Impact of Climate Change on the Antarctic Silverfish and Its Consequences for the Antarctic Ecosystem

  • Katja MintenbeckEmail author
  • Joseph J. Torres
Part of the Advances in Polar Ecology book series (AVPE, volume 3)


Pleuragramma antarctica is the dominant forage fish of the coastal Antarctic, exhibiting a circumantarctic distribution and a well documented abundance in all shelf environments, from the high Antarctic Weddell and Ross Sea systems, to the milder waters of the western Antarctic Peninsula (WAP) shelf. Rapid regional warming on the WAP has produced a dichotomy in annual weather patterns between the high Antarctic systems and the WAP, resulting in swiftly rising midwinter air temperatures and fewer sea ice days during the annual winter cycle on the WAP, and little change in the Ross and Weddell Seas. The WAP shelf thus provides a model system for examining the potential effects of climate warming on an important Antarctic species.

Pleuragramma’s life history is characterized by slow growth, late maturity, a high reproductive investment and an association with coastal sea ice for spawning and larval development. All those features will allow the species to weather episodic annual failures in recruitment, but not long term change.

Most effects of the increasing temperature associated with climate change will be indirect ones, as temperatures will not increase to the point where they are physiologically life-threatening in the short term. A recent survey of Pleuragramma distribution on the WAP shelf revealed a large break in its historical distribution in shelf waters, suggesting a collapse in the local population of silverfish there. The break occurred in the area that has been most heavily impacted by rapid regional warming: the northern mid-shelf including Anvers and Renaud Island. It may be that the multi-faceted effects of climate change are already at work in its local disappearance.


Western Antarctic Peninsula Global change Pleuragramma distribution Regional warming 



JJT would like to thank the U.S. National Science Foundation for the opportunity to study Antarctic pelagic life through multiple research grants and multiple cruises dating back to the 1980s. Many thanks to the captains, crews, and science support on the R/V Melville, USCGC Glacier, RV Polar Duke, ARSV Gould, and RVIB Nathaniel Palmer for all the help on deck and under water, and for plain and fancy boat driving. Conversations with Eileen Hofmann, Bill Fraser, and Julian Ashford helped to crystallize the importance of silverfish to the Antarctic coastal system. Special thanks to Melanie Parker for preparing our figure on silverfish distribution and for her lovely work on the communities of the WAP shelf. KM would also like to thank the crew and officers of RV Polarstern for professional support in fisheries during several expeditions into the Southern Ocean. Many thanks to the editors of this book, Laura Ghigliotti, Eva Pisano and Marino Vacchi for inviting us to contribute to this important book about Antarctic silverfish.


  1. Agostini C, Patarnello T, Ashford JR et al (2015) Genetic differentiation in the ice-dependent fish Pleuragramma antarctica along the Antarctic Peninsula. J Biogeogr 42:103–1113CrossRefGoogle Scholar
  2. Ainley DG (2002) The Adelie penguin. Columbia University Press, New YorkCrossRefGoogle Scholar
  3. Ainley DG, Fraser WR, Sullivan CW et al (1986) Antarctic pack ice structures mesopelagic nektonic communities. Science 232:847–849CrossRefGoogle Scholar
  4. Ainley DG, Fraser WR, Smith WO Jr et al (1991) The structure of upper level pelagic food webs in the Antarctic: effects of phytoplankton distribution. J Mar Syst 2:111–122CrossRefGoogle Scholar
  5. Alheit J (2009) Consequences of regime shifts for marine food webs. Int J Earth Sci 98:261–268CrossRefGoogle Scholar
  6. Alheit J, Alegre B (1986) Fecundity of Peruvian anchovy, Engraulis ringens. ICES CM 1986/H: 60Google Scholar
  7. Alheit J, Niquen M (2004) Regime shifts in the Humbold Current ecosystem. Prog Oceanogr 60:201–222CrossRefGoogle Scholar
  8. Arntz WE (1986) The two faces of El Niño 1982-83. Meeresforsch 31:1–46Google Scholar
  9. Ashford J, Zane L, Torres JJ, et al. (2017) Population structure and life history connectivity of antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Advances in Polar Ecology 3. doi: 10.1007/978-3-319-55893-6_10
  10. Atkinson A (1991) Life cycles of Calanoides acutus, Calanus simillimus, and Rhincalanus gigas (Copepoda: Calanoida) within the Scotia Sea. Mar Biol 109:79–91CrossRefGoogle Scholar
  11. Atkinson A, Siegel V, Pakhomov E et al (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103CrossRefGoogle Scholar
  12. Beaugrand G, Brander KM, Lindley JA et al (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661–664CrossRefGoogle Scholar
  13. Bengtson JL, Croll DA, Goebel ME (1993) Diving behavior of chinstrap penguins at Seal Island. Antarct Sci 5:9–15CrossRefGoogle Scholar
  14. Benson AJ, Trites AW (2002) Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean. Fish Fish 3:95–113CrossRefGoogle Scholar
  15. Bock C, Wermter FC, Mintenbeck K (2017) MRI and MRS on preserved samples as a tool in fish ecology. Magn Reson Imaging 38:39–46Google Scholar
  16. Brett JR (1952) Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J Fish Res Board Can 9(6):265–323CrossRefGoogle Scholar
  17. Brett JR, Groves TDD (1979) Physiological energetics. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol 8. Academic, London/New York, pp 279–352Google Scholar
  18. Brown AR, Owen SF, Peters J et al (2015) Climate change and pollution speed declines in zebrafish populations. Proc Natl Acad Sci USA 112(11):E1237–E1246. doi: 10.1073/pnas.1416269112 CrossRefGoogle Scholar
  19. Burns JM, Trumble SJ, Castellini MA et al (1998) The diet of Weddell seals in McMurdo Sound, Antarctica as determined from scat collections and stable isotope analysis. Polar Biol 19:272–282CrossRefGoogle Scholar
  20. Casaux RJ, Baroni A, Ramón A (2006) The diet of the Weddell Seal Leptonychotes weddellii at the Danco Coast, Antarctic Peninsula. Polar Biol 29:257–262CrossRefGoogle Scholar
  21. Castellini MA, Davis RW, Davis M et al (1984) Antarctic marine life under the McMurdo Ice Shelf at White Island: a link between nutrient influx and seal population. Polar Biol 2:229–231CrossRefGoogle Scholar
  22. Cherel Y, Kooyman GL (1998) Food of emperor penguins (Aptenodytes forsteri) in the western Ross Sea, Antarctica. Mar Biol 130:335–344CrossRefGoogle Scholar
  23. Clarke A (1996) The influence of climate change on the distribution and evolution of organisms. In: Johnston IA, Bennett AF (eds) Animals and temperature: phenotypic and evolutionary adaptation, Society for Experimental Biology Seminar Series No. 59. Cambridge University Press, Cambridge, pp 375–407Google Scholar
  24. Clarke A, Holmes LJ, Gore DJ (1992) Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. J Exp Mar Biol Ecol 155:55–68CrossRefGoogle Scholar
  25. Coria N, Libertelli M, Casaux R et al (2000) Inter-annual variation in the autumn diet of the gentoo penguin at Laurie Island, Antartica. Waterbirds 23:511–517CrossRefGoogle Scholar
  26. Cullins TL, DeVries AL, Torres JJ (2011) Antifreeze proteins in pelagic fishes from Masrguerite Bay (Western Antarctica). Deep-Sea Res II 58:1690–1694CrossRefGoogle Scholar
  27. Cury P, Bakun A, Crawford RJM et al (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57:603–618CrossRefGoogle Scholar
  28. Cziko PA, Evans CW, Cheng CHC et al (2006) Freezing resistance of antifreeze-deficient larval Antarctic fish. J Exp Biol 209:407–420CrossRefGoogle Scholar
  29. Daneri GA, Carlini AR (2002) Fish prey of southern elephant seals, Mirounga leonina, at King George Island. Polar Biol 25:739–743Google Scholar
  30. Daniels RA (1982) Feeding ecology of some fishes of the Antarctic Peninsula. Fish B Noaa US 80:575–588Google Scholar
  31. Daniels RA, Lipps JH (1982) Distribution and ecology of fishes of the Antarctic Peninsula. J Biogeogr 9:1–9CrossRefGoogle Scholar
  32. DeWitt HH (1970) The character of the midwater fish fauna of the Ross Sea, Antarctica. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic, London, pp 305–314Google Scholar
  33. DeWitt HH, Hopkins TL (1977) Aspects of the diet of the Antarctic silverfish, Pleuragramma antarcticum. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, DC, pp 557–568Google Scholar
  34. Dierssen HM, Smith RC, Vernet M (2002) Glacial meltwater dynamics in coastal waters west of the Antarctic Peninsula. Proc Natl Acad Sci U S A 99:1790–1795CrossRefGoogle Scholar
  35. Dinniman MS, Klinck JM, Hofmann EE (2012) Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J Clim 25:4799–4816CrossRefGoogle Scholar
  36. Donnelly J, Torres JJ (2008) Pelagic fishes in the Marguerite Bay region of the West Antarctic Peninsula continental shelf. Deep-Sea Res II Top Stud Oceanogr 55:523–539CrossRefGoogle Scholar
  37. Donnelly J, Torres JJ, Hopkins TL et al (1990) Proximate composition of Antarctic mesopelagic fishes. Mar Biol 106:13–23CrossRefGoogle Scholar
  38. Donnelly J, Torres JJ, Hopkins TL et al (1994) Chemical composition of Antarctic zooplankton during austral fall and winter. Polar Biol 14:171–183CrossRefGoogle Scholar
  39. Donnelly J, Torres JJ, Sutton TT et al (2004) Fishes of the eastern Ross Sea, Antarctica. Polar Biol 27:637–650CrossRefGoogle Scholar
  40. Ducklow HW, Baker K, Martinson DG et al (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Phil Trans R Soc B 362:67–94CrossRefGoogle Scholar
  41. Eastman JT (1985) Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol 4:155–160CrossRefGoogle Scholar
  42. Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic, San DiegoGoogle Scholar
  43. Eastman JT, DeVries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. Copeia 2:385–393CrossRefGoogle Scholar
  44. Eastman JT, DeVries AL (1989) Ultrastructure of the lipid sac wall in the Antarctic notothenioid fish Pleuragramma antarcticum. Polar Biol 9:333–335CrossRefGoogle Scholar
  45. Ekau W (1990) Demersal fish fauna of the Weddell Sea, Antarctica. Antarct Sci 2:129–137CrossRefGoogle Scholar
  46. Emslie SD, McDaniel JD (2002) Adélie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar Biol 25:222–229Google Scholar
  47. Emslie SD, Fraser W, Smith RC et al (1998) Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct Sci 10:257–268CrossRefGoogle Scholar
  48. Emslie SD, Coats L, Licht K (2007) A 45,000 yr record of Adélie Penguins and climate change in the Ross Sea, Antarctica. Geology 35:61–64CrossRefGoogle Scholar
  49. Everson I (1984) Marine Zooplankton. In: Laws RM (ed) Antarctic ecology, vol 2. Academic, London, pp 463–490Google Scholar
  50. Faleeva TI, Gerasimchuk VV (1990) Features of reproduction in the Antarctic sidestripe, Pleuragramma antarcticum (Nototheniidae). J Ichthyol 30:67–79Google Scholar
  51. Fanta E (1999) Laboratory tests on feeding interactions and food preferences of some Antarctic fish from Admiralty Bay, King George Island, South Shetland Islands. Polish Polar Res 20:335–346Google Scholar
  52. Ferguson JW (2012) Population structure and connectivity of an important pelagic forage fish in the Antarctic ecosystem, Pleuragramma antarcticum, in relation to large scale circulation. Master of Arts, Old Dominion University, NorfolkGoogle Scholar
  53. Fortier L, Le Fèvre J, Legendre L (1994) Export of biogenic carbon to fish and to the deep ocean: the role of large planktonic microphages. J Plankton Res 16:809–839CrossRefGoogle Scholar
  54. Fuiman L, Davis R, Williams T (2002) Behaviour of midwater fishes under the Antarctic ice: observations by a predator. Mar Biol 140:815–822CrossRefGoogle Scholar
  55. Fukuhara O (1990) Effects of temperature on yolk utilization, initial growth, and behaviour of unfed marine fish-larvae. Mar Biol 106:169–174CrossRefGoogle Scholar
  56. Gerasimchuk VV (1987) On the fecundity of Antarctic sidestripe, Pleuragramma antarcticum. J Ichthyol 28:98–100Google Scholar
  57. Gerasimchuk VV (1992) A brief outline of the biology of the Antarctic silverfish, Pleuragramma antarcticum Boulenger, 1902 from the Antarctic Indian Ocean. CCAMLR WG-FSA-92/11, pp 47Google Scholar
  58. Ghigliotti L, Ferrando S, Carlig E et al (2017a) Reproductive features of the Antarctic silverfish (Pleuragramma antarctica) from the Western Ross Sea. Polar Biol 40:199–211. doi: 10.1007/s00300-016-1945-7 CrossRefGoogle Scholar
  59. Ghigliotti L, Gerasimchuk VV, Kock H-K et al (2017b) Reproductive strategies of the Antarctic silverfish: known knowns, known unknowns and unknown unknowns. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Advances in Polar Ecology 3. doi: 10.1007/978-3-319-55893-6_9
  60. Gordon AL, Molinelli EJ, Baker TN (1982) Southern ocean Atlas. Columbia University Press, New YorkGoogle Scholar
  61. Granata A, Cubeta A, Guglielmo L et al (2002) Ichthyoplankton abundance and distribution in the Ross Sea during 1987-1996. Polar Biol 25:187–202Google Scholar
  62. Greely TM, Gartner JV Jr, Torres JJ (1999) Age and growth of Electrona antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Mar Biol 133:145–158CrossRefGoogle Scholar
  63. Green K (1986) Food of the emperor penguin Aptenodytes forsteri on the Antarctic fast ice edge in late winter and early spring. Polar Biol 6:187–188CrossRefGoogle Scholar
  64. Guglielmo L, Granata A, Greco S (1998) Distribution and abundance of postlarval and juvenile Pleuragramma antarcticum (Pisces, Nototheniidae) off Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 19:37–51CrossRefGoogle Scholar
  65. Hagen W, Kattner G (2017) The role of lipids in the life history of the Antarctic silverfish Pleuragramma antarctica. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Advances in Polar Ecology 3. doi: 10.1007/978-3-319-55893-6_7
  66. Helaouët P, Beaugrand G (2007) Macroecology of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and adjacent seas. Mar Ecol Progr Ser 345:147–165CrossRefGoogle Scholar
  67. Hofmann EE, Klinck JM, Lascara CM et al (1996) Water mass distribution and circulation west of the Antarctic Peninsula and including Bransfield Strait. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for Ecological Research West of the Antarctic Peninsula, Antarctic Research Series, vol 70. American Geophysical Union, Washington, DC, pp 61–80CrossRefGoogle Scholar
  68. Hofmann EE, Klinck JM, Locarnini RA et al (1998) Krill transport in the Scotia Sea and environs. Antarct Sci 10:406–415CrossRefGoogle Scholar
  69. Hopkins TL (1987) Midwater food web in McMurdo Sound, Ross Sea, Antarctica. Mar Biol 96:93–106CrossRefGoogle Scholar
  70. Hopkins TL, Ainley DG, Torres JJ et al (1993a) Trophic structure in open waters of the marginal ice zone in the Scotia-Weddell confluence region during spring (1983). Polar Biol 13:389–397CrossRefGoogle Scholar
  71. Hopkins TL, Lancraft TM, Torres JJ et al (1993b) Community structure and trophic ecology of zooplankton in the Scotia Sea marginal ice zone in winter (1988). Deep-Sea Res I Oceanogr Res Pap 40:81–105CrossRefGoogle Scholar
  72. Hubold G (1984) Spatial distribution of Pleuragramma antarcticum (Pisces: Nototheniidae) near the Filchner- and Larsen ice shelves (Weddell Sea / Antarctica). Polar Biol 3:231–236CrossRefGoogle Scholar
  73. Hubold G (1985) The early life-history of the high-Antarctic silverfish, Pleuragramma antarcticum. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin/Heidelberg, pp 445–451CrossRefGoogle Scholar
  74. Hubold G (1990) Seasonal patterns of ichthyoplankton distribution and abundance in the southern Weddell Sea. In: Kerry KR, Hempel G (eds) Antarctic ecosystems. Ecological change and conservation. Springer, Berlin/Heidelberg, pp 149–158Google Scholar
  75. Hubold G (1992) Zur Ökologie der Fische im Weddellmeer. Ber Polarforsch 103:157 ppGoogle Scholar
  76. Hubold G, Ekau W (1987) Midwater fish fauna of the Weddell Sea, Antarctica. In: Kullander SO, Fernholm B (eds) Proc V Congr Europ Ichthyol Stockholm 1985, pp 391–396Google Scholar
  77. Hubold G, Ekau W (1990) Feeding patterns of post-larval and juvenile notothenioids in the Southern Weddell Sea (Antarctica). Polar Biol 10:255–260CrossRefGoogle Scholar
  78. Hubold G, Hagen W (1997) Seasonality of feeding and lipid content of Pleuragramma antarcticum (Nototheniidae) in the southern Weddell Sea. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 277–283Google Scholar
  79. Hubold G, Tomo AP (1989) Age and growth of Antarctic silverfish Pleuragramma antarcticum Boulenger, 1902, from the southern Weddell Sea and Antarctic Peninsula. Polar Biol 9:205–212CrossRefGoogle Scholar
  80. Hufnagl M, Peck M (2011) Physiological individual-based modelling of larval Atlantic herring (Clupea harengus) foraging and growth: insights on climate-driven life-history scheduling. ICES J Mar Sci 68:1170–1188CrossRefGoogle Scholar
  81. Hureau JC (1994) The significance of fish in the marine Antarctic ecosystems. Polar Biol 14:307–313CrossRefGoogle Scholar
  82. Jacobs SS, Giulivi CF (1998) Interannual ocean and sea ice variability in the Ross Sea. Antar Res S 75:135–150CrossRefGoogle Scholar
  83. Jones C, Brooks C, Detrich HW III et al (2006) Demersal finfish survey of the Northern Antarctic Peninsula-AMLR 2005/2006 Field Season Report. NOAA-TM-NMFS-SWFSC-397, Southwest Fisheries Science Center-Antarctic Ecosystem Research Division, La JollaGoogle Scholar
  84. Kashkina AA (1986) Feeding of fishes on salps (Tunicata, Thaliacea). J Ichthyol 26:57–64Google Scholar
  85. Kellermann A (1986) Geographical distribution and abundance of postalrval and juvenile Pleuragramma antarcticum (Pisces, Notothenioidei) off the Antarctic Peninsula. Polar Biol 6:111–119CrossRefGoogle Scholar
  86. Kellermann A (1987) Food and feeding ecology of postlarval and juvenile Pleuragramma antarcticum (Pisces, Notothenioidei) in the seasonal pack ice zone of the Antarctic Peninsula. Polar Biol 7:307–315CrossRefGoogle Scholar
  87. Kellermann AK (1996) Midwater fish ecology. In: Ross RM, Hofmann EE, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula, Antarctic research series, vol 70. American Geophysical Union, Washington, DC, pp 231–256CrossRefGoogle Scholar
  88. Kellermann A, Kock KH (1988) Patterns of spatial and temporal distribution and their variation in the early life stages of Antarctic fish in the Antarctic Peninsula region. In: Sahrhage D (ed) Antarctic Ocean and resources variability. Springer, Berlin/Heidelberg/New York, pp 147–149CrossRefGoogle Scholar
  89. Kellermann A, Schadwinkel S (1991) Winter aspects of the ichthyoplankton community in Antarctic Peninsula waters. Polar Biol 11:117–127CrossRefGoogle Scholar
  90. Klages N (1989) Food and feeding ecology of Emperor penguins in the eastern Weddell Sea. Polar Biol 9:385–390CrossRefGoogle Scholar
  91. Kock KH (1992) Antarctic fish and fisheries. Cambridge University Press, CambridgeGoogle Scholar
  92. Kock KH, Kellermann A (1991) Reproduction in Antarctic notothenioid fish. Antarct Sci 3:125–150CrossRefGoogle Scholar
  93. Koubbi P, Vallet C, Razouls S et al (2007) Condition and diet of larval Pleuragramma antarcticum (Nototheniidae) from Terre Adélie (Antarctica) during summer. Cybium 31:67–76Google Scholar
  94. Kremer P, Madin LP (1992) Particle retention efficiency of salps. J Plankton Res 14:1009–1015CrossRefGoogle Scholar
  95. La Mesa M, Eastman JT (2012) Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13:241–266CrossRefGoogle Scholar
  96. La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338CrossRefGoogle Scholar
  97. La Mesa M, Catalano B, Russo A et al (2010) Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarct Sci 22:243–254CrossRefGoogle Scholar
  98. La Mesa M, Riginella E, Mazzoldi C et al (2014) Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar Ecol 36:235–245CrossRefGoogle Scholar
  99. La Mesa M, Piñones A, Catalano B et al (2015) Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula. Fish Oceanogr 24:150–161CrossRefGoogle Scholar
  100. Lancraft TM, Torres JJ, Hopkins TL (1989) Micronekton and macrozooplankton in the open waters near Antarctic ice edge zones (AMERIEZ 1983 and 1986). Polar Biol 9:225–233CrossRefGoogle Scholar
  101. Lancraft TM, Hopkins TL, Torres JJ et al (1991) Oceanic micronektonic/macrozooplanktonic community structure and feeding in ice covered Antarctic waters during the winter (AMERIEZ 1988). Polar Biol 91:157–167Google Scholar
  102. Lancraft TM, Reisenbichler KR, Robinson BH et al (2004) A krill-dominated micronekton and makrozooplankton community on Croker Passage, Antarctica with an estimate of fish predation. Deep-Sea Res II 51:2247–2260CrossRefGoogle Scholar
  103. Linkowski TB (1987) Age and growth of four species of Electrona (Teleostei, Myctophidae). In: Kullander SO, Fernholm B (eds). Proc V Congr europ Ichthyol, Stockholm 1985, pp 435–442Google Scholar
  104. Lipsky JD (2006) AMLR 2005/2006 Field Season Report. NOAA-TM-NMFS-SWFSC-397, Southwest Fisheries Science Center Antarctic Ecosystem Research DivisionGoogle Scholar
  105. Loeb VJ (1991) Distribution and abundance of larval fishes collected in the western Bransfield Strait region, 1986-1987. Deep-Sea Res 38:1251–1260CrossRefGoogle Scholar
  106. Loeb V, Kellermann A, Koubbi P et al (1993) Antarctic larval fish assemblages: a review. Bull Mar Sci 53:416–449Google Scholar
  107. Loeb V, Siegel V, Holm-Hansen O et al (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900CrossRefGoogle Scholar
  108. Loeb V, Asato L, Brooks C et al (2006) Net Sampling – AMLR 2005/2006 Field Season Report. NOAA-TM-NMFS-SWFSC-397, Southwest Fisheries Science Center Antarctic Ecosystem Research DivisionGoogle Scholar
  109. Lowry LF, Testa JW, Calvert W (1988) Notes on winter feeding of crabeater and leopard seals near the Antarctic Peninsula. Polar Biol 8:475–478CrossRefGoogle Scholar
  110. MacDiarmid A, Stewart R (2015) Ross Sea and Balleny Islands biodiversity: routine observations and opportunistic sampling of biota made during a geophysical survey to the Ross Sea in 2006. New Zealand Aquatic Environment and Biodiversity Report No 153Google Scholar
  111. Madin LP (1974) Field observations on the feeding behaviour of salps (Tunicata: Thaliacea). Mar Biol 25:143–147CrossRefGoogle Scholar
  112. Maes J, Van de Putte A, Hecq JH et al (2006) State-dependent energy allocation in the pelagic Antarctic silverfish Pleuragramma antarcticum: trade-off between winter reserves and buoyancy. Mar Ecol Prog Ser 326:269–282CrossRefGoogle Scholar
  113. Martinez E, Torres JJ (2017) Energetics of the Antarctic silverfish, Pleuragramma antarctica, from the Western Antarctic Peninsula. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Advances in Polar Ecology 3. doi: 10.1007/978-3-319-55893-6_8
  114. Martinson DG (2012) Antarctic circumpolar current’s role in the Antarctic ice system: an overview. Palaeogeogr Palaeoclimatol Palaeoecol 335-336:71–74CrossRefGoogle Scholar
  115. Martinson DG, Stammerjohn SE, Iannuzzi RA et al (2008) Western Antarctic Peninsula physical oceanography and spatio–temporal variability. Deep-Sea Res II 55:1964–1987CrossRefGoogle Scholar
  116. McFarlane GA, Beamish RJ, Schweigert J (2001) Common factors have opposite impacts on Pacific herring in adjacent ecosystems. In: Funk F, Blackburn J, Hay D, Paul AJ, Stephenson R, Toresen R, Witherell D (eds) Herring: expectations for a new millennium. University of Alaska, Sea Grant, pp 51–67Google Scholar
  117. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604Google Scholar
  118. Mianzan H, Pajaro M, Alvarez Colombo G et al (2001) Feeding on survival-food: gelatinous plankton as a source of food for anchovies. Hydrobiologia 451:45–53CrossRefGoogle Scholar
  119. Mintenbeck K (2008) Trophic interactions within high Antarctic shelf communities – food web structure and the significance of fish. Dissertation thesis, University of Bremen, Germany.
  120. Mintenbeck K, Barrera-Oro ER, Brey T et al (2012) Impact of climate change on fish in complex Antarctic ecosystems. Adv Ecol Res 46:351–426CrossRefGoogle Scholar
  121. Moffat C, Beardsley RC, Owens B et al (2008) A first description of the Antarctic Peninsula Coastal Current. Deep-Sea Res II 55:277–293CrossRefGoogle Scholar
  122. Moline MA, Claustre H, Frazer TK et al (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980CrossRefGoogle Scholar
  123. Moline MA, Karnovsky NJ, Brown Z et al (2008) High latitude changes in ice dynamics and their impact on polar marine ecosystems. Ann N Y Acad Sci 1134:267–319CrossRefGoogle Scholar
  124. Morales-Nin B, Garcia MA, Lopez O (1998) Distribution of larval and juvenile Nototheniops larseni and Pleuragramma antarctica off the Antarctic Peninsula in relation to oceanographic conditions. Cybium 22:69–81Google Scholar
  125. Nicol S, Pauly T, Bindoff NL et al (2000) Ocean circulation off East Antarctica affects ecosystem structure and sea-ice extent. Nature 406:504–507CrossRefGoogle Scholar
  126. Niiler PP, Amos A, Hu J (1991) Water masses and 200 m relative geostrophic circulation in the western Bransfield Strait region. Deep-Sea Res I 38:943–959CrossRefGoogle Scholar
  127. Österblom H, Casini M, Olsson O et al (2006) Fish, seabirds and trophic cascades in the Baltic Sea. Mar Ecol Prog Ser 323:233–238CrossRefGoogle Scholar
  128. Österblom H, Olsson O, Blenckner T et al (2008) Junk-food in marine ecosystems. Oikos 117:967–977CrossRefGoogle Scholar
  129. O’Grady SM, DeVries AL (1982) Osmotic and ionic regulation in polar fishes. J Exp Mar Biol Ecol 57:219–228CrossRefGoogle Scholar
  130. Øritsland T (1977) Food consumption of seals in the Antarctic pack ice. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, DC, pp 749–768Google Scholar
  131. Ospina-Ąlvarez N, Piferrer F (2008) Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS One 3:e2837CrossRefGoogle Scholar
  132. Parker ML, Fraser WR, Ashford J et al (2015) Assemblages of micronektonic fishes and invertebrates in a gradient of regional warming along the Western Antarctic Peninsula. J Marine Syst 152:18–41CrossRefGoogle Scholar
  133. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  134. Pearson RG, Stanton JC, Shoemaker KT et al (2014) Life history and spatial traits predict extinction risk due to climate change. Nat Clim Chang 4:217–221CrossRefGoogle Scholar
  135. Piñones A, Hofmann EE, Dinniman MS (2011) Lagrangian simulation of transport pathways and residence times along the western Antarctic Peninsula. Deep-Sea Res II 58:1524–1539CrossRefGoogle Scholar
  136. Piñones A, Hofmann EE, Daly KL (2013a) Modeling the remote and local connectivity of Antarctic krill populations along the western Antarctic Peninsula. Mar Ecol Prog Ser 481:69–92CrossRefGoogle Scholar
  137. Piñones A, Hofmann EE, Daly KL et al (2013b) Modeling environmental controls on the transport and fate of early life stages of Antarctic krill (Euphausia superba) on the western Antarctic Peninsula continental shelf. Deep-Sea Res I 82:17–31CrossRefGoogle Scholar
  138. Piñones A, Hofmann EE, Dinniman MS et al (2016) Modeling the transport and fate of euphausiids in the Ross Sea. Polar Biol 39:177–187CrossRefGoogle Scholar
  139. Plötz J (1986) Summer diet of Weddell Seals (Leptonychotes weddelli) in the eastern and southern Weddell Sea, Antarctica. Polar Biol 6:97–102CrossRefGoogle Scholar
  140. Plötz J, Ekau W, Reijnders PJH (1991) Diet of Weddell seals Leptonychotes weddellii at Vestkapp, eastern Weddell Sea (Antarctica), in relation to local food supply. Mar Mamm Sci 7:136–144CrossRefGoogle Scholar
  141. Plötz J, Bornemann H, Knust R et al (2001) Foraging behaviour of Weddell seals, and its ecological implications. Polar Biol 24:901–909CrossRefGoogle Scholar
  142. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692CrossRefGoogle Scholar
  143. Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779CrossRefGoogle Scholar
  144. Pörtner HO, Berdal B, Blust R et al (2001) Climate induced temperature effects on growth, performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpoud (Zoarces viviparus). Cont Shelf Res 21:1975–1997CrossRefGoogle Scholar
  145. Reisenbichler KR (1993) Growth and chemical composition in two populations of the Antarctic Silverfish, Pleuragramma antarcticum (Pisces, Nototheniidae). Biological Sciences. M.A. University of California at Santa Barbara, Santa BarbaraGoogle Scholar
  146. Robinson E (2008) Antarctic fish: Thermal specialists or adaptable generalists? PhD thesis, University of Canterbury, Christchurch, New ZealandGoogle Scholar
  147. Robinson E, Davison W (2008) The Antarctic notothenioid fish Pagothenia borchgrevinki is thermally flexible: acclimation changes oxygen consumption. Polar Biol 31:317–326CrossRefGoogle Scholar
  148. Ross RM, Quetin LB, Newberger T et al (2014) Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993-2008. Mar Ecol Prog Ser 515:11–32CrossRefGoogle Scholar
  149. Ruck KE, Steinberg DK, Canuel EA (2014) Regional differences in quality of krill and fish as prey along the Western Antarctic Peninsula. Mar Ecol Prog Ser 509:39–55CrossRefGoogle Scholar
  150. Saunders RA, Collins MA, Ward P et al (2015) Distribution, population structure and trophodynamics of Southern Ocean Gymnoscopelus (Myctophidae) in the Scotia Sea. Polar Biol 38:287–308CrossRefGoogle Scholar
  151. Savidge DK, Amft JA (2009) Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects. Deep-Sea Res I 56:1633–1655CrossRefGoogle Scholar
  152. Schofield O, Ducklow HW, Martinson DG et al (2010) How do polar marine ecosystems respond to climate change. Science 328:1520–1523CrossRefGoogle Scholar
  153. Seebacher F, Davison W, Lowe CJ et al (2005) Falsification of the thermal specialization for elevated temperatures in Antarctic fishes. Biol Lett 1:151–154CrossRefGoogle Scholar
  154. Slósarczyk W (1986) Attempts at a quantitative estimate by trawl sampling of distribution of postlarval and juvenile notothenioids (Pisces, Perciformes) in relation to environmental conditions in the Antarctic Peninsula region during SIBEX 1983–84. In: Hoshiai T, Nemoto T, Naito Y (eds) Proceedings of the Seventh Symposium on Polar Biology, pp 299–315Google Scholar
  155. Smith SL, Schnack-Schiel SB (1990) Polar Zooplankton. In: Smith WO (ed) Polar oceanography. Academic, San Diego, pp 527–598CrossRefGoogle Scholar
  156. Smith RC, Ainley D, Baker K et al (1999) Marine ecosystem sensitivity to climate change. Bioscience 49:393–404Google Scholar
  157. Smith WO, Ainley DG, Cattaneo-Vietti R (2007) Trophic interactions within the Ross Sea continental shelf ecosystem. Philos T Roy Soc B 362:95–111CrossRefGoogle Scholar
  158. Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920CrossRefGoogle Scholar
  159. Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258CrossRefGoogle Scholar
  160. Stammerjohn SE, Martinson DG, Smith RC et al (2008a) Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep-Sea Res II 55:2041–2058CrossRefGoogle Scholar
  161. Stammerjohn SE, Martinson DG, Smith RC et al (2008b) Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino-Southern Oscillation and Southern Annular Mode variability. J Geophys Res – Oceans 113:1978–2012CrossRefGoogle Scholar
  162. Stearns SC (1992) The evolution of life histories. Oxford University PressGoogle Scholar
  163. Stein M (1983) The distribution of water masses in the South Shetland Islands during FIBEX. Mem Natl Inst Polar Res Ser 27:16–23Google Scholar
  164. Suprenand PM, Jones DL, Torres JJ (2015) Distribution of gymnosomatous pteropods in western Antarctic Peninsula shelf waters: influences of Southern Ocean water masses. Polar Rec 51:58–71CrossRefGoogle Scholar
  165. Sutton CP, Horn PL (2011) A preliminary assessment of age and growth of Antarctic silverfish (Pleuragramma antarcticum) in the Ross Sea, Antarctica. CCAMLR Science 18:75–86Google Scholar
  166. Tamburrini M, D’Avino R, Carratore V et al (1997) The hemoglobin system of Pleuragramma antarcticum: correlation of hematological and biochemical adaptations with life style. Comp Biochem Physiol 118A:1037–1044Google Scholar
  167. Torres JJ, Aarset AV, Donnelly J et al (1994) Metabolism of Antarctic micronektonic Crustacea as a function of depth of occurrence and season. Mar Ecol-Prog Ser 113(3):207–219CrossRefGoogle Scholar
  168. Trunov IA (2001) Occurrence of Pleuragramma antarcticum (Nototheniidae) off South Georgia Island and the South Sandwich Islands (Antarctica). J Ichthyol 41:549–550Google Scholar
  169. Turner J, Colwell SR, Marshall GJ et al (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  170. Vacchi M, La Mesa M, Dalu M et al (2004) Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antarct Sci 16:299–305CrossRefGoogle Scholar
  171. Vacchi M, DeVries A, Evans C et al (2012) A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol 35:1573–1585CrossRefGoogle Scholar
  172. Varsamos S, Nebel C, Charmantier G (2005) Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Physiol A 141:401–429CrossRefGoogle Scholar
  173. Vaughan D, Marshall GJ, Connolley WM et al (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Chang 60:243–274CrossRefGoogle Scholar
  174. Weatherley J, Walsh J, Zwally HJ (1991) Antarctic Sea ice variability and seasonal air-temperature relationships. J Geophys Res 96:15119–15130CrossRefGoogle Scholar
  175. Wiebe PH, Burt KH, Boyd SH et al (1976) A multiple opening/closing net and environmental sensing system for sampling zooplankton. J Mar Res 34:313–326Google Scholar
  176. Wiebe PH, Morton AW, Bradley AM et al (1985) New development in the MOCNESS, an apparatus for sampling zooplankton and micronekton. Mar Biol 87:313–323CrossRefGoogle Scholar
  177. Williams TD (1995) The penguins. Oxford University Press, OxfordGoogle Scholar
  178. Wöhrmann APA (1998) Aspects of eco-physiological adaptations in Antarctic fish. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Milano, pp 119–128CrossRefGoogle Scholar
  179. Wöhrmann APA, Hagen W, Kunzmann A (1997) Adaptations of the Antarctic silverfish Pleuragramma antarcticum (Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar Ecol Prog Ser 151:205–218CrossRefGoogle Scholar
  180. Zwally HJ, Comiso JC, Parkinson CL et al (2002) Variability of Antarctic Sea ice 1979–1988. J Geophys Res 107:C5–3041CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.College of Marine Science, University of South FloridaSaint PetersburgUSA

Personalised recommendations