Skip to main content

Wave Function Theories and Electronic Structure Methods: Quantum Chemistry, from Atoms to Molecules

  • Chapter
  • First Online:
  • 1836 Accesses

Abstract

The chapter continues the discussion of the atomic structure, at the level of clarifying concreteness and details, presenting also the basic methods of electronic structure theories, constituting the keystone of the developments debated in the next chapters. The Slater determinants are introduced as primitives for the construction of many-electrons wave functions, using the one-electron orbital functions as basic ingredients. The orbitals, known from the introductory part of atom theory, are generalized at the molecular level. The so-called Slater rules for handling the Hamiltonian matrix elements of the Slater determinants constructed from orthogonal orbitals are presented as the basic algorithm for the practical approach of quantum chemistry. Besides, the rules are generalizable to other operators working with one- and two-electron terms. The Slater rules are generalized, at the end of the chapter, for the case of non-orthogonal orbitals, implying non-orthogonal Slater determinants bases. With the help of Slater rules and symmetry dichotomy of the two-electron integrals in the atomic shells (the Slater–Condon parameters), several poly-electronic atoms are analyzed in quite advanced detail, writing down analytical formulas for the energies of their states and relating to the experimental data on spectral terms . This exercise is important, beyond the domain of free atoms, since in large classes of compounds and materials with technical applicability one deals with embedded ions, whose properties are approachable by an atom-alike phenomenology. An exemplification on lanthanide emission spectra, used in domestic lighting devices, occasions a quick excursus in the open challenges of current materials sciences and the rational design of properties. Going from atoms to molecules, the use of atomic basis sets as the background of quantum chemistry is debated in detail, with hands-on illustration of the various options: Slater-type orbitals , Gaussian-type bases, plane waves , and numerical bases . A critical eye is turned upon Gaussian-type orbitals , signaling certain significant failures of bases rated as rich and accurate. The underperformance is determined by the lack of appropriate polynomial factors in the definition of atomic orbitals assignable to high quantum numbers, an intrinsic design deficiency in the customary implementation and use of Gaussians. The common belief is that the limitation of Gaussians consists in the assumed use of  \( \text{exp}(-\alpha r^2)\) –type functions instead of more physical  \( \text{exp}(-\alpha r)\) ones, while the lack of proper polynomial factors can cause more severe drawbacks. In turn, numeric basis sets are observed as surprisingly good performers and possible alternative technical options. The final part of the chapter presents the fundamental electronic structure methods based on wave functions and first principles operators: the Hartree–Fock technique, introducing self-consistency, brought to a higher level by the multi-configurational approach, and the Valence Bond theory . The so-called Complete Active Space Self-Consistent Field methods are near the top of powerfulness among actually available methods, which, with broad conceptual scope and flexible technical leverages, allow the approach to a large number of problems, with the right picture of their mechanisms and manifestations. Certain other methodological varieties, such as second-order perturbation corrections to self-consistent Hartree–Fock or multi-configurational techniques, or the Coupled Cluster expansion are discarded from the actual synopsis. From our perspective, such procedures can bring only incremental changes to the physical picture, sometimes not in a well-tempered manner, while their non-variational nature is a hidden drawback, at least in conceptual respects, and a heavy burden to the computation routines. Somewhat greater attention is paid to the Valence Bond frame, acknowledging its merit as a foundational model of the chemical bond and also its potential in a modern methodological reshaping.

This is a preview of subscription content, log in via an institution.

References

  • ADF (2015) SCM, Theoretical chemistry. Vrije Universiteit, Amsterdam. http://www.scm.com

  • Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation-theory with a CASSCF reference function. J Phys Chem 94:5483–5488

    Article  CAS  Google Scholar 

  • Bachmann V, Jüstel T, Meijerink A, Ronda C, Schmidt PJ (2006) Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions. J Lumin 121:441–449

    Article  CAS  Google Scholar 

  • Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  CAS  Google Scholar 

  • Collins JB, Schleyer PVR, Binkley JS, Pople JA (1976) Self-consistent molecular orbital methods. 17. Geometries and binding energies of second-row molecules: a comparison of three basis sets. J Chem Phys 64:5142–5151

    Article  CAS  Google Scholar 

  • Condon EU (1930) The theory of complex spectra. Phys Rev 36:1121–1133

    Article  CAS  Google Scholar 

  • Cooper DL (1998) Thorstein Thorsteinsson Joseph Gerratt, Modern VB representations of CASSCF wave functions and the fully-variational optimization of modern VB wave functions using the CASVB strategy. Adv Quantum Chem 32:51–67

    Article  CAS  Google Scholar 

  • Cooper DL (ed) (2002) Valence bond theory. Elsevier, Amsterdam

    Google Scholar 

  • Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98:5555–5565

    Article  CAS  Google Scholar 

  • de Castro EVR, Jorge FE (1998) Accurate universal Gaussian basis set for all atoms of the periodic table. J Chem Phys 108:5225–5229

    Article  Google Scholar 

  • Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  • Di Sipio L, Tondello E, De Michelis G, Oleari L (1970) Slater–Condon parameters for atoms and ions of the second transition metal series. Inorg Chem 9:927–930

    Article  Google Scholar 

  • Dorenbos P (2003) Energy of the first 4f7 → 4f65d transition of Eu2+ in inorganic compounds. J Lumin 104:239–260

    Article  CAS  Google Scholar 

  • Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  • Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS (1982) Self-consistent molecular orbital methods. 23. A polarization-type basis set for 2nd-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  • Fuchs M, Scheffler M (1999) Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput Phys Commun 119:67–98

    Article  CAS  Google Scholar 

  • Gallup GA (2002) Valence bond methods: theory and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty JY, Allan DC (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25:478–492

    Article  Google Scholar 

  • Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1982) Self-consistent molecular orbital methods. 22. Small split-valence basis sets for second-row elements. J Am Chem Soc 104:2797–2803

    Article  CAS  Google Scholar 

  • Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations: potentials for the transition-metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J Chem Phys 56:2257–2266

    Article  CAS  Google Scholar 

  • Hehre WJ, Stewart RF, Pople JA (1969) Self-consistent molecular orbital methods. 1. Use of Gaussian expansions of Slater-type atomic orbitals. J Chem Phys 51:2657–2664

    Article  CAS  Google Scholar 

  • Heisenberg W (1926) Multi-body problem and resonance in quantum mechanics. Z Phys 38:411–426

    Article  Google Scholar 

  • Heitler W, London F (1927) Interaction between neutral atoms and homopolar binding. Z Phys 44:455–472

    Article  CAS  Google Scholar 

  • Hirao K, Nakano H, Nakayama K, Dupuis M (1996) A complete active space valence bond (CASVB) method. J Chem Phys 105:9227–9239

    Article  CAS  Google Scholar 

  • Hoffmann R, Shaik S, Hiberty PC (2003) A conversation on VB vs. MO theory: a never ending rivalry? Acc Chem Res 36:750–756

    Article  CAS  Google Scholar 

  • Holzwarth NAW, Tackett AR, Matthews GE (2001) A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions. Comput Phys Commun 135:329–347

    Article  CAS  Google Scholar 

  • Höppe HA (2009) Recent developments in the field of inorganic phosphors. Angew Chem Int Ed 48:3572–3582

    Article  Google Scholar 

  • Hückel E (1930) Zur Quantentheorie der Doppelbindung. Z Phys 60:423–456

    Article  Google Scholar 

  • Hund F (1928) Zur Deutung der Molekelspektren. IV. Z Phys 51:759–795

    Article  CAS  Google Scholar 

  • Jensen F (2007) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  • Jorge FE, de Castro EVR, da Silva ABF (1997) A universal Gaussian basis set for atoms cerium through lawrencium generated with the generator coordinate Hartree–Fock method. J Comp Chem 18:1565–1569

    Article  CAS  Google Scholar 

  • Jüstel T, Nikol H, Ronda C (1998) New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3084–3103

    Article  Google Scholar 

  • Karlström G, Lindh R, Malmqvist PÅ, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) MOLCAS: a program package for computational chemistry. Comput Mater Sci 28:222–239

    Article  Google Scholar 

  • Kielkopf JF, Crosswhite HM (1970) Preliminary analysis of the spectrum of triply ionized gadolinium. J Opt Soc Am 60:347–351

    Article  CAS  Google Scholar 

  • Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines atoms. Physica 1:104–113

    Article  Google Scholar 

  • Kotani M, Amemiya A, Ishiguro E, Kimura T (1955) Table of molecular integrals. Maruzen Co., Tokyo

    Google Scholar 

  • Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6:15–50

    Article  CAS  Google Scholar 

  • Li J, Duke B, McWeeny R (2010) VB2000 version 2.7. SciNet Technologies, San Diego

    Google Scholar 

  • Li J, McWeeny R (2002) VB2000: pushing valence bond theory to new limits. Int J Quantum Chem 89:208–216

    Article  CAS  Google Scholar 

  • Li YQ, de With G, Hintzen HT (2008) The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ LED conversion phosphor. J Solid State Chem 181:515–524

    Article  CAS  Google Scholar 

  • Li YQ, van Steen JEJ, van Krevel JWH, Botty G, Delsing ACA, DiSalvo FJ, de With G, Hintzen HT (2006) Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors. J Alloys Compd 417:273–279

    Article  CAS  Google Scholar 

  • Martin WC, Zalubas R, Hagan L (1978) Atomic energy levels: the rare-earth elements. In: National standard reference data series-NSRDS-NBS, vol 60. National Bureau of Standards, USA

    Google Scholar 

  • Morton DC, Wu Q, Drake GWF (2006) Energy levels for the stable isotopes of atomic helium (4He I and 3He I). Can J Phys 84:83–105

    Article  CAS  Google Scholar 

  • Mukai T, Yamada M, Nakamura S (1998) Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes. Jpn J Appl Phys 37:L1358–L1361

    Article  CAS  Google Scholar 

  • Mullliken RS (1928a) The assignment of quantum numbers for electrons in molecules. I. Phys Rev 32(2):186–222

    Article  Google Scholar 

  • Mullliken RS (1928b) The assignment of quantum numbers for electrons in molecules. II. The correlation of molecular and atomic states. Phys Rev 32:761–772

    Article  Google Scholar 

  • Nakamura S, Fasol G (1997) The blue laser diode. Springer, Berlin

    Book  Google Scholar 

  • Nakamura S, Senoh M, Iwasa N, Nagahama S (1995) High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys 34:L797–L799

    Article  CAS  Google Scholar 

  • Nakano H (1993) Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J Chem Phys 99:7983–7992

    Article  CAS  Google Scholar 

  • Nakano H, Nakayama K, Hirao K, Dupuis M (1997) Transition state barrier height for the reaction H2CO–H2 + CO studied by multireference Moller-Plesset perturbation theory. J Chem Phys 106:4912–4917

    Article  CAS  Google Scholar 

  • NIST: National Institute of Standards and Technology (2015) Atomic spectra database levels data. http://physics.nist.gov/cgi-bin/ASD/energy1.pl

  • Nugent LJ, Baybarz RD, Burnett JL, Ryan JL (1973) Electron-transfer and f-d absorption bands of some lanthanide and actinide complexes and the standard (II–III) oxidation potential for each member of the lanthanide and actinide series. J Phys Chem 77:1528–1539

    Article  CAS  Google Scholar 

  • Pantazis AD, Neese F (2009) All-electron scalar relativistic basis sets for the lanthanides. J Chem Theory Comput 5:2229–2238

    Article  CAS  Google Scholar 

  • Paschen F (1919) Das spektrum des neon. Ann Phys (Leipzig) 365:405–453

    Article  Google Scholar 

  • Pauling L (1931) The nature of the chemical bond: application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J Am Chem Soc 53:1367–1400

    Article  CAS  Google Scholar 

  • Pauling L (1939) The nature of the chemical bond, 3rd ed., 1960. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Pou-Amérigo R, Merchán M, Nebot-Gil I, Widmark PO, Roos BO (1995) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor Chim Acta 92:149–181

    Article  Google Scholar 

  • Ramanantoanina H, Cimpoesu F, Gottel C, Sahnoun M, Herden B, Suta M, Wickleder C, Urland W, Daul C (2015) Prospecting lighting applications with ligand field tools and density functional theory: a first-principles account of the 4f(7)-4f(6)5d(1) luminescence of CsMgBr3:Eu2+. Inorg Chem 54:8319–8326

    Article  CAS  Google Scholar 

  • Ramanantoanina H, Urland W, Cimpoesu F, Daul C (2013a) Ligand field density functional theory calculation of the 4f2-4f15d1 transitions in the quantum cutter Cs2KYF6:Pr3+. Phys Chem Chem Phys 15:13902–13910

    Article  CAS  Google Scholar 

  • Ramanantoanina H, Urland W, García-Fuente A, Cimpoesu F, Daul C (2013b) Calculation of the 4f1 → 4f0d1 transitions in Ce3+ -doped systems by ligand field density functional theory. Chem Phys Lett 588:260–266

    Article  CAS  Google Scholar 

  • Ramanantoanina H, Urland W, García-Fuente A, Cimpoesu F, Daul C (2014) Ligand field density functional theory for the prediction of future domestic lighting. Phys Chem Chem Phys 16:14625–14634

    Article  CAS  Google Scholar 

  • Riblet P, Hirayama H, Kinoshita A, Hirata A, Sugano T, Aoyagi Y (1999) Determination of photoluminescence mechanism in InGaN quantum wells. Appl Phys Lett 75:2241–2243

    Article  CAS  Google Scholar 

  • Roos BO, Andersson K, Fulscher MK, Malmqvist PA, Serrano-Andres L, Pierloot K, Merchan M (1996) Multiconfigurational perturbation theory: applications in electronic spectroscopy. Adv Chem Phys 93:219–331

    CAS  Google Scholar 

  • Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2005a) Main group atoms and dimers studied with a new relativistic ANO basis set. J Phys Chem A 108:2851–2858

    Article  Google Scholar 

  • Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2005b) New relativistic ANO basis sets for actinide atoms. Chem Phys Lett 409:295–299

    Article  CAS  Google Scholar 

  • Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2008) New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatomic abd LuF3. Phys Chem A 112:11431–11435

    Article  CAS  Google Scholar 

  • Roos BO, Veryazov V, Widmark PO (2003) Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers. Theor Chem Acc 111:345–351

    Article  Google Scholar 

  • Roos O, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2005c) New relativistic ANO basis sets for transition metal atoms. J Phys Chem A 109:6575–6579

    Article  CAS  Google Scholar 

  • Rumer G (1932) Zum Theorie der Spinvalenz. Nachrichten der Akademie der Wissenschaften in Göttingen. Mathematisch-Physikalische Klasse, Göttingen, pp 337–341

    Google Scholar 

  • Saloman EB, Sansonetti CJ (2004) Wavelengths, energy level classifications, and energy levels for the spectrum of neutral neon. J Phys Chem Ref Data 33:1113–1158

    Article  CAS  Google Scholar 

  • Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  • Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  • Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  • Schwarz K, Blaha P (2003) Solid state calculations using WIEN2k. Comput Mat Sci 28:259–273

    Article  CAS  Google Scholar 

  • Serber R (1934) Extension of the Dirac vector model to include several configurations. Phys Rev 45:461–467

    Article  Google Scholar 

  • Shaik S, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley, Hoboken, NJ

    Google Scholar 

  • Slater J (1929) The theory of complex spectra. Phys Rev 34:1293–1322

    Article  CAS  Google Scholar 

  • Slater J (1931) Directed valence in polyatomic molecules. Phys Rev 37:481–489

    Article  CAS  Google Scholar 

  • Slater J (1932) Analytic atomic wave functions. Phys Rev 42:33–43

    Article  CAS  Google Scholar 

  • Slater J, Verma HC (1929) The theory of complex spectra. Phys Rev 34:1293–1295

    Article  CAS  Google Scholar 

  • Song L, Chen Z, Ying F, Song J, Chen X, Su P, Mo Y, Zhang Q, Wu W (2012) XMVB 2.0: an ab initio non-orthogonal valence bond program. Xiamen University, Xiamen

    Google Scholar 

  • Song L, Mo Y, Zhang Q, Wu W (2005) XMVB: a program for ab initio nonorthogonal valence bond computations. J Comput Chem 26:514–521

    Article  CAS  Google Scholar 

  • Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J Chem Phys 81:6026–6033

    Article  Google Scholar 

  • Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Relativistic compact effective potentials and efficient, shared-exponent basis-sets for the 3rd-row, 4th-row, and 5th-row atoms. Can J Chem 70:612–630

    Article  CAS  Google Scholar 

  • te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler TJ (2001) Chemistry with ADF. Comput Chem 22:931–967

    Article  Google Scholar 

  • Tondello E, De Michelis G, Oleari L, Di Sipio L (1967) Slater–Condon parameters for atoms and ions of the first transition period. Coord Chem Rev 2:53–63

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  CAS  Google Scholar 

  • Weber V, Daul C, Baltensperger R (2004) Radial numerical integrations based on the sinc function. Comput Phys Commun 163:133–142

    Article  CAS  Google Scholar 

  • Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  • Weigend F, Furche F, Ahlrichs R (2003) Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. J Chem Phys 119:12753–12762

    Article  CAS  Google Scholar 

  • Widmark PO, Malmqvist PÅ, Roos BO (1990) Density-matrix averaged atomic natural orbital (ANO) basis-sets for correlated molecular wave-functions 1: 1st row atoms. Theor Chim Acta 77:291–306

    Article  CAS  Google Scholar 

  • Wolfram Research Inc. (2014) Mathematica. Champaign, Illinois

    Google Scholar 

  • Wolfram S (2003) The mathematica book, 5th edn. Wolfram-Media, Champaign, Illinois

    Google Scholar 

  • Woon DE, Dunning TH Jr (1993) Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  • Žukauskas A, Vaicekauskas R, Ivanauskas F, Vaitkevicius H, Shur MS (2008) Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering. Appl Phys Lett 93:051115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanica Cimpoesu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cimpoesu, F., Putz, M.V., Ferbinteanu, M. (2018). Wave Function Theories and Electronic Structure Methods: Quantum Chemistry, from Atoms to Molecules. In: Structural Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-55875-2_2

Download citation

Publish with us

Policies and ethics