Evolution Reshaped Life for the Water Column: The Skeleton of the Antarctic Silverfish Pleuragramma antarctica Boulenger, 1902

  • Olga Voskoboinikova
  • H. William DetrichIII
  • R. Craig Albertson
  • John H. Postlethwait
  • Laura Ghigliotti
  • Eva Pisano
Chapter
Part of the Advances in Polar Ecology book series (AVPE, volume 3)

Abstract

The Antarctic silverfish is a neutrally buoyant notothenioid fish that lives in resource-rich pelagic habitats through all life history stages. Given the ancestral benthic origin of notothenioids, the ability of this species to live in the water column required extensive evolutionary adjustments centered on buoyancy, a process referred to as secondary pelagization. Many of these adaptive changes are found in the silverfish skeleton, including partial or total reduction of bony elements, which reduces skeletal mass and body density. Other novel skeletal traits, such as lengthening of bones of the ethmoidal portion of the neurocranium and jaws, are related to foraging in the water column and planctophagia.

Reconfiguration of silverfish skeletal traits occurred via paedomorphosis (the retention of characters in adults that are juvenile traits in outgroup species) and reflects heterochronic shifts in gene expression during development.

In this chapter we describe the skeletal anatomy of silverfish larvae, juveniles and adults, including evidence for ontogenetic changes that relate to pelagic life. We then present the molecular basis of skeletal reduction as revealed by analysis of craniofacial gene expression during early skeletogenesis.

Keywords

Secondary pelagization Skeletogenesis Bone mineralization 

Notes

Acknowledgements

This work was supported by the Russian National Scientific Program No 01201351186 (OV), the Italian Program for Antarctic Research (LG, EP), by NIH grant R01AG031922 from the National Institute on Aging (JHP, HWD, and RCA), and by NSF grants ANT-0944517 (HWD), PLR-1247510 (HWD), PLR-1444167 (HWD), and PLR-1543383 (JHP, HWD) from the Office/Division of Polar Programs. This is contribution number 350 from the Northeastern University Marine Science Center.

References

  1. Albertson RC, Yan YL, Titus TA et al (2010) Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evol Biol 10:4. doi: 10.1186/1471-2148-10-4 CrossRefGoogle Scholar
  2. Andersen NC (1984) Genera and subfamilies of the family Nototheniidae (Pisces, Perciformes) from the Antarctic and Subantarctic. Steenstrupia 10:1–34Google Scholar
  3. Anderson ME (1990) The origin and evolution of the Antarctic ichthyofauna. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, pp 28–33Google Scholar
  4. Andersen NC, Hureau J-C (1979) Proposition pour une nouvelle classification des Nototheniinae (Pisces, Perciformes, Nototheniidae). Cybium Ser 3(6):47–53Google Scholar
  5. Andriashev AP (1964) A general review of the Antarctic fish fauna. In: Exploration of the fauna of the seas II(X) Biological results of the Soviet Antarctic expedition (1955–1958) 2: 335–386 (In Russian)Google Scholar
  6. Andriashev AP (1965) A general review of the Antarctic fish fauna. In: Van Oye P, Van Mieghem J (eds) Monographiae biologicae, vol XV. Junk, The Hague, pp 491–550Google Scholar
  7. Andriashev AP (1976) On first fishes from Antarctic collected by Captain James C. Ross’s expedition and some problems of marine cryobiology. Zool Zhurnal 55(6):866–878. In Russian, with English abstractGoogle Scholar
  8. Andriashev AP (1978) On first fishes from the Antarctic collected by Captain James C. Ross’s expedition and some problems of marine cryobiology. 2. Zool Zhurnal 57(2):228–239. In Russian, with English abstractGoogle Scholar
  9. Andriashev AP (1987) A general review of the Antarctic bottom fish fauna. In: Kullander SO, Fernholm B (eds) Proceedings of fifth congress of European ichthyologists, Stockholm, pp 357–372Google Scholar
  10. Balushkin AV (1984) Morfologicheskie osnovy sistematiki i filogenii nototenievych ryb (Morphological bases of the systematics and phylogeny of the nototheniid fishes). Akademiya Nauk S.S.S.R., Zoologicheskii Institut, Leningrad, pp 1–141 (In Russian, with English abstract)Google Scholar
  11. Balushkin AV (1989) Morphological bases of the systematics and phylogeny of the notothenioid fishes. Oxonian Press Ltd., New Delhi/Calcutta, pp 1–153Google Scholar
  12. Balushkin AV (1992) Classification, phylogenetic relationships and origins of the families of the suborder Notothenioidei (Perciformes). Vopr Ikhtiologii 32(3):3–19. English translation in J Ichthyol 1993, 32(7):90–110Google Scholar
  13. Balushkin AV (2000) Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). J Ichthyol 40(suppl 1):74–109Google Scholar
  14. Balushkin AV, Voskoboinikova OS (1995) Classification and phylogeny of dragonfishes of the family Bathydraconidae (Notothenioidei, Perciformes). J Ichthyol 32(5):89–104Google Scholar
  15. Bottaro M, Oliveri D, Ghigliotti L, et al (2009) Born among the ice: first morphological observations on two developmental stages of the Antarctic silverfish Pleuragramma antarcticum, a key species of the Southern Ocean. Rev Fish Biol Fish 19(2):249Google Scholar
  16. Busekist VJ, Vacchi M, Albertelli G (2007) ANFIBO Base, a computer-based system for identification of fish bones from Antarctic waters. Version 1.0 for MS-Windows CD-ROM. University of Genoa, Italy. http://www.mna.it
  17. Cheng CH, Detrich HW III (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc Lond B Biol Sci 362(1488):2215–2232CrossRefGoogle Scholar
  18. Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11(5):212–218CrossRefGoogle Scholar
  19. Detrich HW III, Amemiya CT (2010) Antarctic notothenioid fishes: genomic resources and strategies for Analyzing an adaptive radiation. Integr Comp Biol 50(6):1009–1017CrossRefGoogle Scholar
  20. DeVries AL, Eastman JT (1978) Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 271:352–353CrossRefGoogle Scholar
  21. DeVries AL, Eastman JT (1981) Physiology and ecology of notothenioid fishes of the Ross Sea. J R Soc N Z 11(4):329–340CrossRefGoogle Scholar
  22. DeWitt HH (1962) A new Antarctic notothenioid fish with notes on two recently described nototheniiformes. Copeia 4:826–833CrossRefGoogle Scholar
  23. DeWitt HH (1970) The character of the midwater fish fauna of the Ross Sea, Antarctica. In: Holdgate MW (ed) Antarctic ecology 1. Academic, London, pp 305–314Google Scholar
  24. DeWitt HH, Hopkins TL (1977) Aspects of the diet of the Antarctic silverfish, Pleuragramma antarcticum. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington DC, pp 557–567Google Scholar
  25. DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, pp 279–332Google Scholar
  26. di Prisco G, Verde C (2017) The unique haemoglobin system of migratory Pleuragramma antarctica: correlation of haematological and biochemical adaptations with mode of life. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Springer series advances in polar ecology 3, Springer International Publishing. doi: 10.1007/978-3-319-55893-6_3
  27. Duhamel G, Hulley P-A, Causse R et al (2014) Biogeographic patterns of fish. In: De Broyer C, Koubbi P, Griffiths HJ et al (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 328–362Google Scholar
  28. Eakin RR (1981) Osteology and relationships of the fishes of the Antarctic family Harpagiferidae (Pisces, Notothenioidei). In: Kornicker LS (ed) Antarctic research series. Biology of the Antarctic seas IX, vol 31. American Geophysical Union, Washington, DC, pp 81–147Google Scholar
  29. Eames BF, Sharpe PT, Helms JA (2004) Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2. Dev Biol 274(1):188–200. PubMed PMID: 15355797CrossRefGoogle Scholar
  30. Eastman JT (1985) Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdoSound, Antarctica. Polar Biol 4:155–160CrossRefGoogle Scholar
  31. Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic, San DiegoGoogle Scholar
  32. Eastman JT (1997) Phyletic divergence and specialization for pelagic life in the Antarctic nototheniid fish Pleuragramma antarcticum. Comp Biochem Physiol 118 A(4):1095–1101CrossRefGoogle Scholar
  33. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28(2):93–107CrossRefGoogle Scholar
  34. Eastman JT, Clarke A (1998) A comparison of adaptive radiations of Antarctic fish with those of non-Antarctic fish. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antartica: a biological overview. Springer, Milano, pp 3–26CrossRefGoogle Scholar
  35. Eastman JT, DeVries AL (1981) Buoyancy adaptations in a swim-bladderless Antarctic fish. J Morphol 167:91–102CrossRefGoogle Scholar
  36. Eastman JT, DeVries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. Copeia 2:385–393CrossRefGoogle Scholar
  37. Eastman JT, Lannoo MJ (2011) Divergence of brain and retinal anatomy and histology in pelagic Antarctic notothenioid fishes of the sister taxa Dissostichus and Pleuragramma. J Morphol 272:419–441CrossRefGoogle Scholar
  38. Eastman JT, Witmer LM, Ridgely RC et al (2014) Divergence in skeletal mass and bone morphology in Antarctic notothenioid fishes. J Morphol 275(8):841–861CrossRefGoogle Scholar
  39. Ekanayake S, Hall BK (1997) The in vivo and in vitro effects of bone morphogenetic protein-2 on the development of the chick mandible. Int J Dev Biol 41(1):67–81. PubMed PMID: 9074939Google Scholar
  40. Hastings PA (1993) Relationships of the fishes of the perciform suborder Notothenioidei. In: Miller RG (ed) History and atlas of the fishes of the Antarctic Ocean. Foresta Institute for Ocean and Mountain Studies, Carson City, pp 99–107Google Scholar
  41. Helfam GS, Collette BB, Facey DE (2009) The diversity of fishes, 2nd edn. Wiley, OxfordGoogle Scholar
  42. Hu Y, Ghigliotti L, Vacchi M et al (2016) Evolution in an extreme environment: developmental biases and phenotypic integration in the adaptive radiation of Antarctic notothenioids. BMC Evol Biol 16:142. doi: 10.1186/s12862-016-0704-2 CrossRefGoogle Scholar
  43. Hubold G (1985) The early life history of the Antarctic silverfish Pleuragramma antarcticum from the southern and eastern Weddell Sea (Antarctica). In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin/Heidelberg, pp 445–451CrossRefGoogle Scholar
  44. Hubold G (1990) Seasonal patterns of ichthyoplankton distribution and abundance in the southern Weddell Sea. In: Kerry KR, Hempel G (eds) Antarctic ecosystems. Ecological change and conservation. Springer, Heidelberg, pp 149–158Google Scholar
  45. Hubold G, Ekau W (1987) Midwater fish fauna of the Weddell Sea, Antarctica. In: Kullander SO, Fernholm B (eds) Proceedings of the fifth congress of the European Ichthyological Society, Stockholm 1985. Swedish Museum of Natural History, Stockholm, pp 391–396Google Scholar
  46. Hubold G, Ekau W (1990) Feeding patterns of post-larval and juvenile notothenioids in the southern Weddell Sea (Antarctica). Polar Biol 10:255–260CrossRefGoogle Scholar
  47. Hubold KG, Тomo AP (1989) Age and growth of Antarctic silverfish Pleuragramma antarcticum Boulenger 1902, from the southern Weddell Sea and Antarctic Peninsula. Polar Biol 9:205–212Google Scholar
  48. Iwami T (1985) Osteology and relationships of the family Channichthyidae. Mem Natl Inst Polar Res Tokyo Ser E 36:1–69Google Scholar
  49. Iwami T, Abe T (1984) Gill arches of fishes of the suborder Notothenioidei (Pisces, Perciformes). Mem Natl Inst Polar Res Tokyo Spec Issue 32:93–102Google Scholar
  50. Iwamoto M, Kitagaki J, Tamamura Y et al (2003) Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide (PTHrP). Osteoarthr Cartil 11(1):6–15. PubMed PMID: 12505482CrossRefGoogle Scholar
  51. Jakubowski M (1971) Morphological features of the lateral line organs in members of the genus Notothenia Rich. And other genera of the family Nototheniidae (Pisces). J Ichthyol 11:493–499Google Scholar
  52. Kellermann A (1986) Geographical distribution and abundance of postlarval and juvenile Pleuragramma antarcticum (Pisces, Notothenioidei) off the Antarctic Peninsula. Polar Biol 6:111–119CrossRefGoogle Scholar
  53. Kellermann A (1989) The larval fish community in the zone of seasonal ice cover and its seasonal and interannual variability. Arch FischWiss 39:81–109Google Scholar
  54. Kishimoto Y, Lee KH, Zon L et al (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124(22):4457–4466. PubMed PMID: 9409664Google Scholar
  55. Klingenberg C (1998) Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev 73:79–123CrossRefGoogle Scholar
  56. Klingenberg CP, Ekau W (1996) A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol J Linn Soc 59:143–177CrossRefGoogle Scholar
  57. La Mesa M, Eastman JT (2012) Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13:241–266CrossRefGoogle Scholar
  58. La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338CrossRefGoogle Scholar
  59. Laptikhovsky V, Arhipkin A, Brickle P (2006) Distribution and reproduction of the Patagonian toothfish Dissostichus eleginoides Smitt around the Falkland Islands. J Fish Biol 68:849–861CrossRefGoogle Scholar
  60. Lim J, Tu X, Choi K et al (2015) BMP-Smad4 signaling is required for precartilaginous mesenchymal condensation independent of Sox9 in the mouse. Dev Biol 400(1):132–138. doi: 10.1016/j.ydbio.2015.01.022 CrossRefGoogle Scholar
  61. Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13(1):27–38. doi: 10.1038/nrm3254 CrossRefGoogle Scholar
  62. Marshall NB (1953) Egg size in Arctic, Antarctic and deep-sea fishes. Evolution 7:328–341CrossRefGoogle Scholar
  63. Miller RG (1993) History and atlas of the fishes of the Antarctic Ocean. Foresta Institute for Ocean and Mountain Studies, Carson CityGoogle Scholar
  64. Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174:145–148CrossRefGoogle Scholar
  65. Montgomery J, Clements K (2000) Disaptation and recovery in the evolution of. Antarct Fishes 15(7):267–271Google Scholar
  66. Nakashima K, Zhou X, Kunkel G et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29CrossRefGoogle Scholar
  67. Near TJ, Kendrick BJ, Detrich HW III et al (2007) Confirmation of neutral buoyancy in Aethotaxis mitopteryx DeWitt (Notothenioidei: Nototheniidae). Polar Biol 30:443–447. doi: 10.1007/s00300-006-0201-y CrossRefGoogle Scholar
  68. Near TJ, Dornburg A, Kuhn KL et al (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci U S A 109:3434–3439CrossRefGoogle Scholar
  69. Near TJ, Dornburg A, Harrington RC et al (2015) Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evol Biol 15:109. doi: 10.1186/s12862-015-0362-9 CrossRefGoogle Scholar
  70. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, HobokenGoogle Scholar
  71. Norman JR (1937) Coast fishes. Pt. II. The Patagonian region. Discov Rep 16:1–150CrossRefGoogle Scholar
  72. Norman JR (1938) Coast fishes. Pt. III. The Antarctic zone. Discov Rep 18:1–105CrossRefGoogle Scholar
  73. North AW (1991) Review of the early life history Antarctic notothenioid fish. In: di Prisco G, Maresca D, Tota B (eds) Biology of Antarctic fish. Springer, Berlin/Heidelberg, pp 70–85CrossRefGoogle Scholar
  74. Nybelin O (1947) Antarctic fishes. Sci Res Norw Antarct Exped 1927–1928(26):1–76Google Scholar
  75. Pappenheim P (1914) Die Fische der deutschen Sudpolar-Expedition 1901–1903. II. Die Tiefseefische. Dt Sedpol Exped Zool 2:161–200Google Scholar
  76. Parker SJ, Gremes PJ (2010) Length and age at spawning of Antarctic toothfish. CCAMLR Sci 17:53–73Google Scholar
  77. Postlethwait JH, Yan YL, Desvignes T et al (2016) Embryogenesis and early skeletogenesis in the Antarctic bullhead notothen, Notothenia coriiceps. Dev Dyn 245:1066–1080. doi: 10.1002/DVDY.24437 CrossRefGoogle Scholar
  78. Potthoff T (1984) Clearing and staining techniques. In: Moser HG (ed) Ontogeny and systematics of fishes, Special publication-American Society of Ichthyologists and Herpetologists, vol 1. Allen Press, Lawrence, pp 35–37Google Scholar
  79. Regan CT (1913) The Antarctic fishes of the Scottish National Antarctic Expedition. Trans R Soc Edinb 49:229–292CrossRefGoogle Scholar
  80. Regan CT (1914) Fishes. Brit Antarct “Terra Nova” Exped 1910. Nat Hist Rep Zool 1:1–54Google Scholar
  81. Rutschmann S, Matschine M, Damerau M et al (2011) Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol Ecol 20:4707–4721CrossRefGoogle Scholar
  82. Slosarczyk W (1983) Preliminary estimation of abundance of juvenile Nototheniidae and Channichthyidae within krill swarms east of South Georgia. Acta Ichthyol Piscat XIII(1):3–11CrossRefGoogle Scholar
  83. Totton AK (1914) The structure and development of the caudal skeleton of the teleostean fish, Pleuragramma antarcticum. Proc Zool Soc Lond 18:251–261Google Scholar
  84. Vacchi M, La Mesa M, Dalu M et al (2004) Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antarct Sci 16:299–305CrossRefGoogle Scholar
  85. Vacchi M, DeVries AL, Evans CW et al (2012a) A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol 35:1573–1585. doi: 10.1007/s00300-012-1199-y CrossRefGoogle Scholar
  86. Vacchi M, Koubbi P, Ghigliotti L et al (2012b) Sea-ice interactions with polar fish-focus on the Antarctic silverfish life history. In: Verde C, di Prisco G (eds) Adaptation and evolution in marine environments, From Pole to Pole, vol 1. Springer, Berlin, pp 51–73CrossRefGoogle Scholar
  87. Voskoboinikova OS (1982) Visceral skeleton changes in the process of turning to pelagic mode of life in fishes of the family Nototheniidae. Proc Zool Inst Rus Acad Sci 114:67–76. (In Russian)Google Scholar
  88. Voskoboinikova OS (1993) Evolution of the visceral skeleton and phylogeny of Nototheniidae. J Ichthyol 33(7):23–47Google Scholar
  89. Voskoboinikova OS (1994) Rates of individual development of the bony skeleton of eleven species of the family Nototheniidae. J Ichthyol 34(8):108–120Google Scholar
  90. Voskoboinikova OS (2001) Evolutionary significance of heterochronies in the development of the bony skeleton in fishes of the suborder Notothenioidei (Perciformes). J Ichthyol 41(6):415–424Google Scholar
  91. Voskoboinikova OS (2007) The growth rate of skeleton in ontogeny of the Antarctic fish from the suborder Notothenioidei (Perciformes, Pisces) and the problem of cold compensation. Dokl Biol Sci 415(1):307–309CrossRefGoogle Scholar
  92. Voskoboinikova OS (2010) Ontogenetic bases of the notothenioid evolution. Nauka, St. Petersburg, pp 1–320. In Russian, with English abstractGoogle Scholar
  93. Voskoboinikova OS, Kellermann A (1997) The osteological development of nine species of Nototheniidae (Perciformes: Notothenioidei). Cybium 21(3):231–264Google Scholar
  94. Voskoboinikova OS, Tereshchuk OU, Kellermann A (1994) Osteological development of the Antarctic silverfish Pleuragramma antarcticum (Nototheniidae). Cybium 18(3):251–271Google Scholar
  95. Yan YL, Miller CT, Nissen RM et al (2002) A zebrafish sox9 gene required for cartilage morphogenesis. Development 129(21):5065–5079. PMID:12397114Google Scholar
  96. Yan YL, Willoughby J, Liu D et al (2005) A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development 132(5):1069–1083. PMID:15689370CrossRefGoogle Scholar
  97. Ying Y, Zhao GQ (2001) Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol 232(2):484–492. PMID: 11401407CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Olga Voskoboinikova
    • 1
  • H. William DetrichIII
    • 2
  • R. Craig Albertson
    • 3
  • John H. Postlethwait
    • 4
  • Laura Ghigliotti
    • 4
  • Eva Pisano
    • 6
    • 5
  1. 1.Zoological Institute, Russian Academy of SciencesSaint PetersburgRussia
  2. 2.Department of Marine and Environmental SciencesMarine Science Center, Northeastern UniversityNahantUSA
  3. 3.Department of BiologyUniversity of Massachusetts AmherstAmherstUSA
  4. 4.Institute of NeuroscienceUniversity of OregonEugeneUSA
  5. 5.Institute of Marine Sciences (ISMAR) - CNRGenoaItaly
  6. 6.Department of Earth, Environment and Life Sciences (DISTAV), University of GenoaGenoaItaly

Personalised recommendations