Diet and Trophic Ecology of Adult Antarctic Silverfish (Pleuragramma antarctica)

Part of the Advances in Polar Ecology book series (AVPE, volume 3)


Antarctic silverfish, Pleuragramma antarctica Boulenger 1902 are the most abundant pelagic fish over the high-Antarctic shelf and one of the main ecosystem links in Southern Ocean shelf ecosystems, where they are a key prey item for fish marine mammals and birds. Consequently, information on the feeding ecology of silverfish forms an important component of research to understand the structure of Antarctic shelf ecosystems.

This chapter reviews what is known about the feeding of adult silverfish, what prey items make up the diet of adult silverfish and how the diet varies by fish size, geographic location and season. By “adult silverfish” we mean silverfish that are of a size where they are likely to have reached sexual maturity (greater than about 120 mm standard length).


Southern Ocean Nototheniidae Stable isotope Trophic niche Trophic level Fatty acid Stomach contents 



Funding for this work was provided through the New Zealand Ministry of Business, Innovation and Employment project C01X1226 (“Ross Sea Ecosystem and Climate”). Hannah Russell and Janet Bradford-Grieve (both NIWA) are thanked for assistance in preparing this chapter.


  1. Alonso MK, Crespo AE, Garcia AN et al (2002) Fishery and ontogenetic driven changes in the diet of the spiny dogfish, Squalus acanthias, in Patagonian waters, Argentina. Environ Biol Fishes 63:193–202CrossRefGoogle Scholar
  2. Arntz W, Gutt J (1999) The expedition ANTARKTIS XV/3(EASIZ II), Reports on Polar Research, Alfred Wegener Institute for Polar and Marine Research, BremerhavenGoogle Scholar
  3. Arts MT, Brett MT, Kainz MJ (2009) Lipids in aquatic ecosystems. Springer, New YorkGoogle Scholar
  4. Atkinson A (1998) Life cycle strategies of epipelagic copepods in the Southern Ocean. J Mar Syst 15:289–311CrossRefGoogle Scholar
  5. Bigg MA, Perez MA (1985) Modified volume: a frequency-volume method to assess marine mammal food habits. In: Beddington JR, Beverton RJH, Lavigne DM (eds) Marine mammals and fisheries. George Allen and Unwin, London, pp 277–283Google Scholar
  6. Bottino NR (1974) The fatty acids of Antarctic phytoplankton and euphausiids. Fatty acid exchange among trophic levels of the Ross Sea. Mar Biol 27:197–204CrossRefGoogle Scholar
  7. Brasso RL, Lang J, Jones CD, Polito MJ (2014) Ontogenetic niche expansion influences mercury exposure in the Antarctic silverfish Pleuragramma antarcticum. Mar Ecol Prog Ser 504:253–263CrossRefGoogle Scholar
  8. Burns JM, Trumble SJ, Castellini MA et al (1998) The diet of Weddell seals in McMurdo Sound, Antarctica as determined from scat collections and stable isotope analysis. Polar Biol 19:272–282CrossRefGoogle Scholar
  9. Cherel Y (2008) Isotopic niches of emperor and Adelie penguins in Adelie Land, Antarctica. Mar Biol 154:813–821CrossRefGoogle Scholar
  10. Chernick MR (1999) Bootstrap methods, a practitioner’s guide. Wiley series in probability and statistics. Wiley, HobokenGoogle Scholar
  11. Cortés E (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can J Fish Aquat Sci 54:726–738CrossRefGoogle Scholar
  12. Dalsgaard J, St John M, Kattner G et al (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:325–340Google Scholar
  13. Daniels RA (1982) Feeding ecology of some fishes of the Antarctic Peninsula. Fish Bull 80:575–588Google Scholar
  14. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  15. DeWitt HH (1970) The character of the midwater fish fauna of the Ross Sea, Antarctica. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic, London, pp 305–314Google Scholar
  16. DeWitt HH, Hopkins TL (1977) Aspects of the diet of the Antarctic silverfish, Pleuragramma antarcticum. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, DC, pp 557–567Google Scholar
  17. Eastman JT (1985) Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol 4(3):155–160CrossRefGoogle Scholar
  18. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall/CRC, Boca RatonCrossRefGoogle Scholar
  19. Falk-Petersen S, Hagen W, Kattner G et al (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178–191CrossRefGoogle Scholar
  20. Fry B (2006) Stable isotope ecology. Springer, New YorkCrossRefGoogle Scholar
  21. Fry B, Sherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater systems. Contrib Mar Sci 27:13–47Google Scholar
  22. Fuiman L, Davis R, Williams T (2002) Behaviour of midwater fishes under the Antarctic ice: observations by a predator. Mar Biol 140:815–822CrossRefGoogle Scholar
  23. Giraldo C, Mayzaud P, Tavernier E et al (2015) Lipid dynamics and trophic patterns in Pleuragramma antarctica life stages. Antarct Sci CJO2015. doi: 10.1017/S0954102015000036
  24. Gon O, Heemstra PC (eds) (1990) Fishes of the Southern Ocean. JBL Smith Institute of Ichthyology, GrahamstownGoogle Scholar
  25. Guglielmo L, Granata A, Greco S (1998) Distribution and abundance of postlarval and juvenile Pleuragramma antarcticum (Pisces, Nototheniidae) off Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 19:37–51CrossRefGoogle Scholar
  26. Hagen W, Kattner G (1998) Principles of lipid metabolism in the Antarctic euphausiid Thysanoessa macrura and ecological implications. Limnol Oceanogr 43:1894–1901CrossRefGoogle Scholar
  27. Hagen W, Kattner G, Friedrich C (2000) The lipid compositions of high-Antarctic notothenioid fish species with different life strategies. Polar Biol 23:785–791CrossRefGoogle Scholar
  28. Hansson S (1998) Methods of studying fish feeding: a comment. Can J Fish Aquat Sci 55:2706–2707CrossRefGoogle Scholar
  29. Happel A, Stratton L, Kolb C et al (2016) Evaluating quantitative fatty acid signature analysis (QFASA) in fish using controlled feeding experiments. Can J Fish Aquat Sci. doi: 10.1139/cjfas-2015-0328 Google Scholar
  30. Hodum PJ, Hobson KA (2000) Trophic relationships among Antarctic fulmarine petrels: insights into dietary overlap and chick provisioning strategies inferred from stable-isotope (δ15N and δ13C) analyses. Mar Ecol Prog Ser 198:273–281CrossRefGoogle Scholar
  31. Hopkins TL (1987) Midwater food web in McMurdo Sound, Ross Sea, Antarctica. Mar Biol 96:93–106CrossRefGoogle Scholar
  32. Hubold G (1984) Spatial distribution of Pleuragramma antarcticum (Pisces: Nototheniidae) near the Filchner- and Larsen ice shelves (Weddell Sea/Antarctica). Polar Biol 3:231–236CrossRefGoogle Scholar
  33. Hubold G (1985) Stomach contents of the Antarctic silverfish Pleuragramma antarcticum from the southern and eastern Weddell Sea (Antarctica). Polar Biol 5(1):43–48CrossRefGoogle Scholar
  34. Hubold G, Ekau W (1987) Midwater fish fauna of the Weddell Sea, Antarctica. In: Kullander SO, Fernholm B (eds) Proceedings of the 5th congress of the European Ichthyological Society. Swedish Museum of Natural History, Stockholm, pp 391–396Google Scholar
  35. Hubold G, Hagen W (1997) Seasonality of feeding and lipid content in juvenile Pleuragramma antarcticum (Pisces: Nototheniidae) from the southern Weddell Sea. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structures and survival. Cambridge University Press, Cambridge, pp 277–283Google Scholar
  36. Hubold G, Tomo AP (1989) Age and growth of Antarctic silverfish Pleuragramma antarcticum Boulenger 1902, from the southern Weddell Sea and Antarctic Peninsula. Polar Biol 9:205–212CrossRefGoogle Scholar
  37. Hurtubia J (1973) Trophic diversity measurement in sympatric predatory species. Ecology 54:885–890CrossRefGoogle Scholar
  38. Hynes HBN (1950) The food of freshwater sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius) with a review of methods used in studies of the food of fishes. J Anim Ecol 19:36–58CrossRefGoogle Scholar
  39. Hyslop EJ (1980) Stomach contents analysis – a review of methods and their application. J Fish Biol 17:411–429CrossRefGoogle Scholar
  40. Iverson SJ, Field C, Bowen WD et al (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74:11–235CrossRefGoogle Scholar
  41. Johnston LA, Camm JP, White M (1988) Specialisations of swimming muscles in the pelaglc Antarctic fish Pleuragramma antarcticum. Mar Biol 100:3–12CrossRefGoogle Scholar
  42. Kattner G, Hagen W (1998) Lipid metabolism of the Antarctic euphausiid Euphausia crystallorophias and its ecological implications. Mar Ecol Prog Ser 170:203–213CrossRefGoogle Scholar
  43. Kunzmann A (1990) Gill morphometrics of two Antarctic fish species, Pleuragramma antarcticum and Notothenia gibberifrons. Polar Biol 11:9–18CrossRefGoogle Scholar
  44. La Mesa M, Eastman JT (2012) Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13:241–266CrossRefGoogle Scholar
  45. La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338CrossRefGoogle Scholar
  46. Lancraft TM, Reisenbichler KR, Robison BH et al (2004) A krill-dominated micronekton and macrozooplankton community in Croker Passage, Antarctica with an estimate of fish predation. Deep-Sea Res II 51:2247–2260CrossRefGoogle Scholar
  47. Linkowski TB, Presler P, Zukowski C (1983) Food habits of nototheniid fishes (Nototheniidae) in Admiralty Bay (King George Island, South Shetland Islands). Pol Polar Res 4(1–4):79–95Google Scholar
  48. Macdonald JS, Green RH (1983) Redundancy of variables used to describe importance of prey species in fish diets. Can J Fish Aquat Sci 40(5):635–637CrossRefGoogle Scholar
  49. Maes J, Van de Putte A, Hecq J-H et al (2006) State-dependent energy allocation in the pelagic Antarctic silverfish Pleuragramma antarcticum: trade-off between winter reserves and buoyancy. Mar Ecol Prog Ser 326:269–282CrossRefGoogle Scholar
  50. Mayzaud P, Tirelli V, Errhif A et al (2002) Carbon intake by zooplankton. Importance and role of zooplankton grazing in the Indian sector of the Southern Ocean. Deep-Sea Res II 49:3169–3187CrossRefGoogle Scholar
  51. Mayzaud P, Chevalier J, Tavernier E et al (2011) Lipid composition of the high Antarctic fish Pleuragramma antarcticum. Influence of age class. Polar Sci 5(2):264–271CrossRefGoogle Scholar
  52. Mintenbeck K (2008) Trophic interactions within high Antarctic shelf communities – Foodweb structure and the significance of fish. PhD thesis, University of BremenGoogle Scholar
  53. Moreno CA, Rueda T, Asencio G (1986) The trophic niche of Pleuragramma antarcticum in the Bransfield Strait, Antarctica: quantitative comparison with other areas of the Southern Ocean. Ser Cient Inst Antárt Chileno (INACH) 35:101–117Google Scholar
  54. Olaso I, Lombarte A, Velasco F (2004) Daily ration of Antarctic silverfish (Pleuragramma antarcticum Boulenger 1902) in the eastern Weddell Sea. Sci Mar 68(3):419–424CrossRefGoogle Scholar
  55. Pakhomov EA (1997) Feeding and exploitation of the food supply by demersal fishes in the Antarctic part of the Indian Ocean. J Ichthyol 37(5):360–380Google Scholar
  56. Permitin YE, Tarverdieva MI (1978) Feeding of fishes of the families Nototheniidae and Chaenichthyidae in the South Orkney Islands. Russ J Mar Biol 4(2):619–622Google Scholar
  57. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  58. Phillips DL, Inger R, Bearhop S et al (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92(10):823–835CrossRefGoogle Scholar
  59. Pinkas L, Oliphant MS, Iverson ILK (1971) Food habits of albacore, bluefin tuna, and bonito in California water. Calif Fish Game 152:1–105Google Scholar
  60. Pinkerton MH, Forman J, Bury SJ et al (2013) Diet and trophic niche of Antarctic silverfish (Pleuragramma antarcticum) in the Ross Sea, Antarctica. J Fish Biol 82:141–164CrossRefGoogle Scholar
  61. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83(3):703–718CrossRefGoogle Scholar
  62. Reinhardt SB, Van Vleet ES (1986) Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish. Mar Biol 91:149–159CrossRefGoogle Scholar
  63. Scharf F, Juanes F, Rountree R (2000) Predator size-prey size relationships of marine fish predators on the northeast US continental shelf: interspecific variation and the effects of ontogeny and body size on trophic niche breadth. Mar Ecol Prog Ser 208:229–248CrossRefGoogle Scholar
  64. Schnack-Schiel S (2001) Aspects of the study of the life cycles of Antarctic copepods. Hydrobiologia 453(454):9–24CrossRefGoogle Scholar
  65. Schnack-Schiel SB, Hagen W (1995) Life-cycle strategies of Calanoides acutus, Calanus propinquus and Metridia gerlachei (Copepoda: Calanoida) in the eastern Weddell Sea, Antarctica. ICES J Mar Sci 52:541–548CrossRefGoogle Scholar
  66. Shin Y-J, Cury P (2001) Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model. Aquat Living Resour 14:65–80CrossRefGoogle Scholar
  67. Stevens CJ, Pakhomov EA, Robinson KV et al (2014) Mesozooplankton biomass, abundance, and community composition in the Ross Sea and the Pacific sector of the Southern Ocean. Polar Biol. doi: 10.1007/s00300-014-1583-x. 01/2014Google Scholar
  68. Sweeting CJ, Barry J, Barnes C et al (2007) Effects of body size and environment on diet-tissue δ15N fractionation in fishes. J Exp Mar Biol Ecol 340:1–10CrossRefGoogle Scholar
  69. Takahashi M (1983) Trophic ecology of demersal fish communities north of the South Shetland Islands, with notes on the ecological role of krill. Mem Natl Inst Polar Res 27:183–192Google Scholar
  70. Takahashi M, Iwami T (1997) The summer diet of demersal fish at the South Shetland Islands. Antarct Sci 9(4):407–413CrossRefGoogle Scholar
  71. Takahashi M, Nemoto T (1984) The food of some Antarctic fish in the Western Ross Sea in summer 1979. Polar Biol 3(4):237–239CrossRefGoogle Scholar
  72. Tirasin EM, Jorgensen T (1999) An evaluation of the precision of diet description. Mar Ecol Prog Ser 182:243–252CrossRefGoogle Scholar
  73. Williams R (1985) Trophic relationship between pelagic fish and euphausiids in Antarctic waters. In: Siegfried WR, Condy PR, Law RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 452–459CrossRefGoogle Scholar
  74. Williams C, Buck CL (2010) Using fatty acids as dietary tracers in seabird trophic ecology: theory, application and limitations. J Ornithol 151(3):531–543CrossRefGoogle Scholar
  75. Wöhrmann APA, Hagen W, Kunzmann A (1997) Adaptations of the Antarctic silverfish Pleuragramma antarcticum (Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar Ecol Prog Ser 151:205–218CrossRefGoogle Scholar
  76. Yasuda F (1960) The relationship of the gill structure and food habits of some coastal fishes in Japan. Rec Oceanogr Works Japan 5:139–152Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.National Institute of Water and Atmospheric Research Ltd (NIWA)WellingtonNew Zealand

Personalised recommendations