Advertisement

Store-Operated Calcium Entry: An Historical Overview

  • James W. Putney
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 981)

Abstract

Store-operated calcium entry is a mechanism of Ca2+ signaling that has evolved from theory to molecules over a period of 30 years. This brief overview summarizes the major milestones that have led to the current concepts regarding the mechanisms and regulation of this most widely encountered of calcium signaling mechanisms.

Keywords

Calcium signaling Calcium channels Store-operated channels Intracellular calcium stores Signaling mechanisms History 

References

  1. 1.
    Ringer S (1883) A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol (Lond) 4:29–42CrossRefGoogle Scholar
  2. 2.
    Heilbrunn LV (1952) An outline of general physiology, 3rd edn. Saunders, Philadelphia, PA, pp 105–740Google Scholar
  3. 3.
    Petersen OH, Michalak M, Verkhratsky A (2005) Calcium signalling: past, present and future. Cell Calcium 38:161–169CrossRefPubMedGoogle Scholar
  4. 4.
    Perry SV (2008) Background to the discovery of troponin and Setsuro Ebashi’s contribution to our knowledge of the mechanism of relaxation in striated muscle. Biochem Biophys Res Commun 369:43–48CrossRefPubMedGoogle Scholar
  5. 5.
    Endo M (2006) Calcium ion as a second messenger with special reference to excitation coupling. J Pharmacol Sci 100:519–524CrossRefPubMedGoogle Scholar
  6. 6.
    Ebashi S, Kodama A, Ebashi F (1968) Troponin. I. Preparation and physiological function. J Biochem 64:465–477CrossRefPubMedGoogle Scholar
  7. 7.
    Cheung WY (1970) Cyclic 3′,5′-nucleotide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Comm 38:533–538CrossRefPubMedGoogle Scholar
  8. 8.
    Klee CB, Newton DL (1985) Calmodulin: an overview. In: Parratt JR (ed) Control and manipulation of calcium movement. Raven Press, New York, pp 131–145Google Scholar
  9. 9.
    Soderling TR (1999) The Ca2+-calmodulin-dependent protein kinase cascade. Trends Biochem Sci 24:232–236CrossRefPubMedGoogle Scholar
  10. 10.
    Ebashi S, Lipmann F (1962) Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J Cell Biol 14:389–400CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Hasselbach W, Makinose M (1962) ATP and active transport. Biochem Biophys Res Commun 7:132–136CrossRefPubMedGoogle Scholar
  12. 12.
    Blackmore PF, Dehaye JP, Strickland WG, Exton JH (1979) alpha-Adrenergic mobilization of hepatic mitochondrial calcium. Febs Lett 100:117–120CrossRefPubMedGoogle Scholar
  13. 13.
    Borle AB (1974) Cyclic AMP stimulation of calcium efflux from kidney, liver and heart mitochondria. J Membr Biol 16:221–236CrossRefPubMedGoogle Scholar
  14. 14.
    Murphy E, Coll K, Rich TL, Williamson JR (1980) Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem 255:6600–6608PubMedGoogle Scholar
  15. 15.
    Burgess GM, McKinney JS, Fabiato A et al (1983) Calcium pools in saponin-permeabilized guinea-pig hepatocytes. J Biol Chem 258:15336–15345PubMedGoogle Scholar
  16. 16.
    Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial store in pancreatic cells by inositol-1,4,5-trisphosphate. Nature 306:67–68CrossRefPubMedGoogle Scholar
  18. 18.
    Hodgkin AL, Keynes RD (1957) Movements of labelled calcium in squid giant axons. J Physiol 138:253–281CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Bianchi CP, Shanes AM (1959) Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol 42:803–815CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Fatt P, Ginsborg BL (1958) The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol 142:516–543CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Bohr DF (1963) Vascular smooth muscle: dual effect of calcium. Science 139:597–599CrossRefPubMedGoogle Scholar
  22. 22.
    Bohr DF (1973) Vascular smooth muscle updated. Circ Res 32:665–672CrossRefPubMedGoogle Scholar
  23. 23.
    Putney JW, Poggioli J, Weiss SJ (1981) Receptor regulation of calcium release and calcium permeability in parotid gland cells. Phil Trans R Soc Lond B 296:37–45CrossRefGoogle Scholar
  24. 24.
    Van Breemen C, Farinas B, Gerba P, McNaughton ED (1972) Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ Res 30:44–54CrossRefPubMedGoogle Scholar
  25. 25.
    Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334CrossRefPubMedGoogle Scholar
  26. 26.
    Grynkiewicz G, Poenie M, Tsien RY (1986) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450Google Scholar
  27. 27.
    Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C4CrossRefPubMedGoogle Scholar
  28. 28.
    Abdel-Latif AA, Akhtar R, Hawthorne JN (1977) Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P]phosphate. Biochem J 162:61–73CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Kirk CJ, Creba JA, Downes CP, Michell RH (1981) Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function. Biochem Soc Trans 9:377–379CrossRefPubMedGoogle Scholar
  30. 30.
    Putney JW (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12CrossRefPubMedGoogle Scholar
  31. 31.
    Parod RJ, Putney JW (1978) The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland. J Physiol (Lond) 281:371–381CrossRefGoogle Scholar
  32. 32.
    Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J Physiol (Lond) 317:263–279CrossRefGoogle Scholar
  33. 33.
    Takemura H, Putney JW (1989) Capacitative calcium entry in parotid acinar cells. Biochem J 258:409–412CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Jackson TR, Patterson SI, Thastrup O, Hanley MR (1988) A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J 253:81–86CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Takemura H, Hughes AR, Thastrup O, Putney JW (1989) Activation of calcium entry by the tumor promoter, thapsigargin, in parotid acinar cells. Evidence that an intracellular calcium pool, and not an inositol phosphate, regulates calcium fluxes at the plasma membrane. J Biol Chem 264:12266–12271PubMedGoogle Scholar
  36. 36.
    Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–355CrossRefPubMedGoogle Scholar
  37. 37.
    Lewis RS, Cahalan MD (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current. Cell Reg 1:99–112Google Scholar
  38. 38.
    Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol (Lond) 465:359–386CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Parekh AB, Putney JW (2005) Store-operated calcium channels. Physiol Rev 85:757–810CrossRefPubMedGoogle Scholar
  41. 41.
    Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364:809–814CrossRefPubMedGoogle Scholar
  42. 42.
    Csutora P, Su Z, Kim HY et al (1999) Calcium influx factor is synthesized by yeast and mammalian cells depleted of organellar calcium stores. Proc Nat Acad Sci USA 96:121–126CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Thomas D, Hanley MR (1995) Evaluation of calcium influx factors from stimulated Jurkat T-lymphocytes by microinjection into Xenopus oocytes. J Biol Chem 270:6429–6432CrossRefPubMedGoogle Scholar
  44. 44.
    Trepakova ES, Csutora P, Hunton DL et al (2000) Calcium influx factor (CIF) directly activates store-operated cation channels in vascular smooth muscle cells. J Biol Chem 275:26158–26163CrossRefPubMedGoogle Scholar
  45. 45.
    Smani T, Zakharov SI, Leno E et al (2003) Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem 278:11909–11915CrossRefPubMedGoogle Scholar
  46. 46.
    Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198CrossRefPubMedGoogle Scholar
  47. 47.
    Hardie RC, Minke B (1995) Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. Cell Calcium 18:256–274CrossRefPubMedGoogle Scholar
  48. 48.
    Vaca L, Sinkins WG, Hu Y et al (1994) Activation of recombinant trp by thapsigargin in Sf9 insect cells. Am J Physiol 267:C1501–C1505CrossRefPubMedGoogle Scholar
  49. 49.
    Kiselyov K, Xu X, Mozhayeva G et al (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482CrossRefPubMedGoogle Scholar
  50. 50.
    Liu X, Wang W, Singh BB et al (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411CrossRefPubMedGoogle Scholar
  51. 51.
    Philipp S, Trost C, Warnat J et al (2000) Trp4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J Biol Chem 275:23965–23972CrossRefPubMedGoogle Scholar
  52. 52.
    Zitt C, Zobel A, Obukhov AG et al (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16:1189–1196CrossRefPubMedGoogle Scholar
  53. 53.
    DeHaven WI, Jones BF, Petranka JG et al (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Hofmann T, Obukhov AG, Schaefer M et al (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–262CrossRefPubMedGoogle Scholar
  55. 55.
    Schaefer M, Plant TD, Obukhov AG et al (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275:17517–17526CrossRefPubMedGoogle Scholar
  56. 56.
    Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297–328CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Ambudkar IS, Ong HL (2007) Organization and function of TRPC channelosomes. Pflugers Arch 455:187–200CrossRefPubMedGoogle Scholar
  58. 58.
    Vazquez G, Wedel BJ, Aziz O et al (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742:21–36CrossRefPubMedGoogle Scholar
  59. 59.
    Hurst RS, Zhu X, Boulay G et al (1998) Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Letters 422:333–338CrossRefPubMedGoogle Scholar
  60. 60.
    Beck B, Zholos A, Sydorenko V et al (2006) TRPC7 is a receptor-operated DAG-activated channel in human keratinocytes. J Invest Dermatol 126:1982–1993CrossRefPubMedGoogle Scholar
  61. 61.
    Trebak M, Lemonnier L, DeHaven WI et al (2009) Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 457:757–769CrossRefPubMedGoogle Scholar
  62. 62.
    Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Nat Acad Sci USA 99:7461–7466CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019CrossRefPubMedGoogle Scholar
  64. 64.
    Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Williams RT, Manji SS, Parker NJ et al (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357:673–685CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Johnstone LS, Graham SJ, Dziadek MA (2010) STIM proteins: integrators of signalling pathways in development, differentiation and disease. J Cell Mol Med 14:1890–1903CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Prakriya M (2009) The molecular physiology of CRAC channels. Immunol Rev 231:88–98CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185CrossRefPubMedGoogle Scholar
  70. 70.
    Vig M, Peinelt C, Beck A et al (2006b) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Zhang SL, Yeromin AV, Zhang XH et al (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci USA 103:9357–9362CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Prakriya M, Feske S, Gwack Y et al (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233CrossRefPubMedGoogle Scholar
  73. 73.
    Vig M, Beck A, Billingsley JM et al (2006a) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Yeromin AV, Zhang SL, Jiang W et al (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Thompson JL, Shuttleworth TJ (2013) How many Orai’s does it take to make a CRAC channel? Sci Rep 3:1961CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Honnappa S, Gouveia SM, Weisbrich A et al (2009) An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–376CrossRefPubMedGoogle Scholar
  78. 78.
    Smyth JT, Petranka JG, Boyles RR et al (2009) Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 11:1465–1472CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Cheng KT, Liu X, Ong HL et al (2011) Local Ca(2)+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca(2)+ signals required for specific cell functions. PLoS Biol 9:e1001025CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Mignen O, Thompson JL, Shuttleworth TJ (2008) Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J Physiol (Lond) 586:185–195CrossRefGoogle Scholar
  81. 81.
    Gonzalez-Cobos JC, Zhang X, Zhang W et al (2013) Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia. Circ Res 112:1013–1025CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Mignen O, Thompson JL, Shuttleworth TJ (2009) The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 587:4181–4197CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209CrossRefPubMedGoogle Scholar
  84. 84.
    Putney JW (2011) The physiological function of store-operated calcium entry. Neurochem Res 36:1157–1165CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Scientist Emeritus, National Institute of Environmental Health Sciences – NIHResearch Triangle ParkUSA

Personalised recommendations