Coordination Bonding: Electronic Structure and Properties

  • Fanica CimpoesuEmail author
  • Marilena Ferbinteanu


Coordination compounds, alternatively called complexes, are systems where metal ions (d-type transition elements or the f-elements, lanthanides and actinides) are linked to molecules that may have standalone identity (the ligands), showing local connectivities (coordination numbers) larger than those presumable by the valence rules. The supplement of linkage capabilities is realized by weak bonding interactions, ionic and partly covalent. This situation generates special properties, the loosely bonded “nervous” electrons causing various magnetic manifestations and electronic transitions in visible or near-infrared, strongly influenced by the coordination environment and electron counts of metal ions, as well as by the long-range interactions. The specifics of this bonding regime are treated with models belonging to the Ligand Field Theory, originating from the pre-computational era, but keeping their insightful benefits also in modern times, as tools for interpreting calculations in a phenomenological way. There are several classes of ligand field (LF) models, the classical paradigm being based on the expansion of effective Hamiltonian in spherical harmonics, as operators having numeric cofactors as parameters. This construct is a perennial, possible everlasting idea, exploiting in elegant manner the symmetry factors. Other versions, such as the so-called Angular Overlap Model (AOM) are closer to the chemist’s idea about the bonding capabilities of ligands. The computation of coordination systems is often a non-trivial task, the mastering of ligand field ideas offering useful guidelines in setting the input and reading the output. The coordination bonding regime is also encountered in many solid state systems (oxides, halides), the intrinsic electronic structure features of the metal ions and their interaction with the environment being the basis of important current or future-targeted applications in the material sciences. An excursus in this problematic is drawn in this chapter. If the reader is a novice to ligand field concepts, or in the calculations serving in this domain, the presented exposition will provide helpful clues and heuristic perspectives for an illuminating initiation. For instance, for the AOM in octahedral field, we give a shortcut proof of the master formula, not demanding the full assimilation of the technique. The difficulties of multi-parametric LF in terms of spherical harmonic operators are circumvented with picturesque color maps of the LF potential on the coordination sphere. When the reader knows the principles of LF, but is longing to go to the next level, of mastering the underlying algebra, this chapter has things to offer. The computer algebra insets help very much to reach high level exercises and proofs. The same goes for people acquainted with quantum calculations, and who may be interested to know hints and tricks related with the specifics and peculiarities of the electronic structure in d- and f-based complexes, conducting numeric experiments in the spirit of the LF paradigm. Besides, we introduce, as application phenomena worth knowing, inorganic thermochromism and magnetic anisotropy. Finally, we hope that even the readers with extensive expertise in LF algebra or state-of-the-art ab initio methods, will find here original clues, interpretations, and developments. Along with basic exposition of various computational techniques (CASSCF, DFT, TD-DFT), we explain insightful handling, marking the limits of interpretations (e.g. the TD-DFT inability for certain LF problems). A special emphasis is put on the first-principles modeling of the f-type complexes, where the authors brought pioneering contributions in the methodology of multi-configuration calculations applied to such systems. The challenge to be faced is the non-aufbau nature of the f shell of the lanthanide ions in complexes and lattices, which makes problematic the routine approach. Original interpretations and methodologies are also highlighted for the issue of magnetic anisotropy, an important manifestation resulted from the imbrication of the ligand field and spin-orbit effects. The phenomenological modeling and the ab initio calculations are placed on equal footing in this chapter.


Coordination compounds Complex compounds Ligand field theory Electrostatic model Multipole expansion Spherical harmonics Angular overlap model (AOM) Stevens equivalent operator techniques Spin-orbit coupling Magnetic properties Molecular magnetism Magnetic anisotropy Electronic spectra Thermochromism Isomerization Floppy stereochemistry Complete active space self-consistent field (CASSCF) Density functional theory (DFT) Time dependent density functional theory (TD-DFT) Model hamiltonians Fitted parameters Unitary transformations in CASSCF Imposed electron configurations in DFT Non-aufbau electronic structure State specific magnetization polar maps 


  1. Abragam A, Bleaney B (1970) Electron paramagnetic resonance. Clarendon Press, OxfordGoogle Scholar
  2. Adell B (1952) Die Geschwindigkeit der Rückwandlung von bestrahltem festem Nitropentaamminekobalt. Z Anorg Allg Chem 271:49–64CrossRefGoogle Scholar
  3. Adell B (1971) Uber die Einwirkung von Licht auf einige feste Salze vom Typus trans-[Co(en)2(NO2)(X)]Y. Z Anorg Allg Chem 386:122–128CrossRefGoogle Scholar
  4. ADF2013 (2015) SCM, theoretical chemistry, Vrije Universiteit, Amsterdam.
  5. Anderson DN, Willet RD (1974) The crystal structure of bis (isopropylammonium) tetrachlorocuprate (II). Inorg Chim Acta 8:167–175CrossRefGoogle Scholar
  6. Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488CrossRefGoogle Scholar
  7. Angeli C, Bories B, Cavallini A, Cimiraglia R (2006) Third-order multireference perturbation theory: the n-electron valence state perturbation-theory approach. J Chem Phys 124:054108CrossRefGoogle Scholar
  8. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys 114:10252–10264CrossRefGoogle Scholar
  9. Atanasov M, Daul CA, Penka Fowe E (2005) Chemical bonding in molecules and complexes containing d-elements based on DFT. Monatsh Chem 136:925–963CrossRefGoogle Scholar
  10. Bailar JC, Busch DH (eds) (1956) The chemistry of coordination compounds. Reinhold, New YorkGoogle Scholar
  11. Benelli C, Gatteschi D (2002) Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev 102:2369–2388CrossRefGoogle Scholar
  12. Bersuker IB (1984) The Jahn Teller effect and vibronic interactions in modern chemistry. Plenum, New YorkCrossRefGoogle Scholar
  13. Bethe H (1929) Termaufspaltung in Kristallen. Ann Phys 5:133–208CrossRefGoogle Scholar
  14. Bloomquist DR, Pressprich MR, Willett RD (1988) Thermochromism in copper(II) halide salts. 4. Bis (diethylammonium) tetrachlorocuprate (II), structure of the high-temperature phase and physical characterization of its two phases. J Am Chem Soc 110:7391–7398CrossRefGoogle Scholar
  15. Bloomquist DR, Willett RD (1981) Structures of two phases of bis (diethylammonium) tetrachlorozincate hydrate. Acta Crystallogr B 37:1353–1356CrossRefGoogle Scholar
  16. Bloomquist DR, Willet RD (1982) Thermochromic phase transitions in transition metal salts. Coord Chem Rev 47:125–164CrossRefGoogle Scholar
  17. Branzoli F, Carretta P, Filibian M, Zoppellaro G, Graf MJ, Galan-Mascaros JR, Fuhr O, Brink S, Ruben M (2009) Spin dynamics in the negatively charged Terbium (III) bis-phthalocyaninato complex. J Am Chem Soc 131:4387–4396CrossRefGoogle Scholar
  18. Bridgeman AJ, Gerloch M (1993) A cellular ligand-field model for ‘l-l’ spectral intensities. Mol Phys 79:1195–1213CrossRefGoogle Scholar
  19. Chibotaru LF (2013) Ab initio methodology for pseudospin Hamiltonians of anisotropic magnetic complexes. Adv Chem Phys 153:397–519Google Scholar
  20. Cimpoesu F, Dahan S, Ladeira S, Ferbinteanu M, Costes JP (2012) Chiral crystallization of a heterodinuclear Ni-Ln series: comprehensive analysis of the magnetic properties. Inorg Chem 51:11279–11293CrossRefGoogle Scholar
  21. Cimpoesu F, Ferbinteanu M (2014) Magnetic anisotropy in case studies. In: Putz MV (ed) Research horizons of nanosystems structure, properties and interactions. Apple Academics, Ontario, pp 251–292Google Scholar
  22. Cimpoesu F, Zaharia A, Stamate D, Panait P, Oprea CI, Gîrtu MA, Ferbinteanu M (2013) New insights in the bonding regime and ligand field in Wernerian complexes: a density functional study. Polyhedron 52:183–195CrossRefGoogle Scholar
  23. Ciofini I, Adamo C (2001) Intrinsic and environmental effects on the kinetic and thermodynamics of linkage isomerization in nitritopentaamminecobalt(III) complex. J Phys Chem A 105:1086–1092CrossRefGoogle Scholar
  24. Costes JP, Clemente-Juan JM, Dahan F, Milon J (2004) Unprecedented (Cu2Ln)n complexes (Ln = Gd3+, Tb3+): a new single chain magnet. Inorg Chem 43:8200–8202CrossRefGoogle Scholar
  25. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New YorkGoogle Scholar
  26. Cotton S (2006) Lanthanide and actinide chemistry. Wiley, New YorkCrossRefGoogle Scholar
  27. Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98:5555–5565CrossRefGoogle Scholar
  28. Day JH (1963) Thermochromism. Chem Rev 63:65–80CrossRefGoogle Scholar
  29. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) An effective method for modeling solvent effects in quantum mechanical calculations. J Chem Phys 105:1968–1986CrossRefGoogle Scholar
  30. Deeth RJ, Gerloch M (1986) A cellular ligand-field study of the CuCl4 2− ion in Cs2[CuCl4]. J Chem Soc, Dalton Trans 8:1531–1534CrossRefGoogle Scholar
  31. Eslami A (2004) Thermoanalytical study of linkage isomerism in coordination compounds. Part I. Reinvestigation of thermodynamic and thermokinetic of solid state interconversion of nitrito (ONO) and nitro (NO2) isomers of pentaaminecobalt(III) chloride by means of DSC. Thermochim Acta 409:189–193CrossRefGoogle Scholar
  32. Fedorov DG, Koseki S, Schmidt MW, Gordon MS (2003) Spin-orbit coupling in molecules: chemistry beyond the adiabatic approximation. Int Rev Phys Chem 22:551–592CrossRefGoogle Scholar
  33. Ferbinteanu M, Cimpoesu F, Tanase S (2015) Metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism. Struct Bond 163:185–229CrossRefGoogle Scholar
  34. Ferbinteanu M, Kajiwara T, Choi KY, Nojiri H, Nakamoto A, Kojima N, Cimpoesu F, Fujimura Y, Takaishi S, Yamashita M (2006) A binuclear Fe (III) Dy (III) single-molecule-magnet: quantum effects and models. J Am ChemSoc 128:9008–9009CrossRefGoogle Scholar
  35. Ferbinteanu M, Kajiwara T, Cimpoesu F, Katagari K, Yamashita M (2007) The magnetic anisotropy and assembling of the lanthanide coordination units in [Fe(bpca)2][Er(NO3)3(H2O)4]NO3. Polyhedron 26:2069–2073CrossRefGoogle Scholar
  36. Ferbinteanu M, Miyasaka H, Wernsdorfer W, Nakata K, Sugiura K, Yamashita M, Coulon C, Clérac R (2005) Single-chain magnet (NEt4)[Mn2(5-MeOsalen)2Fe(CN)6] made of MnIII-FeIII-MnIII trinuclear single-molecule magnet with an S T = 9/2 spin ground state. J Am Chem Soc 127:3090–3099CrossRefGoogle Scholar
  37. Ferguson GL, Zaslow B (1971) Crystal data and structure of [(NH3CH2CH2)2NH2] Cl(CuCl4) at 20 °C and 120 °C. Acta Cryst B27:849–852CrossRefGoogle Scholar
  38. Ferguson J (1964) Electronic absorption spectrum and structure of CuCl4 2−. J Chem Phys 40:3406–3410CrossRefGoogle Scholar
  39. Grenthe I, Nordin E (1979a) Nitrito-nitro linkage isomerization in the solid state. 1. X-ray crystallographic studies of trans-bis(ethylenediamine) (isothiocyanato) nitrito- and trans-bis(ethylenediamine)(isothiocyanato)nitrocobalt(III) perchlorate and iodide. Inorg Chem 18:1109–1116CrossRefGoogle Scholar
  40. Grenthe I, Nordin E (1979b) Nitrito-nitro linkage isomerization in the solid state. 2. A comparative study of the structures of nitrito- and nitropentaaminecobalt(III) dichloride. Inorg Chem 18:1869–1874CrossRefGoogle Scholar
  41. Harlow RL, Wells WJ, Watt GW, Simonsen SH (1974) Crystal structures of the green and yellow thermochromic modifications of bis (N-Methylphenethylammonium) tetrachlorocuprate (II). Discrete square-planar and flattened tetrahedral tetrachlorocuprate(2-)anions. Inorg Chem 13:2106–2111CrossRefGoogle Scholar
  42. Harlow RL, Wells WJ, Watt GW, Simonsen SH (1975) Crystal and molecular structure of bis[(+)-N, alpha.-dimethylphenethylammonium] tetrachlorocuprate (II). Relation between the electronic spectrum and the distortion of the tetrachlorocuprate chromophore from tetrahedral symmetry. Inorg Chem 14:1768–1772CrossRefGoogle Scholar
  43. Helmhotz L, Kruh RH (1952) The crystal structure of cesium chlorocuprate, Cs2CuCl4, and the spectrum of the chlorocuprate ion. J Am Chem Soc 74:1176–1181CrossRefGoogle Scholar
  44. Hill DR, Smith DW (1974) Electronic properties of bis (diethylammonium) tetrachlorocuprate (II). J Inorg Nucl Chem 36:466–467CrossRefGoogle Scholar
  45. Hitchman MA (1985) Chemical information from the polarized crystal spectra of transition metal complexes. In: Transition Metal Chemistry, Melson GA, Figgis BN (eds.). Marcel Dekker, New York, vol 9, pp 1–223Google Scholar
  46. Hitchman MA, James G (1984) The nature of the blue isomer of Ni(1,2-diaminoethane)2(NO2)2. Inorg Chim Acta 88:L19–L21CrossRefGoogle Scholar
  47. Ishikawa N (2010) Functional phthalocyanine molecular materials. Struct Bond 135:211–228CrossRefGoogle Scholar
  48. Ishikawa N, Iino T, Kaizu Y (2002) Determination of ligand-field parameters and f-electronic structures of hetero-dinuclear phthalocyanine complexes with a diamagnetic Yttrium(III) and a paramagnetic trivalent lanthanide ion. J Phys Chem A 106:9543–9550CrossRefGoogle Scholar
  49. Ishikawa N, Sugita M, Okubo T, Tanaka N, Iino T, Kaizu Y (2003) Determination of ligand-field parameters and f-electronic structures of double-decker bis (phthalocyaninato) lanthanide complexes. Inorg Chem 42:2440–2446CrossRefGoogle Scholar
  50. Ishikawa N, Sugita M, Wernsdorfer W (2005a) Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. J Am Chem Soc 127:3650–3651CrossRefGoogle Scholar
  51. Ishikawa N, Sugita M, Wernsdorfer W (2005b) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis (phthalocyaninato) terbium and bis (phthalocyaninato) dysprosium anions. Angew Chem Int Ed 44:2931–2935CrossRefGoogle Scholar
  52. Jensen JH (2001) Intermolecular exchange-induction and charge transfer: derivation of approximate formulas using nonorthogonal localized molecular orbitals. J Chem Phys 114:8775–8783CrossRefGoogle Scholar
  53. Jørgensen CK, Pappalardo R, Schmidtke HH (1963) Do the “ligand field” parameters in lanthanides represent weak covalent bonding? J Chem Phys 39:1422–1430CrossRefGoogle Scholar
  54. Jörgensen SM (1894) Zur Konstitution der Kobalt-, Chrom- und Rhodiumbasen. V. Z Anorg Chem 5:147–196Google Scholar
  55. Kahn O (1993) Molecular magnetism. VCH Publishers, New YorkGoogle Scholar
  56. Karlström G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrády P, Seijo L (2003) MOLCAS: a program package for computational chemistry. Comput Mat Sci 28:222–239CrossRefGoogle Scholar
  57. Katoh K, Yoshida Y, Yamashita M, Miyasaka H, Breedlove B, Kajiwara T, Takaishi S, Ishikawa N, Isshiki H, Zhang YF, Komeda T, Yamagishi M, Takeya J (2009) Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J Am Chem Soc 131:9967–9976CrossRefGoogle Scholar
  58. Khrustalev VN, Kostenko SO, Buzin MI, Korlyukov AA, Zubavichus YV, Kurykin MA, Antipin MY (2012) Highly flexible molecule “chameleon”: reversible thermochromism and phase transitions in solid copper(II) diiminate Cu[CF3–C(NH)–CF=C(NH)–CF3]2. Inorg Chem 51:10590–10602CrossRefGoogle Scholar
  59. Koseki S, Fedorov DG, Schmidt MW, Gordon MS (2001) Spin-orbit splittings in the third-row transition elements: comparison of effective nuclear charge and full Breit-Pauli calculations. J Phys Chem A 105:8262–8268CrossRefGoogle Scholar
  60. Landee CP, Roberts SA, Willett RD (1978) Low-temperature magnetic properties of [(C2H5)2NH2]CuCl4, a two-dimensional magnetic system. J Chem Phys 68:4574–4577CrossRefGoogle Scholar
  61. Lohr LL Jr, Lipscomb WN (1963) An LCAO-MO-study of static distortions of transition metal complexes. Inorg Chem 2:911–917CrossRefGoogle Scholar
  62. Lueken H (1999) Magnetochemie. B. G. Teubner, StuttgartCrossRefGoogle Scholar
  63. Marco de Lucas C, Rodriguez F, Dance JM, Moreno M, Tressaud A (1991) Luminescence of the new elpasolite Rb2KGaF6 doped with Cr3+. J Lumin 48–49:553–557CrossRefGoogle Scholar
  64. Marcotrigiano G, Menabue L, Pelacani GC (1976) Tetrahalo- and (mixed-tetrahalo) cuprates of the piperazinium dication: coordination geometry changes in some CuX42—anions. Inorg Chem 15:2333–2336CrossRefGoogle Scholar
  65. McDonald RG, Hichman MA (1986) Electronic “d–d” spectra of the planar tetrachlorocuprate(2−) ions in bis (methadonium) tetrachlorocuprate(II) and bis (creatininium) tetrachlorocuprate (II): analysis of the temperature dependence and vibrational fine structure. Inorg Chem 25:3273–3281CrossRefGoogle Scholar
  66. McDonald RG, Riley MJ, Hitchman MA (1988) Angular overlap treatment of the variation of the intensities and energies of the d-d transitions of the tetrachlorocuprate (2−) ion on distortion from a planar toward a tetrahedral geometry: interpretation of the electronic spectra of bis (N-benzylpiperazinium) tetrachlorocuprate (II) bis(hydrochloride) and N-(2-ammonioethyl)morpholinium tetrachlorocuprate (II). Inorg Chem 27:894–900CrossRefGoogle Scholar
  67. McDonald RG, Riley MJ, Hitchman MA (1989) Analysis of the vibrational fine structure in the electronic spectrum of the planar tetrachlorocuprate(II) ion in N-(2-ammonioethyl) morpholinium tetrachlorocuprate (II): evidence for a pseudo tetrahedral distortion in the 2A1g excited electronic state. Inorg Chem 28:752–758CrossRefGoogle Scholar
  68. Mishra A, Wernsdorfer W, Abboud K, Christou G (2004) Initial observation of magnetization hysteresis and quantum tunneling in mixed manganese-lanthanide single-molecule magnets. J Am Chem Soc 126:15648–15649CrossRefGoogle Scholar
  69. Moffitt W, Ballhausen CJ (1956) Quantum theory. Ann Rev Phys Chem 7:107–136CrossRefGoogle Scholar
  70. Nakano H (1993) Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J Chem Phys 99:7983–7992CrossRefGoogle Scholar
  71. Nakano H, Nakayama K, Hirao K, Dupuis M (1997) Transition state barrier height for the reaction H2CO-H2 + CO studied by multireference Moller-Plesset perturbation theory. J Chem Phys 106:4912–4917CrossRefGoogle Scholar
  72. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  73. Newman DJ, Ng BKC (2000) Crystal field handbook. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  74. Paulovic J, Cimpoesu F, Ferbinteanu M, Hirao K (2004) Mechanism of ferromagnetic coupling in copper(II)-gadolinium(III) complexes. J Am Chem Soc 126:3321–3331CrossRefGoogle Scholar
  75. Pierloot K (2001) Nondynamic correlation effects in transition metal coordination compounds. In: Cundari T (ed) Computational organometallic chemistry. Marcel Dekker, New York, pp 123–158Google Scholar
  76. Ramanantoanina H, Urland W, Cimpoesu F, Daul C (2014) The angular overlap model extended for two-open-shell f and d electrons. Phys Chem Chem Phys 16:12282–12290CrossRefGoogle Scholar
  77. Reber C, Gudel HU, Meyer G, Schleid T, Daul CA (1989) Optical spectroscopic and structural properties of vanadium(3+) doped fluoride, chloride, and bromide elpasolite lattices. Inorg Chem 28:3249–3258CrossRefGoogle Scholar
  78. Reinen D (2014) A new approach to treating vibronic coupling under stress: the strain-induced enhancement or suppression of Jahn-Teller distortions in tetrahedral CuIICl4-complexes, and the transition to octahedral structures. Coord Chem Rev 272:30–47CrossRefGoogle Scholar
  79. Riley MJ, Hitchman MA (1987) Temperature dependence of the electronic spectrum of the planar tetrachlorocuprate(2−) ion: role of the ground- and excited-state potential surfaces. Inorg Chem 26:3205–3215CrossRefGoogle Scholar
  80. Riley MJ, Neill D, Bernhardt PV, Byriel KA, Kennard CHL (1998) Thermochromism and structure of piperazinium tetrachlorocuprate(II) complexes. Inorg Chem 37:3635–3639CrossRefGoogle Scholar
  81. Roos BO, Andersson K, Fulscher MK, Malmqvist PA, Serrano-Andres L, Pierloot K, Merchan M (1996) Multiconfigurational perturbation theory: applications in electronic spectroscopy. Adv Chem Phys 93:219–331Google Scholar
  82. Schäffer CE (1967) The Angular Overlap Model Applied to Chiral Chromophores and the Parentage Interrelation of Absolute Configurations. Proc Roy Soc A 297:96–133Google Scholar
  83. Schäffer CE (1973) Two symmetry parametrizations of the angular overlap model of the ligand field: relation to the crystal field model. Struct Bond 14:69–110CrossRefGoogle Scholar
  84. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  85. Schönherr T, Atanasov M, Adamsky H (2003) Angular overlap model. In: Lever ABP, McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II. Elsevier, Oxford, vol 2, pp 443–455Google Scholar
  86. Sessoli R, Powell A (2009) Strategies towards single molecule magnets based on lanthanide ions. Coord Chem Rev 253:2328–2341CrossRefGoogle Scholar
  87. Skelton JM, Crespo-Otero R, Hatcher LE, Parker SC, Raithby PR, Walsh A (2015) Energetics, thermal isomerisation and photochemistry of the linkage-isomer system [Ni(Et4dien)(2-O, ON)(1-NO2)]. Cryst Eng Comm 17:383–394CrossRefGoogle Scholar
  88. Smith DW (1976) Chlorocuprates(II). Coord Chem Rev 21:93–158CrossRefGoogle Scholar
  89. Smith DW (1977) Angular overlap treatment of d-s and d-p mixing in chlorocuprates(II). Inorg Chim Acta 22:107–110CrossRefGoogle Scholar
  90. Sone K, Fukuda Y (1987) Inorganic thermochromism. Springer, BerlinCrossRefGoogle Scholar
  91. Stepanow S, Honolka J, Gambardella P, Vitali L, Abdurakhmanova N, Tseng TC, St Rauschenbach, St Tait, Sessi V, Klyatskaya S, Ruben M, Kern K (2010) Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato)terbium on a copper surface. J Am Chem Soc 132:11900–11901CrossRefGoogle Scholar
  92. Stevens KWH (1952) Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions. Proc Phys Soc A 65:209–215CrossRefGoogle Scholar
  93. Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared exponent basis sets for the first and second row atoms. J Chem Phys 81:6026–6033CrossRefGoogle Scholar
  94. Tanase S, Reedijk J (2006) Chemistry and magnetism of cyanido-bridged d-f assemblies. Coord Chem Rev 250:2501–2510CrossRefGoogle Scholar
  95. te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler TJ (2001) Chemistry with ADF. Comput Chem 22:931–967CrossRefGoogle Scholar
  96. Trueba A, Garcia-Fernandez P, García-Lastra JM, Aramburu JA, Barriuso MT, Moreno M (2011) Spectrochemical series and the dependence of Racah and 10dq parameters on the metal-ligand distance: microscopic origin. J Phys Chem A 115:1423–1432CrossRefGoogle Scholar
  97. Urland W (1976) On the ligand-field potential for f electrons in the angular overlap model. Chem Phys 14:393–401CrossRefGoogle Scholar
  98. Urland W (1981) The assessment of the crystal-field parameters for f”-electron systems by the angular overlap model: rare-earth ions in LiMF4. Chem Phys Lett 77:58–62CrossRefGoogle Scholar
  99. Van Oort MJM, Neshvad G, White MA (1987) An investigation of factors governing conformational disorder of hydrocarbon chains in the solid state. J Solid State Chem 69:145–152CrossRefGoogle Scholar
  100. Van Vleck JH (1932) Theory of the variations in paramagnetic anisotropy among different salts of the iron group. Phys Rev 41:208–215CrossRefGoogle Scholar
  101. Vanquickenborne LG, Ceulemans A (1981) Ligand field spectra of square-planar platinum(II) and palladium(II) complexes. Inorg Chem 20:796–800CrossRefGoogle Scholar
  102. von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. WIREs Comput Mol Sci 2:43–62CrossRefGoogle Scholar
  103. Werner A (1904) Lehrbuch der Stereochemie. Gustav Fischer, JenaGoogle Scholar
  104. Wesolowski TA, Warshel A (1993) Frozen density functional approach for ab-initio calculations of solvated molecules. J Phys Chem 97:8050–8053CrossRefGoogle Scholar
  105. Willett RD, Haugen JA, Lebsack J, Morrey J (1974) Thermochromism in copper(II) chlorides: coordination geometry changes in tetrachlorocuprate(2-) anions. Inorg Chem 13:2510–2513CrossRefGoogle Scholar
  106. Wolfram Research (2014) Inc. Mathematica. Champaign, Illinois Google Scholar
  107. Wolfram S (2003) The mathematica book, 5th edn. Wolfram-Media, Champaign, IllinoisGoogle Scholar
  108. Wybourne BG (1965) Spectroscopic properties of rare earths. Wiley Interscience, New YorkGoogle Scholar
  109. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. I. The transition state method. Theor Chim Acta 46:1–10CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physical Chemistry “Ilie Murgulescu”BucharestRomania
  2. 2.Department of Inorganic ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations