafaklis MI, Daemen J, et al. Angiographic stent thrombosis after routine use of drug-eluting stents in ST-segment elevation myocardial infarction: the importance of thrombus burden. J Am Coll Cardiol. 2007;50:573–83.CrossRefGoogle Scholar
  19. 19.
    Kelbaek H, Terkelsen CJ, Helqvist S, et al. Randomized comparison of distal protection versus conventional treatment in primary percutaneous coronary intervention: the drug elution and distal protection in ST-elevation myocardial infarction (DEDICATION) trial. J Am Coll Cardiol. 2008;51:899–905.CrossRefGoogle Scholar
  20. 20.
    Jolly SS, Cairns JA, Yusuf S, et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med. 2015;372:1389–98.CrossRefGoogle Scholar
  21. 21.
    Shishikura D, Otsuji S, Takiuchi S, et al. Vaporizing thrombus with excimer laser before coronary stenting improves myocardial reperfusion in acute coronary syndrome. Circ J (Official Journal of the Japanese Circulation Society). 2013;77:1445–52.CrossRefGoogle Scholar
  22. 22.
    Steigen TK, Maeng M, Wiseth R, et al; for the Nordic PCI Study Group. Randomized study on simple versus complex stenting of coronary artery bifurcation lesions. Circulation 2006;114:1955–1961.CrossRefGoogle Scholar
  23. 23.
    Medina A, Suarez de Lezo J, Pan M. A new classification of coronary bifurcation lesions. Rev Esp Cardiol. 2006;59:183.CrossRefGoogle Scholar
  24. 24.
    Viceconte N, Tyczynski P, Ferrante G, et al. Immediate results of bifurcational stenting assessed with optical coherence tomography. Catheter Cardiovasc Interv. 2013;81:519–28.CrossRefGoogle Scholar
  25. 25.
    Foin N, Alegra-Barrero E, Torii R, et al. Crush, culotte, T and protrusion: which2-stent technique for treatment of true bifurcation lesions?- insights from in vitro experiments and micro-computed tomography. Circ J. 2012;77:73–80.CrossRefGoogle Scholar
  26. 26.
    Behan MW, Holm NR, deBelder AJ, et al. Coronary bifurcation lesions treated with simple or complex stenting: 5-year survival from patient-level pooled analysis of the Nordic Bifurcation Study and British Bifurcation Coronary Study. Eur Heart J. 2016;37:1923–8.CrossRefGoogle Scholar
  27. 27.
    Eigler NL, Weinstock B, Douglas JS Jr, et al. Excimer laser coronary angioplasty of aorto-ostial stenosis. Results of the excimer laser coronary angioplasty (ELCA) registry in the first 200 patients. Circulation. 1993;88:2049–57.CrossRefGoogle Scholar
  28. 28.
    Holm NR, Adriaenssens T, Motreff P, et al. OCT for bifurcation stenting: what have we learned? EuroIntervention. 2015;11:V64–70.CrossRefGoogle Scholar
  29. 29.
    Stettler C, Wandel S, Allemann S, Kastrati A, Morice MC, Schomig A, et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet. 2007;370:937–48.CrossRefGoogle Scholar
  30. 30.
    Di Lorenzo E, Sauro R, Varricchio A, Carbone G, Cortese G, Capasso M, et al. Long-Term outcome of drug-eluting stents compared with bare metal stents in ST-segment elevation myocardial infarction: results of the paclitaxel- or sirolimus-eluting stent versus bare metal stent in Primary Angioplasty (PASEO) Randomized Trial. Circulation. 2009;120:964–72.CrossRefGoogle Scholar
  31. 31.
    Albiero R, Silber S, Di Mario C, Cernigliaro C, Battaglia S, Reimers B, et al. Cutting balloon versus conventional balloon angioplasty for the treatment of in-stent restenosis: results of the restenosis cutting balloon evaluation trial (RESCUT). J Am Coll Cardiol. 2004;43:943–9.CrossRefGoogle Scholar
  32. 32.
    Miyamoto T, Araki T, Hiroe M, Marumo F, Niwa A, Yokoyama K. Standalone cutting balloon angioplasty for the treatment of stent-related restenosis: acute results and 3- to 6-month angiographic recurrent restenosis rates. Catheter Cardiovasc Interv (Official Journal of the Society for Cardiac Angiography & Interventions). 2001;54:301–8.CrossRefGoogle Scholar
  33. 33.
    Gonzalo N, Barlis P, Serruys PW, Garcia-Garcia HM, Onuma Y, Ligthart J, et al. Incomplete stent apposition and delayed tissue coverage are more frequent in drug-eluting stents implanted during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction than in drug-eluting stents implanted for stable/unstable angina: insights from optical coherence tomography. JACC Cardiovasc Interv. 2009;2:445–52.CrossRefGoogle Scholar
  34. 34.
    Tada T, Kadota K, Hosogi S, Kubo S, Ozaki M, Yoshino M, et al. Optical coherence tomography findings in lesions after sirolimus-eluting stent implantation with peri-stent contrast staining. Circ Cardiovasc Interv. 2012;5:649–56.CrossRefGoogle Scholar
  35. 35.
    Nagoshi R, Shinke T, Otake H, Shite J, Matsumoto D, Kawamori H, et al. Qualitative and quantitative assessment of stent restenosis by optical coherence tomography: comparison between drug-eluting and bare-metal stents. Circ J (Official Journal of the Japanese Circulation Society). 2013;77:652–60.CrossRefGoogle Scholar
  36. 36.
    Hirose S, AshikagaT HY, Yoshikawa S, Sasaoka T, Maejima Y, Isobe M. Treatment of in-stent restenosis with excimer laser coronary angioplasty; benefits over scoring balloon angioplasty alone. Lasers Med Sci. 2016;31:1691–6.CrossRefGoogle Scholar
  37. 37.
    Itoh T, Fusazaki T, Kimura T, et al. Clinical and pathological characteristics of homogeneous and nonhomogeneous tissue of in-stent restenosis visualized by optical coherence tomography. Coron Artery Dis. 2015;26:201–11.CrossRefGoogle Scholar
  38. 38.
    Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J. 2009;158:284–93.CrossRefGoogle Scholar
  39. 39.
    Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62:1748–58.CrossRefGoogle Scholar
  40. 40.
    Lee JB, Mintz GS, Lisauskas JB, Biro SG, Pu J, Sum ST, et al. Histopathologic validation of the intravascular ultrasound diagnosis calcified coronary artery nodules. Am J Cardiol. 2011;108:1547–51.CrossRefGoogle Scholar
  41. 41.
    Xu Y, Mintz GS, Tam AB, JA MP, Iniguez A, Fahy M, et al. Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravasculrar ultrasound analysis from providing regional observations to study predictors of events in coronary tree (PROSPECT). Circulation. 2012;126:537–45.CrossRefGoogle Scholar
  42. 42.
    Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation. 1998;97:2110–6.CrossRefGoogle Scholar
  43. 43.
    Egred M. Raser angioplasty. Catheter Cardiovasc Interv. 2012;79:1009–12.CrossRefGoogle Scholar
  44. 44.
    Ashikaga T, Yoshikaewa S, Isobe M. The efficacy of excimer laser pretreatment for calcified nodule in acute coronary syndrome. Cardiovasc Revasc Med. 2015;16:197–200.CrossRefGoogle Scholar
  45. 45.
    Williams DD, Holubkov R, Yeh W, et al. Percutaneous coronary intervention in the current era compared with 1985–1986: the national heart, lung, and blood institute registries. Circulation. 2000;102:2945–51.CrossRefGoogle Scholar
  46. 46.
    Kirtane AJ, Stone GW. The anchor-Tornus technique: a novel approach to “uncrossable” chronic total occlusions. Catheter Cardiovasc Interv. 2007;70:554–7.CrossRefGoogle Scholar
  47. 47.
    Morino Y, Abe M, Morimoto T, et al. Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes: J-CTO (Multicenter CTO Registry in Japan) score as a difficulty grading and time assessment tool. JACC Cardiovasc Interv. 2011;4:213–21.CrossRefGoogle Scholar
  48. 48.
    Stojkovic SM, Ostojic MC, Saito S, et al. A novel penetration device for severe stenosis or chronic total occluysion in coronary artery disease. Herz. 2008;33:377–81.CrossRefGoogle Scholar
  49. 49.
    Ashikaga T, Sakurai K, Satoh Y, Inagaki H, Yoshikawa S, Kurihara K, Hirao K, Isobe M. Mother-child technique using a novel 4F inner catheter. EuroIntervention. 2015;10:1432–9.CrossRefGoogle Scholar
  50. 50.
    Fernandez JP, Hobson AR, McKenzie DB, et al. How should I treat severe calcific coronary artery disease? EuroIntervention. 2011;7:400–7.CrossRefGoogle Scholar
  51. 51.
    Herzum M, Cosmeleata R, Marisch B. Managing a complication after direct stenting: removal of a maldeployed stent with rotational atherectomy. Heart. 2005;91:e46.CrossRefGoogle Scholar
  52. 52.
    Balan O, Kobayashi Y, Moses JW. Cutting balloon angioplasty for underexpanded stent deployed through struts of previously implanted stent. J Invasive Cardiol. 2002;14:697–701.Google Scholar
  53. 53.
    Lam SCC, Bertog S, Sievert H. Excimer laser in management of underexpansion of a newly deployed coronary stent. Catheter Cardiovasc Interv. 2013;83:E64–F68.CrossRefGoogle Scholar
  54. 54.
    Latib A, Takagi K, Chizzola G, Tobis J, Ambrosini V, Niccoli G, Sardella G, DiSalvo ME, Armiglito P, Valgimigli M, Tarsia G, Gabrielli G, Lazar L, Maffeo D, Colombo A. Excimer laser lesion modification to expand non-dilatable stent: The ELLWMENT Registry. Cardiovasc Revasc Med. 2014;15:8–12.CrossRefGoogle Scholar
  55. 55.
    Viceconte N, Biscione C, Tarsia G, Osanna R, Polosa D, Prete AD, Lisanti P, Gaudio C. Laser “explosion” technique for treatment of underexpanded coronary stent. Int J Cardiol. 2011;149:395–7.CrossRefGoogle Scholar
  56. 56.
    Tcheng JEWL, Phillips HR, Deckelbaum LI, Golobic RA. Development of a new technique for reducing pressure pulse generation during 308-nm excimer laser coronary angioplasty. Catheter Cardiovasc Diagn. 1995;34:15–22.CrossRefGoogle Scholar
  57. 57.
    Ashikaga T, Yoshikawa S, Isobe M. The effectivess of excimer laser coronary atherectomy with contrast medium for underexpanded stent: the findings of optical frequenct domain imaging. Catheter Cardiovasc Interv. 2015;86:946–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiology and Regional MedicineTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations