Advertisement

Pro-oxidant Challenges and Antioxidant Adaptation of Pleuragramma antarctica in Platelet Ice

  • Maura Benedetti
  • Maria Elisa Giuliani
  • Francesco Regoli
Chapter
Part of the Advances in Polar Ecology book series (AVPE, volume 3)

Abstract

Antarctic organisms developed specific adaptation mechanisms making these species able to survive to extreme environment conditions. Among fishes, Pleuragramma antarctica presents a specific peculiarity due to the occurrence of eggs with fully developed yolk-sac embryos below the platelet ice layer. This ice is an environment with strong pro-oxidant characteristics at the beginning of austral spring, when the rapid growth of algal ice communities, the massive release of nutrients and the photoactivation of dissolved organic carbon and nitrates represent an important sources for oxyradical formation. Such processes are concentrated in a short period of a few weeks, which overlaps with the final stage of development of P. antarctica embryos in platelet ice. For this reason, embryonated eggs of P. antarctica, before hatching, should possess adequate protection toward the marked and sudden increase of reactive oxygen species exposure. In this respect, molecular and functional characteristics of antioxidants in P. antarctica provide new insights on the modulation of the antioxidant defence pathway in response to varied environmental pro-oxidant challenge. To this aim, the main antioxidant components have been characterized in P. antarctica sampled from platelet ice in its nursery area in the Ross Sea, and data on nucleotide and protein sequences have been integrated with the analysis of regulation at transcriptional and functional levels. The results revealed a marked temporal increase of antioxidants in embryos of P. antarctica as adaptive counteracting response to oxidative conditions of platelet ice.

Keywords

Antioxidant defence Antarctic fishes Catalase Glutathione peroxidase 

References

  1. Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A 138:405–415CrossRefGoogle Scholar
  2. Abele D, Burlando B, Viarengo A et al (1998) Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Physiol B 120:425–435CrossRefGoogle Scholar
  3. Ansaldo M, Luquet CM, Evelson PA et al (2000) Antioxidant levels from different Antarctic fish caught around South Georgia Island and Shag Rocks. Polar Biol 23:160–165CrossRefGoogle Scholar
  4. Bilyk KT, Cheng C-H (2013) Model of gene expression in extreme cold – reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki. BMC Genomics 14:634CrossRefGoogle Scholar
  5. Brier S, Maria G, Carginale V et al (2007) Purification and characterization of pepsins A1 and A2 from the Antarctic rock cod Trematomus bernacchii. FEBS J 274:6152–6166CrossRefGoogle Scholar
  6. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303CrossRefGoogle Scholar
  7. Camus L, Gulliksen B, Depledge MH et al (2005) Polar bivalves are characterized by high antioxidant defenses. Polar Res 24(1–2):111–118CrossRefGoogle Scholar
  8. Cassini A, Favero M, Albergoni A (1993) Comparative studies of antioxidant enzymes in red-blooded and white-blooded Antarctic teleost fish Pagothenia bernacchii and Chionodraco hamatus. Comp Biochem Physiol C 106:333–336Google Scholar
  9. Chen Z, Cheng C-HC, Zhang J et al (2008) Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci U S A 105:12944–12949CrossRefGoogle Scholar
  10. Coppe A, Agostini C, Marino IAM (2013) Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function. Genome Biol Evol 5:45–60CrossRefGoogle Scholar
  11. Cullinan SB, Gordan JD, Jin J et al (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24:8477–8486CrossRefGoogle Scholar
  12. D’Amico S, Claverie P, Collins T et al (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357:917–925CrossRefGoogle Scholar
  13. Delille B, Jourdain B, Borges AV et al (2007) Biogas (CO2, O2, dimethylsulfide) dynamics in springs in Antarctic fast ice. Limnol Oceanogr 52:1367–1379CrossRefGoogle Scholar
  14. Díaz A, Loewen PC, Fita I et al (2012) Thirty years of heme catalases structural biology. Arch Biochem Biophys 525:102110CrossRefGoogle Scholar
  15. Dinkova-Kostova AT, Holtzclaw WD, Kensler TW (2005) The role of Keap1 in cellular protective responses. Chem Res Toxicol 18:1779–1791CrossRefGoogle Scholar
  16. di Prisco G, Cocca E, Parker SK et al (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191CrossRefGoogle Scholar
  17. Epp O, Ladenstein R, Wendel A (1983) The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 133:51–69CrossRefGoogle Scholar
  18. Evans CW, Williams DE, Vacchi M et al (2012) Metabolic and behavioural adaptations during early development of the Antarctic silverfish, Pleuragramma antarcticum. Polar Biol 35:891–898CrossRefGoogle Scholar
  19. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci C 53:830–841CrossRefGoogle Scholar
  20. Fields PA, Houseman DE (2004) Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus. Mol Biol Evol 21:2246–2255CrossRefGoogle Scholar
  21. Filho WD, Giuvili C, Boveris A (1993) Antioxidant defenses in marine fish. I. Teleost. Comp Biochem Physiol C106:409–414Google Scholar
  22. Fita I, Rossmann MG (1985) The active center of catalase. J Mol Biol 185:21–37CrossRefGoogle Scholar
  23. Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390CrossRefGoogle Scholar
  24. Fulgentini L, Passini V, Colombetti G et al (2015) UV radiation and visible light induce hsp70 gene expression in the Antarctic psychrophilic ciliate Euplotes focardii. Microb Ecol 70(2):372–379CrossRefGoogle Scholar
  25. Gerhard GS, Kauffman EJ, Grundy MA (2000) Molecular cloning and sequence analysis of the Danio rerio catalase gene. Comp Biochem Phys B 127:447–457CrossRefGoogle Scholar
  26. Giuliani ME, Regoli F (2014) Identification of the Nrf2-Keap1 pathway in the European eel Anguilla anguilla: role for a transcriptional regulation of antioxidant genes in aquatic organisms. Aquat Toxicol 150:117–123CrossRefGoogle Scholar
  27. Gleitz M, Vonderloeff MR, Thomas DN et al (1995) Comparison of summer and winter in organic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem 51:81–91CrossRefGoogle Scholar
  28. Guidetti P, Ghigliotti L, Vacchi M (2015) Insights on spatial distribution patterns of early stages of the Antarctic silverfish, Pleuragramma antarctica, in the platelet ice of Terra Nova Bay, Antarctica. Polar Biol 38(3):333–342CrossRefGoogle Scholar
  29. Hader D-P, Williamson CE, Wangberg S-A et al (2015) Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem Photobiol Sci 14(1):108–126CrossRefGoogle Scholar
  30. Hofmann GE, Buckley BA, Airaksinen S et al (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family nototheniidae). J Exp Biol 203:2331–2339Google Scholar
  31. Johnston IA, Calvo J, Guderley H et al (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12Google Scholar
  32. Katoh Y, Itoh K, Yoshida E et al (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6:857–868CrossRefGoogle Scholar
  33. Kawall HG, Torres JJ, Sidell BD et al (2002) Metabolic cold adaptation in Antarctic fishes: evidence from enzymatic activities of brain. Mar Biol 140:279–286CrossRefGoogle Scholar
  34. Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzym Regul 46:113–140CrossRefGoogle Scholar
  35. Kobayashi M, Itoh K, Suzuki T et al (2002) Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Genes Cells 7:807–820CrossRefGoogle Scholar
  36. Kong X, Jiang H, Wang S et al (2013) Effects of copper exposure on the hatching status and antioxidant defense at different developmental stages of embryos and larvae of goldfish Carassius auratus. Chemosphere 92:1458–1464CrossRefGoogle Scholar
  37. Krapp RH, Baussant T, Berge J et al (2009) Antioxidant responses in the polar marine sea-ice amphipod Gammarus wilkitzkii to natural and experimentally increased UV levels. Aquat Toxicol 94:1–7CrossRefGoogle Scholar
  38. La Mesa M, Eastman JT (2012) Antarctic Silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13:241–266CrossRefGoogle Scholar
  39. La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338CrossRefGoogle Scholar
  40. La Mesa M, Catalano B, Russo A et al (2010) Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarct Sci 22:243–254CrossRefGoogle Scholar
  41. Liravi F, Salati AP, Asadi F et al (2014) Alterations in antioxidant defence in the early life stages of silver carp, Hypophthalmichthys molitrix. Prog Biol Sci 4:179–187Google Scholar
  42. Lister KN, Lamare MD, Burritt DJ (2010) Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation. J Exp Biol 213:1967–1975CrossRefGoogle Scholar
  43. Lorentzen MS, Moe E, Jouve HM et al (2006) Cold adapted features of Vibrio salmonicida catalase: characterisation and comparison to the mesophilic counterpart from Proteus mirabilis. Extremophiles 10:427–440CrossRefGoogle Scholar
  44. Marx J-C, Collins T, D’Amico S et al (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol 9:293–304CrossRefGoogle Scholar
  45. Nahrgang J, Camus L, Broms F et al (2010) Seasonal baseline levels of physiological and biochemical parameters in polar cod (Boreogadus saida): implications for environmental monitoring. Mar Pollut Bull 60:1336–1345CrossRefGoogle Scholar
  46. Obermüller B, Karsten U, Abele D (2005) Response of oxidative stress parameters and sunscreening compounds in Arctic amphipods during experimental exposure to maximal natural UVB radiation. J Exp Mar Biol Ecol 323:100–117CrossRefGoogle Scholar
  47. Rautio M, Korhola A (2002) Effects of ultraviolet radiation and dissolved organic carbon on the survival of subarctic zooplankton. Polar Biol 25:460–468Google Scholar
  48. Regoli F, Giuliani ME (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar Environ Res 93:106–117CrossRefGoogle Scholar
  49. Regoli F, Principato G, Bertoli E et al (1997) Biochemical characterization of the antioxidant system in the scallop Adamussium colbecki, as a sentinel organism for monitoring the Antarctic environment. Polar Biol 17:251–258CrossRefGoogle Scholar
  50. Regoli F, Nigro M, Orlando E (1998) Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki. Aquat Toxicol 40:375–392CrossRefGoogle Scholar
  51. Regoli F, Nigro M, Bompadre S et al (2000a) Total oxidant scavenging capacity (TOSC) of microsomal and cytosolic fractions from Antarctic, Arctic and Mediterranean scallops: differentiation between three potent oxidants. Aquat Toxicol 49:13–25CrossRefGoogle Scholar
  52. Regoli F, Cerrano C, Chierici E et al (2000b) Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia ficiformis: role of endosymbionts and solar irradiance. Mar Biol 137:453–461CrossRefGoogle Scholar
  53. Regoli F, Nigro M, Chiantore M et al (2002) Seasonal variation of susceptibility to oxidative stress in Adamussium colbecki, a key bioindicator species for the Antarctic marine environment. Sci Total Environ 289:205–211CrossRefGoogle Scholar
  54. Regoli F, Nigro M, Chierici E et al (2004) Variations of antioxidant efficiency and presence of endosymbiotic diatoms in the Antarctic porifera Haliclona dancoi. Mar Environ Res 58:637–640CrossRefGoogle Scholar
  55. Regoli F, Nigro M, Benedetti M et al (2005) Antioxidant efficiency in early life stages of the Antarctic silverfish, Pleuragramma antarcticum: responsiveness to pro-oxidant conditions of platelet ice and chemical exposure. Aquat Toxicol 75:43–52CrossRefGoogle Scholar
  56. Regoli F, Benedetti M, Krell A et al (2011) Oxidative challenges in polar seas. In: Abele D, Vazquez-Medina JP, Zenteno-Savin T (eds) Oxidative stress in aquatic ecosystems. Wiley, Chichester, pp 20–40CrossRefGoogle Scholar
  57. Ren B, Huang W, Akesson B et al (1997) The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution. J Mol Biol 268:869–885CrossRefGoogle Scholar
  58. Riise EK, Lorentzen MS, Helland R et al (2007) The first structure of a cold-active catalase from Vibrio salmonicida at 1.96 A reveals structural aspects of cold adaptation. Acta Crystallogr D 63:135–148CrossRefGoogle Scholar
  59. Rocher C, Lalanne JL, Chaudiere J (1992) Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase. Eur J Biochem 205:955–960CrossRefGoogle Scholar
  60. Ross JC, Vincent WF (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J Phycol 34:118–125CrossRefGoogle Scholar
  61. Scott C, Falk-Petersen S, Gulliksen B et al (2001) Lipid indicators of the diet of the sympagic amphipod Gammarus wilkitzkii in the marginal ice zone and in open waters of Svalbard (Arctic). Polar Biol 24:572–576CrossRefGoogle Scholar
  62. Shick JM, Dykens JA (1985) Oxygen detoxification in algal-invertebrate symbioses from the Great Barrier Reef. Oecologia 66:33–64CrossRefGoogle Scholar
  63. Shin SC, Kim SJ, Lee JK et al (2012) Transcriptomics and comparative analysis of three Antarctic notothenioid fishes. PLoS One 7:1–9Google Scholar
  64. Skjærven KH, Penglase S, Olsvik PA et al (2013) Redox regulation in Atlantic cod (Gadus morhua) embryos developing under normal and heat-stressed conditions. Free Radic Biol Med 57:29–38CrossRefGoogle Scholar
  65. Storey KB, Storey JM (2013) Molecular biology of freezing tolerance. Compr Physiol 3:1283–1308Google Scholar
  66. Thomas DN, Kattner G, Engbrodt R et al (2001) Dissolved organic matter in Antarctic sea ice. Ann Glaciol 33:297–303CrossRefGoogle Scholar
  67. Timme-Laragy AR, Goldstone JV, Imhoff BR et al (2013) Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo. Free Radic Biol Med 65:89–101CrossRefGoogle Scholar
  68. Tong KI, Katoh Y, Kusunoki H et al (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26:2887–2900CrossRefGoogle Scholar
  69. Tosatto SCE, Bosello V, Fogolari F et al (2008) The catalytic site of glutathione peroxidases. Antioxid Redox Signal 10:1515–1526CrossRefGoogle Scholar
  70. Ursini F, Maiorino M, Brigelius-Flohé R et al (1995) Diversity of glutathione peroxidase. Method Enzymol 252:38–53CrossRefGoogle Scholar
  71. Vacchi M, La Mesa M, Dalu M et al (2004) Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antarct Sci 16:299–305CrossRefGoogle Scholar
  72. Vacchi M, Koubbi P, Ghigliotti L et al (2012a) Sea-ice interactions with polar fish-focus on the Antarctic silverfish life history. In: Verde C, di Prisco G (eds) Adaptation and evolution in marine environments, vol 1, from pole to pole. Springer, Berlin, pp 51–73CrossRefGoogle Scholar
  73. Vacchi M, DeVries A, Evans CW et al (2012b) A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol 35:1573–1585CrossRefGoogle Scholar
  74. Viarengo A, Canesi L, Garcia Martinez P et al (1995) Pro-oxidant processes and antioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobeus). Comp Biochem Physiol B 111:119–126CrossRefGoogle Scholar
  75. Walczak R, Westhof E, Carbon P et al (1996) A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 2:367–379Google Scholar
  76. Wang W, Wang F, Ji X et al (2011) Cloning and characterization of a psychrophilic catalase gene from an Antarctic bacterium. Afr J Microbiol Res 5:3195–3199CrossRefGoogle Scholar
  77. Werner I (2000) Faecal pellet production by Arctic underice amphipods – transfer of organic matter through the ice/water interface. Hydrobiologia 426:89–96CrossRefGoogle Scholar
  78. Witas H, Gabryelak T, Matkovics B (1984) Comparative studies on superoxide dismutase and catalase activities in livers of fish and other Antarctic vertebrates. Comp Biochem Physiol C 77:409–411CrossRefGoogle Scholar
  79. Xu Q, C-HC C, Hu P et al (2008) Adaptive evolution of hepcidin genes in Antarctic notothenioid fishes. Mol Biol Evol 25:1099–1112CrossRefGoogle Scholar
  80. Yamamoto Y, Fujisawa A, Hara A et al (2001) An unusual vitamin E constituent provides antioxidant protection in marine organisms adapted to coldwater environments. Proc Natl Acad Sci U S A 98:13144–13148CrossRefGoogle Scholar
  81. Zhang J, Hosoya T, Maruyama A et al (2007) Nrf2 Neh5 domain is differentially utilized in the transactivation of cytoprotective genes. Biochem J 404:459–466CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maura Benedetti
    • 1
  • Maria Elisa Giuliani
    • 1
  • Francesco Regoli
    • 1
  1. 1.Department of Life and Environmental SciencesUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations