The Unique Haemoglobin System of Migratory Pleuragramma antarctica: Correlation of Haematological and Biochemical Adaptations with Mode of Life

  • Guido di PriscoEmail author
  • Cinzia Verde
Part of the Advances in Polar Ecology book series (AVPE, volume 3)


In the Southern Ocean the suborder Notothenioidei is dominant. Most notothenioids are benthic and sedentary; we have studied haemoglobin structure/function in search of correlations with mode of life and evolution.

In the Antarctic shelf Pleuragramma antarctica (0–900 m) is dominant in abundance and biomass. It has circum-Antarctic distribution, and is the only fully pelagic notothenioid. Being the best example of notothenioid adaptation to pelagic habitats, P. antarctica calls for studies on adaptive strategies.

In notothenioids, evolution has developed blood adaptations, such as reduction of erythrocyte number and haemoglobin concentration/multiplicity, reaching the extreme of eliminating haemoglobin in Channichthyidae. Species of the red-blooded families generally only have one haemoglobin (95–99% of the total). In contrast, P. antarctica has three major haemoglobins. As this species performs seasonal migrations through water masses that may have different and fluctuating temperatures, during evolution it developed adaptations suitable to allow optimal energy savings during the oxygenation-deoxygenation cycle, producing haemoglobins displaying wide differences in thermodynamic behaviour. The expression of multiple genes, typical of juveniles, remains high also in the adult stage. This oxygen-transport system is remarkably unique and appears designed to fit an unusual mode of life through refined adaptation strategies.

In the phylogenetic trees, the αa chain of P. antarctica haemoglobins falls into the clade of major Antarctic haemoglobins; the same applies to the βa chains. The αb chain is in a basal position with respect to the clade of Antarctic minor Hbs; the same applies to the βb chain. All this appears congruent with the phylogenetic evidence.

Population dynamics and ecophysiological adaptations of P. antarctica are worth investigating to identify strategies of resilience to current climate changes.


Oxygen-transport system Haemoglobin Adaptation 



This study has been supported by the Italian National Programme for Antarctic Research (PNRA). The project falls within the framework of the SCAR programme “Antarctic Thresholds - Ecosystem Resilience and Adaptation” (AnT-ERA). This chapter is dedicated to the memory of John A Macdonald.


  1. Agostini C, Patarnello T, Ashford JR et al (2015) Genetic differentiation in the ice dependent fish Pleuragramma antarctica along the Antarctic Peninsula. J Biogeogr. doi: 10.1111/jbi.12497 Google Scholar
  2. Andersen NC (1984) Genera and subfamilies of the family Nototheniidae from the Antarctic and sub-Antarctic. Steenstrupia 10:1–3Google Scholar
  3. Ashford J, Zane L, Torres JJ et al (2017) Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Adv Polar Ecol 3. doi: 10.1007/978-3-319-55893-6_10
  4. Bargelloni L, Marcato S, Zane L et al (2000) Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol 49:114–129CrossRefGoogle Scholar
  5. Benedetti M, Giuliani ME, Regoli F (2017) Pro-oxidant challenges and antioxidant adaptation of Pleuragramma antarctica in platelet ice. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Adv Polar Ecol 3. doi: 10.1007/978-3-319-55893-6_4
  6. Brittain T (1987) The Root effect. Comp Biochem Physiol 86B:473–48lGoogle Scholar
  7. Caruso C, Rutigliano B, Romano M et al (1991) The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni. Biochim Biophys Acta 1078:273–282CrossRefGoogle Scholar
  8. Cocca E, Ratnayake-Lecamwasam M, Parker SK et al (1995) Genomic remnants of α-globin genes in the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci U S A 92:1817–1821CrossRefGoogle Scholar
  9. D’Avino R, di Prisco G (1989) Hemoglobin from the Antarctic fish Notothenia coriiceps neglecta. – 1. Purification and characterisation. Eur J Biochem 179:699–705CrossRefGoogle Scholar
  10. D’Avino R, Fago A, Kunzmann A et al (1992) The primary structure and oxygen-binding properties of the single haemoglobin of the high-Antarctic fish Aethotaxis mitopteryx DeWitt. Polar Biol 12:135–140CrossRefGoogle Scholar
  11. D’Avino R, Caruso C, Tamburrini M et al (1994) Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J Biol Chem 269:9675–9681Google Scholar
  12. Dettaї A, Berkani M, Lautredou A-C et al (2012) Tracking the elusive monophyly of nototheniid fishes (Teleostei) with multiple mitochondrial and nuclear markers. Mar Genomics 8:49–58CrossRefGoogle Scholar
  13. DeWitt HH (1970) The character of the midwater fish fauna of the Ross Sea, Antarctica. In: Holdgate MW (ed) Antarctic ecology vol 1. Academic, London, pp 305–314Google Scholar
  14. DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–331Google Scholar
  15. di Prisco G (1988) A study of hemoglobin in Antarctic fishes: purification and characterization of hemoglobins from four species. In: di Prisco G, Maresca B, Tota B (eds) Proceedings of the international conference on marine biology of Antarctica, Ravello, 1986. Comparative biochemistry and physiology vol 90B, pp 631–637Google Scholar
  16. di Prisco G, D’Avino R (1989) Molecular adaptation of the blood of Antarctic teleosts to environmental conditions. Antarct Sci 1:119–124CrossRefGoogle Scholar
  17. di Prisco G, Tamburrini M (1992) The hemoglobins of marine and freshwater fish: the search for correlations with physiological adaptation. Comp Biochem Physiol B 102:661–671CrossRefGoogle Scholar
  18. di Prisco G, Verde C (2015) The Ross Sea and its rich life: research on molecular adaptive evolution of stenothermal and eurythermal Antarctic organisms and the Italian contribution. Hydrobiologia 761:335–361CrossRefGoogle Scholar
  19. di Prisco G, D’Avino R, Camardella L et al (1990) Structure and function of hemoglobin in Antarctic fishes and evolutionary implications. Polar Biol 10:269–274CrossRefGoogle Scholar
  20. di Prisco G, D’Avino R, Caruso C et al (1991a) The biochemistry of oxygen transport in red-blooded Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin, pp 263–281CrossRefGoogle Scholar
  21. di Prisco G, Maresca B, Tota B (eds) (1991b) Biology of Antarctic fish. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  22. di Prisco G, Cocca E, Parker SK et al (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191CrossRefGoogle Scholar
  23. di Prisco G, Eastman JT, Giordano D et al (2007) Biogeography and adaptation of notothenioid fish: hemoglobin function and globin-gene evolution. Gene 398:143–155CrossRefGoogle Scholar
  24. Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic, San DiegoGoogle Scholar
  25. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107CrossRefGoogle Scholar
  26. Ekau W (1988) Ökomorphologie nototheniider Fische aus dem Weddellmeer, Antarktis. Ber Polarforsch 51:1–140Google Scholar
  27. Eschmeyer WN (ed) (2014) Catalog of fishes: genera, species, references. Electronic version.
  28. Evans CW, De Vries AL (2017) Coping with ice: freeze avoidance in the Antarctic silverfish (Pleuragramma antarctica) from egg to adult. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Adv Polar Ecol 3. doi: 10.1007/978-3-319-55893-6_2
  29. Everson I, Ralph R (1968) Blood analyses of some Antarctic fish. Bull Br Antarct Surv 15:59–62Google Scholar
  30. Gerasimchuk VV (1986) Characteristics of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), from Olaf-Pruds Bay (Commonwealth Sea, eastern Antarctica) with notes on the identification of the species. J Ichthyol 26:10–17Google Scholar
  31. Giordano D, Grassi L, Parisi E et al (2006) Embryonic β-globin in the non-Antarctic notothenioid fish Cottoperca gobio (Bovichtidae). Polar Biol 30:75–82CrossRefGoogle Scholar
  32. Grigg GC (1967) Some respiratory properties of the blood of four species of Antarctic fishes. Comp Biochem Physiol 23:139–148CrossRefGoogle Scholar
  33. Hellmer HH, Bersch M (1985) The Southern Ocean. Rep Polar Res 26:1–115Google Scholar
  34. Hubold G (1984) Spatial distribution of Pleuragramma antarcticum (Pisces: Nototheniidae) near the Filchner- and Larsen ice shelves (Weddell Sea/Antarctica). Polar Biol 3:231–236CrossRefGoogle Scholar
  35. Hubold G (1985) On the early life history of the high-Antarctic silverfish Pleuragramma antarcticum. In: Siegfried WR, Condy PR, Laws RM (eds) Proceedings of the 4th SCAR symposium on Antarctic biology, Antarctic nutrient cycles and food webs. Springer, Berlin, pp 445–451CrossRefGoogle Scholar
  36. Hubold G (1991) Ecology of notothenioid fish in the Weddell Sea. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin, pp 3–22CrossRefGoogle Scholar
  37. Hureau JC, Petit D, Fine JM et al (1977) New cytological, biochemical, and physiological data on the colorless blood of the Channichthyidae (Pisces, Teleosteans, Perciformes). In: Llano GA (ed) Adaptations within Antarctic ecosystems. Gulf Publ, Houston, pp 459–477Google Scholar
  38. Ito N, Komiyama NH, Fermi G (1995) Structure of deoxyhaemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the root effect by comparison of the liganded and unliganded haemoglobin structures. J Mol Biol 250:648–658CrossRefGoogle Scholar
  39. Iwami T (1985) Osteology and relationships of the family Channichthyidae. Mem Natl Inst Polar Res Ser E 36:1–69Google Scholar
  40. Johnston IA (1989) Antarctic fish muscles. Structure, function and physiology. Antarct Sci 1:97–108CrossRefGoogle Scholar
  41. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150e163CrossRefGoogle Scholar
  42. Kunzmann A (1990) Gill morphometrics of two Antarctic fish species: Pleuragramma antarcticum and Notothenia gibberifrons. Polar Biol 11:9–18CrossRefGoogle Scholar
  43. Kunzmann A (1991) Blood physiology and ecological consequences in Weddell Sea fishes (Antarctica). Ber Polarforsch 91:1–79Google Scholar
  44. Kunzmann A, Fago A, D’Avino R et al (1992) Haematological studies on Aethotaxis mitopteryx DeWitt, a high-Antarctic fish with a single haemoglobin. Polar Biol 12:141–145CrossRefGoogle Scholar
  45. La Mesa M, Eastman JT (2012) Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13:241–266CrossRefGoogle Scholar
  46. La Mesa M, Catalano B, Russo A et al (2010) Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarct Sci 22:243–254CrossRefGoogle Scholar
  47. Lancraft TM, Reisenbichler KR, Robinson BH et al (2004) A krill-dominated micronekton and macrozooplankton community in Croker Passage, Antarctica with an estimate of fish predation. Deep-Sea Res II 51:2247–2260CrossRefGoogle Scholar
  48. Love RM (1980) The chemical biology of fishes, vol 2, Advances 1968-77. Academic, LondonGoogle Scholar
  49. Macdonald JA, Montgomery JC, Wells RMG (1987) Comparative physiology of Antarctic fishes. Adv Mar Biol 24:321–388CrossRefGoogle Scholar
  50. Mathews AJ, Rohlfs RJ, Olson JS et al (1989) The effects of E7 and E11 mutations on the kinetics of ligand binding to R state human hemoglobin. J Biol Chem 264:16573–16583Google Scholar
  51. Matschiner M, Hanel R, Salzburger W (2009) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587 CrossRefGoogle Scholar
  52. Mintenbeck K, Torres JJ (2017) Impact of climate change on the Antarctic silverfish and its consequences for the Antarctic ecosystem. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Adv Polar Ecol 3. doi: 10.1007/978-3-319-55893-6_12
  53. Mylvaganam SE, Bonaventura C, Bonaventura J et al (1996) Structural basis for the Root effect in haemoglobin. Nat Struct Biol 3:275–228CrossRefGoogle Scholar
  54. Nagai K, Luisi B, Shi D et al (1987) Distal residues in the oxygen binding site of haemoglobin studied by protein engineering. Nature 329:858–860CrossRefGoogle Scholar
  55. Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature 299:421–426CrossRefGoogle Scholar
  56. Powers DA (1980) Molecular ecology of teleost fish hemoglobins: strategies for adapting to changing environments. Am Zool 20:139–162CrossRefGoogle Scholar
  57. Riccio A, Tamburrini M, Carratore V et al (2000) Functionally distinct hemoglobins of the cryopelagic Antarctic teleost Pagothenia borchgrevinki. J Fish Biol 57:20–32CrossRefGoogle Scholar
  58. Root RW (1931) The respiratory function of the blood of marine fishes. Biol Bull 61:427–456CrossRefGoogle Scholar
  59. Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850CrossRefGoogle Scholar
  60. Somero GN (1990) Life at low volume change: hydrostatic pressure as a selective factor in the aquatic environment. Am Zool 30:123–135CrossRefGoogle Scholar
  61. Tamburrini M, di Prisco G (2000) Oxygen-transport system and mode of life in Antarctic fish. In: di Prisco G, Giardina B, Weber RE (eds) Hemoglobin function in vertebrates. Molecular adaptation in extreme and temperate environments. Springer Italia, Milano/Berlin, pp 51–59Google Scholar
  62. Tamburrini M, D’Avino R, Fago A et al (1996) The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J Biol Chem 271:23780–23785CrossRefGoogle Scholar
  63. Tamburrini M, D’Avino R, Carratore V et al (1997) The hemoglobin system of Pleuragramma antarcticum: correlation of hematological and biochemical adaptation with life style. Comp Biochem Physiol 118A(4):1037–1044CrossRefGoogle Scholar
  64. Thompson JD, Gibson TJ, Plewniak F et al (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  65. Val AL, Almeida-Val VMF, Affonso EG (1990) Adaptive features of Amazonian fishes: hemoglobins, hematology, intraerythrocytic phosphates and whole blood Bohr effect of Pterygolichthys multiradiatus (Siluriformes). Comp Biochem Physiol 97B:435–444Google Scholar
  66. Verde C, Carratore V, Riccio A et al (2002) The functionally distinct hemoglobins of the Arctic spotted wolfish Anarhichas minor. J Biol Chem 277:36312–36320CrossRefGoogle Scholar
  67. Verde C, Balestrieri M, de Pascale D et al (2006) The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin. J Biol Chem 281:22073–22084CrossRefGoogle Scholar
  68. Verde C, Giordano D, Russo R et al (2012) The adaptive evolution of polar fishes: lessons from the function of hemoproteins. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments – the impacts of global change on biodiversity, Series “from pole to pole”, vol 1. Springer, Heidelberg, pp 197–213CrossRefGoogle Scholar
  69. Wells RMSG, Ashby MD, Duncan SJ et al (1980) Comparative studies of the erythrocytes and hemoglobins in nototheniid fishes from Antarctica. J Fish Biol 17:517–527CrossRefGoogle Scholar
  70. Wöhrmann APA, Hagen W, Kunzmann A (1997) Adaptations of the Antarctic silverfish Pleuragramma antarcticum (Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar Ecol Prog Ser I 151:205–218CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Biosciences and BioResources (IBBR), National Research Council (CNR)NaplesItaly
  2. 2.Department of BiologyUniversity “Roma 3”RomeItaly

Personalised recommendations