Advertisement

The Role of Lipids in the Life History of the Antarctic Silverfish Pleuragramma antarctica

Chapter
Part of the Advances in Polar Ecology book series (AVPE, volume 3)

Abstract

A unique characteristic of the pelagic Antarctic silverfish Pleuragramma antarctica is the massive accumulation and storage of lipids in special oil sacs. The enormous lipid deposition beyond 50% of body dry mass functions primarily as buoyancy aid compensating for the missing swim bladder in these fishes, although the depot lipids could also serve as energy reserves. The lipid signature clearly reflects the life cycle of P. antarctica. Trophic marker fatty acids of the early larval and post-larval stages reveal feeding preferences on phyto- and zooplankton, mainly copepods, which these stages utilize for rapid somatic growth without special lipid storage. The juvenile stages tend to feed on calanoid copepods, while the adults shift to krill (Euphausia superba, E. crystallorophias) as major food items. The findings from fatty acid trophic markers are in accordance with gut content analyses. Juveniles to adults exhibit a pronounced lipid deposition, namely triacylglycerols, in the oil sacs. These triacylglycerols are composed of unmodified dietary fatty acids, but may also partially be synthesized de novo. This substantial lipid accumulation not only represents a key adaptation of P. antarctica to life in the pelagic realm. It is also of major importance as high-quality and high-energy food for other marine vertebrates such as seabirds and seals and ultimately ensures an efficient energy flow through the lipid-based high-Antarctic food web.

Keywords

Nototheniidae Lipid deposition Life cycle 

Notes

Acknowledgements

We thank Petra Wencke for excellent analytical support and Maya Bode for conducting the PCA analyses. We are grateful to Gerd Hubold for fruitful discussions concerning the early life history of P. antarctica in the Weddell Sea. We thank the anonymous reviewers for their constructive comments.

References

  1. Albers CS, Kattner G, Hagen W (1996) The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar Chem 55:347–358CrossRefGoogle Scholar
  2. Albertson RC, Yan YL, Titus TA et al (2010) Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evol Biol 10:4. doi: 10.1186/1471-2148-10-4 CrossRefGoogle Scholar
  3. Andriashev AP (1987) A general review of the Antarctic bottom fish fauna. In: Kullander SO, Fernholm B (eds), Proceedings of fifth congress of European ichthyologists, Stockholm 1985, pp 357–372Google Scholar
  4. Bottaro M, Oliveri D, Ghigliotti L et al (2009) Born among the ice: first morphological observations on two developmental stages of the Antarctic silverfish Pleuragramma antarcticum, a key species of the Southern Ocean. Rev Fish Biol Fish 19:249–259CrossRefGoogle Scholar
  5. Bottino NR (1975) Lipid composition of two species of Antarctic krill; Euphausia superba and E. crystallorophias. Comp Biochem Physiol 50B:479–484Google Scholar
  6. Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–218CrossRefGoogle Scholar
  7. Dalsgaard J, St John M, Kattner G et al (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340CrossRefGoogle Scholar
  8. Eastman JT (1985) The evolution of neutrally buoyant notothenioid fishes: their specializations and potential interactions in the Antarctic marine food web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 430–436CrossRefGoogle Scholar
  9. Eastman JT (1988) Lipid storage systems and the biology of two neutrally buoyant Antarctic notothenioid fishes. Comp Biochem Physiol 90B:529–537Google Scholar
  10. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107CrossRefGoogle Scholar
  11. Eastman JT, De Vries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. Copeia 1982:385–393CrossRefGoogle Scholar
  12. Eastman JT, De Vries AL (1989) Ultrastructure of the lipid sac wall in the Antarctic notothenioid fish Pleuragramma antarcticum. Polar Biol 9:333–335CrossRefGoogle Scholar
  13. Evans CW, Williams DE, Vacchi M et al (2012) Metabolic and behavioural adaptations during early development of the Antarctic silverfish, Pleuragramma antarcticum. Polar Biol 35:891–898CrossRefGoogle Scholar
  14. Friedrich C, Hagen W (1994) Lipid contents of five species of notothenioid fish from high-Antarctic waters and ecological implications. Polar Biol 14:359–369CrossRefGoogle Scholar
  15. Giraldo C, Mayzaud P, Tavernier E et al (2013) Lipid components as a measure of nutritional condition in fish larvae (Pleuragramma antarcticum) in East Antarctica. Mar Biol 160:877–887CrossRefGoogle Scholar
  16. Graeve M, Kattner G, Hagen W (1994) Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J Exp Mar Biol Ecol 182:97–110CrossRefGoogle Scholar
  17. Graeve M, Albers C, Kattner G (2005) Assimilation and biosynthesis of lipids in Arctic Calanus species based on feeding experiments with a 13C labelled diatom. J Exp Mar Biol Ecol 317:109–125CrossRefGoogle Scholar
  18. Grote B, Ekau W, Stenevik EK et al (2012) Characteristics of survivors – growth and nutritional condition of early life stages of the hake species Merluccius paradoxus and M. capensis in the southern Benguela ecosystem. ICES J Mar Sci 69:553–562CrossRefGoogle Scholar
  19. Hagen W (1988) On the significance of lipids in Antarctic zooplankton. Rep Polar Res 49:1–129 English version: Can Transl Fish Aquatic Sciences 5458, 1989, 1–149Google Scholar
  20. Hagen W, Kattner G, Graeve M (1995) On the lipid biochemistry of polar copepods: compositional differences in the Antarctic calanoids Euchaeta antarctica and Euchirella rostromagna. Mar Biol 123:451–457CrossRefGoogle Scholar
  21. Hagen W, Kattner G, Friedrich C (2000) The lipid compositions of high-Antarctic notothenioid fish species with different life strategies. Polar Biol 23:785–791CrossRefGoogle Scholar
  22. Hagen W, Kattner G, Terbrüggen A et al (2001) Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar Biol 139:95–104CrossRefGoogle Scholar
  23. Hubold G (1984) Spatial distribution of Pleuragrarnma antarcticum (Pisces: Nototheniidae) near the Filchner- and Larsen ice shelves (Weddell Sea/Antarctica). Polar Biol 3:231–236CrossRefGoogle Scholar
  24. Hubold G (1985) Stomach contents of the Antarctic silverfish Pleuragramma antarcticum from the southern and eastern Weddell Sea (Antarctica). Polar Biol 5:43–48CrossRefGoogle Scholar
  25. Hubold G (1991) Ecology of notothenioid fishes in the Weddell Sea. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin, pp 3–22CrossRefGoogle Scholar
  26. Hubold G (1992) Zur Ökologie der Fische im Weddellmeer. Rep Polar Res 103:1–157Google Scholar
  27. Hubold G (2009) The Weddell Sea and the Pleuragramma story. In: Hempel G, Hempel I (eds) Biology studies in polar oceans – exploration of life in icy waters. Wirtschaftsverlag NW, Bremerhaven, pp 165–170Google Scholar
  28. Hubold G, Ekau W (1990) Feeding patterns of post-larval and juvenile notothenioids in the southern Weddell Sea (Antarctica). Polar Biol 10:255–260CrossRefGoogle Scholar
  29. Hubold G, Hagen W (1997) Seasonality of feeding and lipid content in juvenile Pleuragramma antarcticum (Pisces: Nototheniidae) in the southern Weddell Sea. Proc Sixth SCAR Symp on Antarctic Biology in Venice, Italy, pp 277–283Google Scholar
  30. Kattner G, Hagen W (1998) Lipid metabolism of the Antarctic euphausiid Euphausia crystallorophias and its ecological implications. Mar Ecol Prog Ser 170:203–213CrossRefGoogle Scholar
  31. Kattner G, Graeve M, Hagen W (1994) Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar Biol 118:637–644CrossRefGoogle Scholar
  32. Kattner G, Albers C, Graeve M et al (2003) Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol 26:666–671CrossRefGoogle Scholar
  33. Kellermann A (1987) Food and feeding ecology of postlarval and juvenile Pleuragramma antarcticum (Pisces; Notothenioidei) in the seasonal pack ice zone off the Antarctic Peninsula. Polar Biol 7:307–315CrossRefGoogle Scholar
  34. Koubbi P, Vallet C, Razouls S et al (2007) Condition and diet of larval Pleuragramma antarcticum from Terre Adélie (Antarctica) during summer. Cybium 31:67–76Google Scholar
  35. Koubbi P, Duhamel G, Hecq J-H et al (2009) Ichthyoplankton in the neritic and coastal zone of Antarctica and Subantarctic islands: a review. J Mar Syst 78:547–556CrossRefGoogle Scholar
  36. La Mesa M, Eastman JT (2012) Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13:241–266CrossRefGoogle Scholar
  37. Lee RF, Patton JS (1989) Alcohol and waxes. In: Ackman RG (ed) Marine biogenic lipids, fats and oils. CRC Press, Boca Raton, pp 73–102Google Scholar
  38. Maes J, Van de Putte A, Hecq J-H et al (2006) State-dependent energy allocation in the pelagic Antarctic silverfish Pleuragramma antarcticum: trade-off between winter reserves and buoyancy. Mar Ecol Prog Ser 326:269–282CrossRefGoogle Scholar
  39. Mayzaud P, Chevallier J, Tavernier E et al (2011) Lipid composition of the Antarctic fish Pleuragramma antarcticum. Influence of age class. Polar Sci 5:264–271CrossRefGoogle Scholar
  40. Mintenbeck K, Barrera-Oro ER, Brey T et al (2011) Impact of climate change on fishes in complex Antarctic ecosystems. Adv Ecol Res 46:351–426CrossRefGoogle Scholar
  41. Nevenzel JC (1970) Occurrence, function and biosynthesis of wax esters in marine organisms. Lipids 5:308–319CrossRefGoogle Scholar
  42. Phleger CF, Nelson MM, Mooney BD et al (1999a) Wax esters versus triacylglycerols in myctophid fishes from the Southern Ocean. Antarct Sci 11:436–444CrossRefGoogle Scholar
  43. Phleger CF, Nichols PD, Erb E et al (1999b) Lipids of the notothenioid fishes Trematomus spp. and Pagothenia borchgrevinki from East Antarctica. Polar Biol 22:241–247CrossRefGoogle Scholar
  44. Reinhardt SB, Van Vleet ES (1986) Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish. Mar Biol 91:149–159CrossRefGoogle Scholar
  45. Sargent JR, McIntosh R, Bauermeister A et al (1979) Assimilation of the wax esters of marine zooplankton by herring (Clupea harengus) and rainbow trout (Salmo gairdneri). Mar Biol 51:203–207CrossRefGoogle Scholar
  46. Tavernier E, Mayzaud P, Boutoute M et al (2012) Lipid characterization of Pleuragramma antarcticum (Nothoteniidae) larvae off East Antarctica (139°E-145.10°E) during summer. Polar Biol 35:829–840CrossRefGoogle Scholar
  47. Tocher DR, Fraser AJ, Sargent JR et al (1985) Lipid class composition during embryonic and early larval development in Atlantic herring (Clupea harengus L.) Lipids 20:84–89CrossRefGoogle Scholar
  48. Vacchi M, La Mesa M, Dalu M et al (2004) Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antarct Sci 162:99–305Google Scholar
  49. Vacchi M, DeVries AL, Evans CW et al (2012a) A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol 35:1573–1585CrossRefGoogle Scholar
  50. Vacchi M, Koubbi P, Ghigliotti L et al (2012b) Sea-ice interactions with polar fish - focus on the Antarctic silverfish life history. In: Verde C, di Prisco G (eds) Adaptation and evolution in marine environments. “From pole to pole” series. Springer, Berlin/Heidelberg, pp 51–73Google Scholar
  51. Vallet C, Beans C, Koubbi P et al (2011) Food preferences of larvae of Antarctic silverfish Pleuragramma antarcticum Boulenger, 1902 from Terre Adélie coastal waters during summer 2004. Polar Sci 5:239–251CrossRefGoogle Scholar
  52. Von Dorrien C (1989) Ichthyoplankton in Abhängigkeit von Hydrographie und Zooplankton im Weddellmeer. MSc Thesis, Univ Kiel, 67ppGoogle Scholar
  53. Wöhrmann APA, Hagen W, Kunzmann A (1997) Adaptations of the Antarctic silverfish Pleuragramma antarcticum (Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar Ecol Prog Ser 151:205–218CrossRefGoogle Scholar
  54. Zimmermann C, Hubold G (1998) Respiration and activity of Arctic and Antarctic fish with different modes of life: a multivariate analysis of experimental data. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Milano, pp 163–174CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Marine Zoology, Bremen Marine Ecology (BreMarE)University of BremenBremenGermany
  2. 2.Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Ecological ChemistryBremerhavenGermany

Personalised recommendations