Membrane Dynamics and Calcium Signaling pp 149-178 | Cite as
IP3 Receptor Properties and Function at Membrane Contact Sites
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.
Keywords
Apoptosis Autophagy Ca2+ microdomains Cell death Cell survival Endoplasmic reticulum IP3 receptor Lysosomes Membrane contact sites MitochondriaAbbreviations
- ALS
Amyotrophic lateral sclerosis
- AMPK
AMP-activated kinase
- ATG
Autophagy-related
- BIRD-2
Bcl-2/IP3R disruptor-2 peptide
- CICR
Ca2+-induced Ca2+ release
- CREB
cAMP response element-binding protein
- DT40 TKO
DT40 IP3R triple knock-out
- ER
Endoplasmic reticulum
- Fis1
Fission 1 homologue
- GRP75
Glucose-regulated protein 75
- GRP78/BiP
Glucose-regulated protein 78
- GSK3β
Glycogen synthase kinase-3β
- IMM
Inner mitochondrial membrane
- IBC
IP3-binding core
- IP3
Inositol 1,4,5-trisphosphate
- IP3R
IP3 receptor
- LC3
Microtubule-associated protein light chain 3
- LRRK2
Leucine-rich repeat kinase 2
- MAM
Mitochondria-associated ER membrane
- MCU
Mitochondrial Ca2+ uniporter
- Mfn
Mitofusin
- mPTP
Mitochondrial permeabilization transition pore
- mTORC1
Mechanistic target of rapamycin complex 1
- OMM
Outer mitochondrial membrane
- NAADP
Nicotinic acid adenine dinucleotide phosphate
- PACS-2
Phosphofurin acidic cluster sorting protein 2
- PERK
Protein kinase RNA-like ER kinase
- PIP3
Phosphatidylinositol 3,4,5-trisphosphate
- PKB/Akt
Protein kinase B
- PML
Promyelocytic leukemia
- PTEN
Phosphatase and tensin homolog
- PTPIP51
Protein tyrosine phosphatase-interacting protein-51
- ROS
Reactive oxygen species
- RyR
Ryanodine receptor
- SERCA
Sarco-/endoplasmic reticulum Ca2+ ATPase
- TCA
Tricarboxylic acid
- TFEB
Transcription factor EB
- TMX
Thioredoxin-like transmembrane protein
- TPC
Two-pore channel
- TRPML
Transient receptor potential mucolipin
- ULK1/2
Atg1/Unc-51-like kinase 1/2
- UPR
Unfolded protein response
- VAPB
Vesicle-associated protein B
- VDAC
Voltage-dependent anion channel
Notes
Acknowledgements
GR is recipient of a Ph.D. fellowship of the Research Fund—Flanders (FWO). Work performed in the laboratory of the authors was supported by research grants of the FWO, the Research Council of the KU Leuven and the Interuniversity Attraction Poles Programmes (Belgian Science Policy).
References
- 1.Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21. https://doi.org/10.1038/35036035CrossRefPubMedGoogle Scholar
- 2.Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529. https://doi.org/10.1038/nrm1155CrossRefPubMedGoogle Scholar
- 3.Vandecaetsbeek I, Vangheluwe P, Raeymaekers L et al (2011) The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 3:a004184. https://doi.org/10.1101/cshperspect.a004184CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Prins D, Michalak M (2011) Organellar calcium buffers. Cold Spring Harb Perspect Biol 3:a004069. https://doi.org/10.1101/cshperspect.a004069CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Lanner JT (2012) Ryanodine receptor physiology and its role in disease. Adv Exp Med Biol 740:217–234. https://doi.org/10.1007/978-94-007-2888-2_9CrossRefPubMedGoogle Scholar
- 6.Vermassen E, Parys JB, Mauger J-P (2004) Subcellular distribution of the inositol 1,4,5-trisphosphate receptors: functional relevance and molecular determinants. Biol Cell 96:3–17. https://doi.org/10.1016/j.biolcel.2003.11.004CrossRefPubMedGoogle Scholar
- 7.Fedorenko OA, Popugaeva E, Enomoto M et al (2014) Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 739:39–48. https://doi.org/10.1016/j.ejphar.2013.10.074CrossRefPubMedGoogle Scholar
- 8.Foskett JK, White C, Cheung K-H, Mak D-OD (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658. https://doi.org/10.1152/physrev.00035.2006CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Mikoshiba K (2015) Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 57:217–227. https://doi.org/10.1016/j.jbior.2014.10.001CrossRefPubMedGoogle Scholar
- 10.Parys JB, De Smedt H (2012) Inositol 1,4,5-trisphosphate and its receptors. Adv Exp Med Biol 740:255–279. https://doi.org/10.1007/978-94-007-2888-2_11CrossRefPubMedGoogle Scholar
- 11.Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251. https://doi.org/10.1054/ceca.1999.0090CrossRefPubMedGoogle Scholar
- 12.Bittremieux M, Parys JB, Pinton P, Bultynck G (2016) ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca2+ signaling. Biochim Biophys Acta 1863:1364–1378. https://doi.org/10.1016/j.bbamcr.2016.01.002CrossRefPubMedGoogle Scholar
- 13.Bosanac I, Michikawa T, Mikoshiba K, Ikura M (2004) Structural insights into the regulatory mechanism of IP3 receptor. Biochim Biophys Acta 1742:89–102. https://doi.org/10.1016/j.bbamcr.2004.09.016CrossRefPubMedGoogle Scholar
- 14.Uchida K, Miyauchi H, Furuichi T et al (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278:16551–16560. https://doi.org/10.1074/jbc.M300646200CrossRefPubMedGoogle Scholar
- 15.Bosanac I, Alattia J-R, Mal TK et al (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420:696–700. https://doi.org/10.1038/nature01268CrossRefPubMedGoogle Scholar
- 16.Bosanac I, Yamazaki H, Matsu-Ura T et al (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203. https://doi.org/10.1016/j.molcel.2004.11.047CrossRefPubMedGoogle Scholar
- 17.Lin C-C, Baek K, Lu Z (2011) Apo and InsP3-bound crystal structures of the ligand-binding domain of an InsP3 receptor. Nat Struct Mol Biol 18:1172–1174. https://doi.org/10.1038/nsmb.2112CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Seo M-D, Velamakanni S, Ishiyama N et al (2012) Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483:108–112. https://doi.org/10.1038/nature10751CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Hamada K, Miyatake H, Terauchi A, Mikoshiba K (2017) IP3-mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X-ray crystallography. Proc Natl Acad Sci USA 114:4661–4666. https://doi.org/10.1073/pnas.1701420114CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Fan G, Baker ML, Wang Z et al (2015) Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 527:336–341. https://doi.org/10.1038/nature15249CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Serysheva II, Baker M, Fan G (2018) Structural insights into IP3R function. Adv Exp Med Biol 981Google Scholar
- 22.Alzayady KJ, Wang L, Chandrasekhar R et al (2016) Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. Sci Signal 9:ra35. https://doi.org/10.1126/scisignal.aad6281CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Taylor CW, Konieczny V (2016) IP3 receptors: take four IP3 to open. Sci Signal 9:pe1. https://doi.org/10.1126/scisignal.aaf6029CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Takahashi M, Kagasaki T, Hosoya T, Takahashi S (1993) Adenophostins A and B: potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 46:1643–1647CrossRefGoogle Scholar
- 25.Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754. https://doi.org/10.1038/351751a0CrossRefPubMedGoogle Scholar
- 26.Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443–446CrossRefPubMedGoogle Scholar
- 27.Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103–1122CrossRefPubMedGoogle Scholar
- 28.Parys JB, Sernett SW, DeLisle S et al (1992) Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. J Biol Chem 267:18776–18782PubMedGoogle Scholar
- 29.Bezprozvanny I, Ehrlich BE (1993) ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron 10:1175–1184CrossRefPubMedGoogle Scholar
- 30.Bootman MD, Taylor CW, Berridge MJ (1992) The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem 267:25113–25119PubMedGoogle Scholar
- 31.Parys JB, Missiaen L, De Smedt H et al (1993) Bell-shaped activation of inositol-1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth-muscle cells. Pflugers Arch 424:516–522CrossRefPubMedGoogle Scholar
- 32.Tovey SC, Dedos SG, Taylor EJA et al (2008) Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. J Cell Biol 183:297–311. https://doi.org/10.1083/jcb.200803172CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Tovey SC, Dedos SG, Rahman T et al (2010) Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase. J Biol Chem 285:12979–12989. https://doi.org/10.1074/jbc.M109.096016CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Konieczny V, Tovey SC, Mataragka S et al (2017) Cyclic AMP recruits a discrete intracellular Ca2+ store by unmasking hypersensitive IP3 receptors. Cell Rep 18:711–722. https://doi.org/10.1016/j.celrep.2016.12.058CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Patterson RL, Boehning D, Snyder SH (2004) Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73:437–465CrossRefPubMedGoogle Scholar
- 36.Vervloessem T, Yule DI, Bultynck G, Parys JB (2015) The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca2+-release channel. Biochim Biophys Acta 1853:1992–2005. https://doi.org/10.1016/j.bbamcr.2014.12.006CrossRefPubMedGoogle Scholar
- 37.Iwai M, Michikawa T, Bosanac I et al (2007) Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem 282:12755–12764. https://doi.org/10.1074/jbc.M609833200CrossRefPubMedGoogle Scholar
- 38.Miyakawa T, Maeda A, Yamazawa T et al (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308. https://doi.org/10.1093/emboj/18.5.1303CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Newton CL, Mignery GA, Südhof TC (1994) Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269:28613–28619PubMedGoogle Scholar
- 40.Tu H, Wang Z, Nosyreva E et al (2005) Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. Biophys J 88:1046–1055. https://doi.org/10.1529/biophysj.104.049593CrossRefPubMedGoogle Scholar
- 41.Vanlingen S, Sipma H, De Smet P et al (2000) Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms. Biochem J 346:275–280CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Mak DO, McBride S, Foskett JK (2001) Regulation by Ca2+ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely distinguishes types 1 and 3 InsP3 receptors. J Gen Physiol 117:435–446CrossRefPubMedPubMedCentralGoogle Scholar
- 43.Mak D-OD, McBride SMJ, Petrenko NB, Foskett JK (2003) Novel regulation of calcium inhibition of the inositol 1,4,5-trisphosphate receptor calcium-release channel. J Gen Physiol 122:569–581. https://doi.org/10.1085/jgp.200308808CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Tu H, Wang Z, Bezprozvanny I (2005) Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J 88:1056–1069. https://doi.org/10.1529/biophysj.104.049601CrossRefPubMedGoogle Scholar
- 45.Betzenhauser MJ, Wagner LE, Iwai M et al (2008) ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors. Differing ATP sensitivities and molecular determinants of action. J Biol Chem 283:21579–21587. https://doi.org/10.1074/jbc.M801680200CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Missiaen L, Parys JB, Sienaert I et al (1998) Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem 273:8983–8986CrossRefPubMedGoogle Scholar
- 47.Maes K, Missiaen L, De Smet P et al (2000) Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. Cell Calcium 27:257–267. https://doi.org/10.1054/ceca.2000.0121CrossRefPubMedGoogle Scholar
- 48.Alzayady KJ, Wagner LE, Chandrasekhar R et al (2013) Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits. J Biol Chem 288:29772–29784. https://doi.org/10.1074/jbc.M113.502203CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Bultynck G, Szlufcik K, Kasri NN et al (2004) Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Biochem J 381:87–96. https://doi.org/10.1042/BJ20040072CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Bultynck G, Sienaert I, Parys JB et al (2003) Pharmacology of inositol trisphosphate receptors. Pflugers Arch 445:629–642. https://doi.org/10.1007/s00424-002-0971-1CrossRefPubMedGoogle Scholar
- 51.Saleem H, Tovey SC, Molinski TF, Taylor CW (2014) Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor. Br J Pharmacol 171:3298–3312. https://doi.org/10.1111/bph.12685CrossRefPubMedPubMedCentralGoogle Scholar
- 52.Swarbrick JM, Riley AM, Mills SJ, Potter BVL (2015) Designer small molecules to target calcium signalling. Biochem Soc Trans 43:417–425. https://doi.org/10.1042/BST20140293CrossRefPubMedGoogle Scholar
- 53.Fredericks GJ, Hoffmann FW, Rose AH et al (2014) Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc Natl Acad Sci USA 111:16478–16483. https://doi.org/10.1073/pnas.1417176111CrossRefPubMedPubMedCentralGoogle Scholar
- 54.Hamada K, Terauchi A, Nakamura K et al (2014) Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 111:E3966–E3975. https://doi.org/10.1073/pnas.1409730111CrossRefPubMedPubMedCentralGoogle Scholar
- 55.Bultynck G, Vermassen E, Szlufcik K et al (2003) Calcineurin and intracellular Ca2+-release channels: regulation or association? Biochem Biophys Res Commun 311:1181–1193CrossRefPubMedGoogle Scholar
- 56.Vanderheyden V, Devogelaere B, Missiaen L et al (2009) Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 1793:959–970. https://doi.org/10.1016/j.bbamcr.2008.12.003CrossRefPubMedGoogle Scholar
- 57.Prole DL, Taylor CW (2016) Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 594:2849–2866. https://doi.org/10.1113/JP271139CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Ando H, Mizutani A, Kiefer H et al (2006) IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell 22:795–806. https://doi.org/10.1016/j.molcel.2006.05.017CrossRefPubMedGoogle Scholar
- 59.Devogelaere B, Beullens M, Sammels E et al (2007) Protein phosphatase-1 is a novel regulator of the interaction between IRBIT and the inositol 1,4,5-trisphosphate receptor. Biochem J 407:303–311. https://doi.org/10.1042/BJ20070361CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Michikawa T, Hirota J, Kawano S et al (1999) Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron 23:799–808CrossRefPubMedGoogle Scholar
- 61.Missiaen L, Parys JB, Weidema AF et al (1999) The bell-shaped Ca2+ dependence of the inositol 1,4, 5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin. J Biol Chem 274:13748–13751CrossRefPubMedGoogle Scholar
- 62.Patel S, Morris SA, Adkins CE et al (1997) Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci USA 94:11627–11632CrossRefPubMedPubMedCentralGoogle Scholar
- 63.Sienaert I, Nadif Kasri N, Vanlingen S et al (2002) Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 365:269–277. https://doi.org/10.1042/BJ20020144CrossRefPubMedPubMedCentralGoogle Scholar
- 64.Yamada M, Miyawaki A, Saito K et al (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 308:83–88CrossRefPubMedPubMedCentralGoogle Scholar
- 65.Haynes LP, Tepikin AV, Burgoyne RD (2004) Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J Biol Chem 279:547–555. https://doi.org/10.1074/jbc.M309617200CrossRefPubMedGoogle Scholar
- 66.Kasri NN, Holmes AM, Bultynck G et al (2004) Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J 23:312–321. https://doi.org/10.1038/sj.emboj.7600037CrossRefPubMedGoogle Scholar
- 67.Yang J, McBride S, Mak D-OD et al (2002) Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc Natl Acad Sci USA 99:7711–7716. https://doi.org/10.1073/pnas.102006299CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Chen R, Valencia I, Zhong F et al (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166:193–203. https://doi.org/10.1083/jcb.200309146CrossRefPubMedPubMedCentralGoogle Scholar
- 69.Eckenrode EF, Yang J, Velmurugan GV et al (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285:13678–13684. https://doi.org/10.1074/jbc.M109.096040CrossRefPubMedPubMedCentralGoogle Scholar
- 70.Rong Y-P, Bultynck G, Aromolaran AS et al (2009) The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci USA 106:14397–14402. https://doi.org/10.1073/pnas.0907555106CrossRefPubMedPubMedCentralGoogle Scholar
- 71.White C, Li C, Yang J et al (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat Cell Biol 7:1021–1028. https://doi.org/10.1038/ncb1302CrossRefPubMedPubMedCentralGoogle Scholar
- 72.Xu S, Xu Y, Chen L et al (2017) RCN1 suppresses ER stress-induced apoptosis via calcium homeostasis and PERK-CHOP signaling. Oncogenesis 6:e304. https://doi.org/10.1038/oncsis.2017.6CrossRefPubMedPubMedCentralGoogle Scholar
- 73.Decuypere J-P, Welkenhuyzen K, Luyten T et al (2011) Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy 7:1472–1489CrossRefPubMedPubMedCentralGoogle Scholar
- 74.Vicencio JM, Ortiz C, Criollo A et al (2009) The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16:1006–1017. https://doi.org/10.1038/cdd.2009.34CrossRefPubMedGoogle Scholar
- 75.Higo T, Hattori M, Nakamura T et al (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98. https://doi.org/10.1016/j.cell.2004.11.048CrossRefPubMedGoogle Scholar
- 76.Higo T, Hamada K, Hisatsune C et al (2010) Mechanism of ER stress-induced brain damage by IP3 receptor. Neuron 68:865–878. https://doi.org/10.1016/j.neuron.2010.11.010CrossRefPubMedGoogle Scholar
- 77.Hayashi T, Su TP (2001) Regulating ankyrin dynamics: Roles of sigma-1 receptors. Proc Natl Acad Sci USA 98:491–496. https://doi.org/10.1073/pnas.021413698CrossRefPubMedPubMedCentralGoogle Scholar
- 78.Boehning D, Patterson RL, Sedaghat L et al (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061. https://doi.org/10.1038/ncb1063CrossRefPubMedGoogle Scholar
- 79.Akl H, Bultynck G (2013) Altered Ca2+ signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim Biophys Acta 1835:180–193. https://doi.org/10.1016/j.bbcan.2012.12.001PubMedGoogle Scholar
- 80.Ivanova H, Kerkhofs M, La Rovere R, Bultynck G (2017) Endoplasmic reticulum–mitochondrial Ca2+ fluxes underlying cancer cell survival. Front Oncol 7:Article 70. https://doi.org/10.3389/fonc.2017.00070CrossRefPubMedGoogle Scholar
- 81.Decrock E, De Bock M, Wang N et al (2013) IP3, a small molecule with a powerful message. Biochim Biophys Acta 1833:1772–1786. https://doi.org/10.1016/j.bbamcr.2012.12.016CrossRefPubMedGoogle Scholar
- 82.Distelhorst CW, Bootman MD (2011) Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca2+ signaling and disease. Cell Calcium 50:234–241. https://doi.org/10.1016/j.ceca.2011.05.011CrossRefPubMedPubMedCentralGoogle Scholar
- 83.Ivanova H, Vervliet T, Missiaen L et al (2014) Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta 1843:2164–2183. https://doi.org/10.1016/j.bbamcr.2014.03.007CrossRefPubMedGoogle Scholar
- 84.Joseph SK, Hajnóczky G (2007) IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 12:951–968. https://doi.org/10.1007/s10495-007-0719-7CrossRefPubMedGoogle Scholar
- 85.La Rovere RML, Roest G, Bultynck G, Parys JB (2016) Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 60:74–87. https://doi.org/10.1016/j.ceca.2016.04.005CrossRefPubMedGoogle Scholar
- 86.Smaili SS, Pereira GJS, Costa MM et al (2013) The role of calcium stores in apoptosis and autophagy. Curr Mol Med 13:252–265CrossRefPubMedGoogle Scholar
- 87.Bootman MD, Chehab T, Bultynck G, et al (2018) Autophagy and calcium signalling: do we have a consensus? Cell Calcium. https://doi.org/10.1016/j.ceca.2017.08.005.
- 88.Ghislat G, Knecht E (2013) Ca2+-sensor proteins in the autophagic and endocytic traffic. Curr Protein Pept Sci 14:97–110CrossRefPubMedPubMedCentralGoogle Scholar
- 89.Parys JB, Decuypere J-P, Bultynck G (2012) Role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy. Cell Commun Signal CCS 10:17. https://doi.org/10.1186/1478-811X-10-17CrossRefPubMedGoogle Scholar
- 90.Sun F, Xu X, Wang X, Zhang B (2016) Regulation of autophagy by Ca2+. Tumour Biol 37(12):15467–15476. https://doi.org/10.1007/s13277-016-5353-yCrossRefPubMedCentralGoogle Scholar
- 91.Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63. https://doi.org/10.1038/nrm3722CrossRefPubMedGoogle Scholar
- 92.Letai AG (2008) Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 8:121–132. https://doi.org/10.1038/nrc2297CrossRefPubMedGoogle Scholar
- 93.Tait SWG, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 5:a008706. https://doi.org/10.1101/cshperspect.a008706CrossRefPubMedPubMedCentralGoogle Scholar
- 94.Pinton P, Giorgi C, Siviero R et al (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418. https://doi.org/10.1038/onc.2008.308CrossRefPubMedPubMedCentralGoogle Scholar
- 95.Hwang M-S, Schwall CT, Pazarentzos E et al (2014) Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death Differ 21:1733–1745. https://doi.org/10.1038/cdd.2014.84CrossRefPubMedPubMedCentralGoogle Scholar
- 96.Bonora M, Bononi A, De Marchi E et al (2013) Role of the c subunit of the F0 ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683. https://doi.org/10.4161/cc.23599CrossRefPubMedPubMedCentralGoogle Scholar
- 97.Giorgio V, von Stockum S, Antoniel M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892. https://doi.org/10.1073/pnas.1217823110CrossRefPubMedPubMedCentralGoogle Scholar
- 98.Giorgio V, Guo L, Bassot C, et al (2018) Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. https://doi.org/10.1016/j.ceca.2017.05.004
- 99.Giorgio V, Burchell V, Schiavone M et al (2017) Ca2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep 18(7):1065–1076CrossRefPubMedGoogle Scholar
- 100.Bender T, Martinou J-C (2013) Where killers meet--permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb Perspect Biol 5:a011106. https://doi.org/10.1101/cshperspect.a011106CrossRefPubMedPubMedCentralGoogle Scholar
- 101.Wang HG, Pathan N, Ethell IM et al (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343CrossRefPubMedGoogle Scholar
- 102.Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833:3460–3470. https://doi.org/10.1016/j.bbamcr.2013.06.028CrossRefPubMedGoogle Scholar
- 103.Urra H, Dufey E, Lisbona F et al (2013) When ER stress reaches a dead end. Biochim Biophys Acta 1833:3507–3517. https://doi.org/10.1016/j.bbamcr.2013.07.024CrossRefPubMedGoogle Scholar
- 104.Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435. https://doi.org/10.1152/physrev.00030.2009CrossRefPubMedGoogle Scholar
- 105.Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376. https://doi.org/10.1038/cdd.2014.143CrossRefPubMedGoogle Scholar
- 106.Liu Y, Shoji-Kawata S, Sumpter RM et al (2013) Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA 110:20364–20371. https://doi.org/10.1073/pnas.1319661110CrossRefPubMedPubMedCentralGoogle Scholar
- 107.Bento CF, Renna M, Ghislat G et al (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85:685–713. https://doi.org/10.1146/annurev-biochem-060815-014556CrossRefPubMedGoogle Scholar
- 108.Wesselborg S, Stork B (2015) Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 72:4721–4757. https://doi.org/10.1007/s00018-015-2034-8CrossRefPubMedPubMedCentralGoogle Scholar
- 109.Hamasaki M, Furuta N, Matsuda A et al (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393. https://doi.org/10.1038/nature11910CrossRefPubMedGoogle Scholar
- 110.Hayashi-Nishino M, Fujita N, Noda T et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437. https://doi.org/10.1038/ncb1991CrossRefPubMedGoogle Scholar
- 111.Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5:1180–1185CrossRefPubMedGoogle Scholar
- 112.Roberts R, Ktistakis NT (2013) Omegasomes: PI3P platforms that manufacture autophagosomes. Essays Biochem 55:17–27. https://doi.org/10.1042/bse0550017CrossRefPubMedGoogle Scholar
- 113.Proikas-Cezanne T, Takacs Z, Dönnes P, Kohlbacher O (2015) WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 128:207–217. https://doi.org/10.1242/jcs.146258CrossRefPubMedGoogle Scholar
- 114.Decuypere J-P, Kindt D, Luyten T et al (2013) mTOR-controlled autophagy requires intracellular Ca2+ signaling. PloS One 8:e61020. https://doi.org/10.1371/journal.pone.0061020CrossRefPubMedPubMedCentralGoogle Scholar
- 115.Grotemeier A, Alers S, Pfisterer SG et al (2010) AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal 22:914–925. https://doi.org/10.1016/j.cellsig.2010.01.015CrossRefPubMedGoogle Scholar
- 116.Høyer-Hansen M, Bastholm L, Szyniarowski P et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193–205. https://doi.org/10.1016/j.molcel.2006.12.009CrossRefPubMedGoogle Scholar
- 117.Luyten T, Welkenhuyzen K, Roest G et al (2017) Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2+. Biochim Biophys Acta 1864:947–956. https://doi.org/10.1016/j.bbamcr.2017.02.013CrossRefPubMedGoogle Scholar
- 118.Messai Y, Noman MZ, Hasmim M et al (2014) ITPR1 protects renal cancer cells against natural killer cells by inducing autophagy. Cancer Res 74:6820–6832. https://doi.org/10.1158/0008-5472.CAN-14-0303CrossRefPubMedGoogle Scholar
- 119.Engedal N, Torgersen ML, Guldvik IJ et al (2013) Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy 9:1475–1490. https://doi.org/10.4161/auto.25900CrossRefPubMedGoogle Scholar
- 120.Gulati P, Gaspers LD, Dann SG et al (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7:456–465. https://doi.org/10.1016/j.cmet.2008.03.002CrossRefPubMedPubMedCentralGoogle Scholar
- 121.Khan MT, Joseph SK (2010) Role of inositol trisphosphate receptors in autophagy in DT40 cells. J Biol Chem 285:16912–16920. https://doi.org/10.1074/jbc.M110.114207CrossRefPubMedPubMedCentralGoogle Scholar
- 122.Sarkar S, Floto RA, Berger Z et al (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111. https://doi.org/10.1083/jcb.200504035CrossRefPubMedPubMedCentralGoogle Scholar
- 123.Cárdenas C, Foskett JK (2012) Mitochondrial Ca2+signals in autophagy. Cell Calcium 52:44–51. https://doi.org/10.1016/j.ceca.2012.03.001CrossRefPubMedPubMedCentralGoogle Scholar
- 124.Decuypere J-P, Bultynck G, Parys JB (2011) A dual role for Ca2+ in autophagy regulation. Cell Calcium 50:242–250. https://doi.org/10.1016/j.ceca.2011.04.001CrossRefPubMedGoogle Scholar
- 125.East DA, Campanella M (2013) Ca2+ in quality control: an unresolved riddle critical to autophagy and mitophagy. Autophagy 9:1710–1719. https://doi.org/10.4161/auto.25367CrossRefPubMedGoogle Scholar
- 126.Rimessi A, Bonora M, Marchi S et al (2013) Perturbed mitochondrial Ca2+ signals as causes or consequences of mitophagy induction. Autophagy 9:1677–1686. https://doi.org/10.4161/auto.24795CrossRefPubMedGoogle Scholar
- 127.Vicencio JM, Lavandero S, Szabadkai G (2010) Ca2+, autophagy and protein degradation: thrown off balance in neurodegenerative disease. Cell Calcium 47:112–121. https://doi.org/10.1016/j.ceca.2009.12.013CrossRefPubMedGoogle Scholar
- 128.Decuypere J-P, Monaco G, Bultynck G et al (2011) The IP3 receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 1813:1003–1013. https://doi.org/10.1016/j.bbamcr.2010.11.023CrossRefPubMedGoogle Scholar
- 129.Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578. https://doi.org/10.1038/nrm3412CrossRefPubMedGoogle Scholar
- 130.Giacomello M, Pellegrini L (2016) The coming of age of the mitochondria-ER contact: a matter of thickness. Cell Death Differ 23:1417–1427. https://doi.org/10.1038/cdd.2016.52CrossRefPubMedPubMedCentralGoogle Scholar
- 131.Danese A, Patergnani S, Bonora M et al (2017) Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim Biophys Acta 1858(8):615–627. https://doi.org/10.1016/j.bbabio.2017.01.003CrossRefPubMedGoogle Scholar
- 132.Giorgi C, Missiroli S, Patergnani S et al (2015) Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 22:995–1019. https://doi.org/10.1089/ars.2014.6223CrossRefPubMedGoogle Scholar
- 133.Herrera-Cruz MS, Simmen T (2017) Of yeast, mice and men: MAMs come in two flavors. Biol Direct 12:3. https://doi.org/10.1186/s13062-017-0174-5CrossRefPubMedPubMedCentralGoogle Scholar
- 134.Naon D, Scorrano L (2014) At the right distance: ER-mitochondria juxtaposition in cell life and death. Biochim Biophys Acta 1843:2184–2194. https://doi.org/10.1016/j.bbamcr.2014.05.011CrossRefPubMedGoogle Scholar
- 135.van Vliet AR, Verfaillie T, Agostinis P (2014) New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843:2253–2262. https://doi.org/10.1016/j.bbamcr.2014.03.009CrossRefPubMedGoogle Scholar
- 136.Vervliet T, Clerix E, Seitaj B et al (2017) Modulation of Ca2+ signaling by anti-apoptotic B-cell lymphoma 2 proteins at the endoplasmic reticulum–mitochondrial interface. Front Oncol 7:Article 75. https://doi.org/10.3389/fonc.2017.00075CrossRefPubMedGoogle Scholar
- 137.Csordás G, Renken C, Várnai P et al (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921. https://doi.org/10.1083/jcb.200604016CrossRefPubMedPubMedCentralGoogle Scholar
- 138.Filadi R, Theurey P, Pizzo P (2017) The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium 62:1–15. https://doi.org/10.1016/j.ceca.2017.01.003CrossRefPubMedGoogle Scholar
- 139.Paillusson S, Stoica R, Gómez-Suaga P et al (2016) There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases. Trends Neurosci 39:146–157. https://doi.org/10.1016/j.tins.2016.01.008CrossRefPubMedPubMedCentralGoogle Scholar
- 140.Szabadkai G, Bianchi K, Várnai P et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911. https://doi.org/10.1083/jcb.200608073CrossRefPubMedPubMedCentralGoogle Scholar
- 141.Csordás G, Thomas AP, Hajnóczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108. https://doi.org/10.1093/emboj/18.1.96CrossRefPubMedPubMedCentralGoogle Scholar
- 142.Csordás G, Várnai P, Golenár T et al (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132. https://doi.org/10.1016/j.molcel.2010.06.029CrossRefPubMedPubMedCentralGoogle Scholar
- 143.Giacomello M, Drago I, Bortolozzi M et al (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290. https://doi.org/10.1016/j.molcel.2010.04.003CrossRefPubMedGoogle Scholar
- 144.Murgia M, Rizzuto R (2015) Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter. Cell Calcium 58:11–17. https://doi.org/10.1016/j.ceca.2014.11.001CrossRefPubMedGoogle Scholar
- 145.de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610. https://doi.org/10.1038/nature07534CrossRefPubMedGoogle Scholar
- 146.Naon D, Zaninello M, Giacomello M et al (2016) Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci USA 113:11249–11254. https://doi.org/10.1073/pnas.1606786113CrossRefPubMedPubMedCentralGoogle Scholar
- 147.Cerqua C, Anesti V, Pyakurel A et al (2010) Trichoplein/mitostatin regulates endoplasmic reticulum-mitochondria juxtaposition. EMBO Rep 11:854–860. https://doi.org/10.1038/embor.2010.151CrossRefPubMedPubMedCentralGoogle Scholar
- 148.Sugiura A, Nagashima S, Tokuyama T et al (2013) MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell 51:20–34. https://doi.org/10.1016/j.molcel.2013.04.023CrossRefPubMedGoogle Scholar
- 149.Cosson P, Marchetti A, Ravazzola M, Orci L (2012) Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study. PloS One 7:e46293. https://doi.org/10.1371/journal.pone.0046293CrossRefPubMedPubMedCentralGoogle Scholar
- 150.Filadi R, Greotti E, Turacchio G et al (2015) Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA 112:E2174–E2181. https://doi.org/10.1073/pnas.1504880112CrossRefPubMedPubMedCentralGoogle Scholar
- 151.Leal NS, Schreiner B, Pinho CM et al (2016) Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production. J Cell Mol Med 20:1686–1695. https://doi.org/10.1111/jcmm.12863CrossRefPubMedPubMedCentralGoogle Scholar
- 152.Wang PTC, Garcin PO, Fu M et al (2015) Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria. J Cell Sci 128:2759–2765. https://doi.org/10.1242/jcs.171132CrossRefPubMedGoogle Scholar
- 153.Filadi R, Greotti E, Turacchio G et al (2017) On the role of Mitofusin 2 in endoplasmic reticulum-mitochondria tethering. Proc Natl Acad Sci USA 114:E2266–E2267. https://doi.org/10.1073/pnas.1616040114CrossRefPubMedPubMedCentralGoogle Scholar
- 154.Naon D, Zaninello M, Giacomello M et al (2017) Reply to Filadi et al.: does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria? Proc Natl Acad Sci USA 114:E2268–E2269. https://doi.org/10.1073/pnas.1618610114CrossRefPubMedPubMedCentralGoogle Scholar
- 155.Walker AK, Atkin JD (2011) Stress signaling from the endoplasmic reticulum: a central player in the pathogenesis of amyotrophic lateral sclerosis. IUBMB Life 63:754–763. https://doi.org/10.1002/iub.520PubMedGoogle Scholar
- 156.De Vos KJ, Mórotz GM, Stoica R et al (2012) VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 21:1299–1311. https://doi.org/10.1093/hmg/ddr559CrossRefPubMedGoogle Scholar
- 157.Nishimura AL, Mitne-Neto M, Silva HC et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831CrossRefPubMedPubMedCentralGoogle Scholar
- 158.Iwasawa R, Mahul-Mellier A-L, Datler C et al (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30:556–568. https://doi.org/10.1038/emboj.2010.346CrossRefPubMedGoogle Scholar
- 159.Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127. https://doi.org/10.1083/jcb.200212059CrossRefPubMedPubMedCentralGoogle Scholar
- 160.Simmen T, Aslan JE, Blagoveshchenskaya AD et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729. https://doi.org/10.1038/sj.emboj.7600559CrossRefPubMedPubMedCentralGoogle Scholar
- 161.Verfaillie T, Rubio N, Garg AD et al (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19:1880–1891. https://doi.org/10.1038/cdd.2012.74CrossRefPubMedPubMedCentralGoogle Scholar
- 162.Gellerich FN, Gizatullina Z, Gainutdinov T et al (2013) The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. IUBMB Life 65:180–190. https://doi.org/10.1002/iub.1131CrossRefPubMedGoogle Scholar
- 163.McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425CrossRefPubMedGoogle Scholar
- 164.Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry (Mosc) 51:2959–2973. https://doi.org/10.1021/bi2018909CrossRefGoogle Scholar
- 165.Shanmughapriya S, Rajan S, Hoffman NE et al (2015) Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci Signal 8:ra23. https://doi.org/10.1126/scisignal.2005673CrossRefPubMedPubMedCentralGoogle Scholar
- 166.Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088CrossRefPubMedPubMedCentralGoogle Scholar
- 167.Wen H, Xu WJ, Jin X et al (2015) The roles of IP3 receptor in energy metabolic pathways and reactive oxygen species homeostasis revealed by metabolomic and biochemical studies. Biochim Biophys Acta 1853:2937–2944. https://doi.org/10.1016/j.bbamcr.2015.07.020CrossRefPubMedGoogle Scholar
- 168.Cárdenas C, Miller RA, Smith I et al (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283. https://doi.org/10.1016/j.cell.2010.06.007CrossRefPubMedPubMedCentralGoogle Scholar
- 169.Gómez-Suaga P, Paillusson S, Stoica R et al (2017) The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol 27:371–385. https://doi.org/10.1016/j.cub.2016.12.038CrossRefPubMedPubMedCentralGoogle Scholar
- 170.Bultynck G (2016) Onco-IP3Rs feed cancerous cravings for mitochondrial Ca2+. Trends Biochem Sci 41:390–393. https://doi.org/10.1016/j.tibs.2016.03.006CrossRefPubMedGoogle Scholar
- 171.Cárdenas C, Müller M, McNeal A et al (2016) Selective vulnerability of cancer cells by inhibition of Ca2+ transfer from endoplasmic reticulum to mitochondria. Cell Rep 15:219–220. https://doi.org/10.1016/j.celrep.2016.03.045CrossRefPubMedGoogle Scholar
- 172.Krols M, Bultynck G, Janssens S (2016) ER-Mitochondria contact sites: a new regulator of cellular calcium flux comes into play. J Cell Biol 214:367–370. https://doi.org/10.1083/jcb.201607124CrossRefPubMedPubMedCentralGoogle Scholar
- 173.Raturi A, Gutiérrez T, Ortiz-Sandoval C et al (2016) TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux. J Cell Biol 214:433–444. https://doi.org/10.1083/jcb.201512077CrossRefPubMedPubMedCentralGoogle Scholar
- 174.Granatiero V, Giorgio V, Calì T et al (2016) Reduced mitochondrial Ca2+ transients stimulate autophagy in human fibroblasts carrying the 13514A>G mutation of the ND5 subunit of NADH dehydrogenase. Cell Death Differ 23:231–241. https://doi.org/10.1038/cdd.2015.84CrossRefPubMedGoogle Scholar
- 175.MacVicar TDB, Mannack LVJC, Lees RM, Lane JD (2015) Targeted siRNA screens identify ER-to-mitochondrial calcium exchange in autophagy and mitophagy responses in RPE1 cells. Int J Mol Sci 16:13356–13380. https://doi.org/10.3390/ijms160613356CrossRefPubMedPubMedCentralGoogle Scholar
- 176.Hayashi T, Su T-P (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131:596–610. https://doi.org/10.1016/j.cell.2007.08.036CrossRefPubMedGoogle Scholar
- 177.Chan J, Yamazaki H, Ishiyama N et al (2010) Structural studies of inositol 1,4,5-trisphosphate receptor: coupling ligand binding to channel gating. J Biol Chem 285:36092–36099. https://doi.org/10.1074/jbc.M110.140160CrossRefPubMedPubMedCentralGoogle Scholar
- 178.Williams A, Hayashi T, Wolozny D et al (2016) The non-apoptotic action of Bcl-xL: regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface. J Bioenerg Biomembr 48:211–225. https://doi.org/10.1007/s10863-016-9664-xCrossRefPubMedGoogle Scholar
- 179.Yang J, Vais H, Gu W, Foskett JK (2016) Biphasic regulation of InsP3 receptor gating by dual Ca2+ release channel BH3-like domains mediates Bcl-XL control of cell viability. Proc Natl Acad Sci USA 113:E1953–E1962. https://doi.org/10.1073/pnas.1517935113CrossRefPubMedPubMedCentralGoogle Scholar
- 180.Sung PJ, Tsai FD, Vais H et al (2013) Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors. Proc Natl Acad Sci USA 110:20593–20598. https://doi.org/10.1073/pnas.1306431110CrossRefPubMedPubMedCentralGoogle Scholar
- 181.Mendes CCP, Gomes DA, Thompson M et al (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280:40892–40900. https://doi.org/10.1074/jbc.M506623200CrossRefPubMedGoogle Scholar
- 182.De Stefani D, Bononi A, Romagnoli A et al (2012) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19:267–273. https://doi.org/10.1038/cdd.2011.92CrossRefPubMedGoogle Scholar
- 183.Akl H, Monaco G, La Rovere R et al (2013) IP3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP3R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death Dis 4:e632. https://doi.org/10.1038/cddis.2013.140CrossRefPubMedPubMedCentralGoogle Scholar
- 184.Jayaraman T, Marks AR (1997) T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 17:3005–3012CrossRefPubMedPubMedCentralGoogle Scholar
- 185.Csordás G, Hajnóczky G (2001) Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. Cell Calcium 29:249–262. https://doi.org/10.1054/ceca.2000.0191CrossRefPubMedGoogle Scholar
- 186.Chami M, Oulès B, Szabadkai G et al (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32:641–651. https://doi.org/10.1016/j.molcel.2008.11.014CrossRefPubMedPubMedCentralGoogle Scholar
- 187.Akl H, Vervloessem T, Kiviluoto S et al (2014) A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. Biochim Biophys Acta 1843:2240–2252. https://doi.org/10.1016/j.bbamcr.2014.04.017CrossRefPubMedGoogle Scholar
- 188.Greenberg EF, Lavik AR, Distelhorst CW (2014) Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: potential new target for cancer treatment. Biochim Biophys Acta 1843:2205–2210. https://doi.org/10.1016/j.bbamcr.2014.03.008CrossRefPubMedPubMedCentralGoogle Scholar
- 189.Lewis A, Hayashi T, Su T-P, Betenbaugh MJ (2014) Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival. J Bioenerg Biomembr 46:1–15. https://doi.org/10.1007/s10863-013-9527-7CrossRefPubMedPubMedCentralGoogle Scholar
- 190.Parys JB (2014) The IP3 receptor as a hub for Bcl-2 family proteins in cell death control and beyond. Sci Signal 7:pe4. https://doi.org/10.1126/scisignal.2005093CrossRefPubMedGoogle Scholar
- 191.Vervliet T, Parys JB, Bultynck G (2016) Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 35:5079–5092. https://doi.org/10.1038/onc.2016.31CrossRefPubMedGoogle Scholar
- 192.Rong Y-P, Aromolaran AS, Bultynck G et al (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell 31:255–265. https://doi.org/10.1016/j.molcel.2008.06.014CrossRefPubMedPubMedCentralGoogle Scholar
- 193.Monaco G, Decrock E, Akl H et al (2012) Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-XL. Cell Death Differ 19:295–309. https://doi.org/10.1038/cdd.2011.97CrossRefPubMedGoogle Scholar
- 194.Monaco G, Decrock E, Arbel N et al (2015) The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca22+ signals to mitochondria. J Biol Chem 290:9150–9161. https://doi.org/10.1074/jbc.M114.622514CrossRefPubMedPubMedCentralGoogle Scholar
- 195.Zhong F, Harr MW, Bultynck G et al (2011) Induction of Ca2+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 117:2924–2934. https://doi.org/10.1182/blood-2010-09-307405CrossRefPubMedPubMedCentralGoogle Scholar
- 196.Lavik AR, Zhong F, Chang M-J et al (2015) A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget 6:27388–27402. https://doi.org/10.18632/oncotarget.4489CrossRefPubMedPubMedCentralGoogle Scholar
- 197.Greenberg EF, McColl KS, Zhong F et al (2015) Synergistic killing of human small cell lung cancer cells by the Bcl-2-inositol 1,4,5-trisphosphate receptor disruptor BIRD-2 and the BH3-mimetic ABT-263. Cell Death Dis 6:e2034. https://doi.org/10.1038/cddis.2015.355CrossRefPubMedPubMedCentralGoogle Scholar
- 198.Khan MT, Wagner L, Yule DI et al (2006) Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 281:3731–3737. https://doi.org/10.1074/jbc.M509262200CrossRefPubMedGoogle Scholar
- 199.Marchi S, Rimessi A, Giorgi C et al (2008) Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochem Biophys Res Commun 375:501–505. https://doi.org/10.1016/j.bbrc.2008.07.153CrossRefPubMedPubMedCentralGoogle Scholar
- 200.Szado T, Vanderheyden V, Parys JB et al (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci USA 105:2427–2432. https://doi.org/10.1073/pnas.0711324105CrossRefPubMedPubMedCentralGoogle Scholar
- 201.Marchi S, Marinello M, Bononi A et al (2012) Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death Dis 3:e304. https://doi.org/10.1038/cddis.2012.45CrossRefPubMedPubMedCentralGoogle Scholar
- 202.Bononi A, Bonora M, Marchi S et al (2013) Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ 20:1631–1643. https://doi.org/10.1038/cdd.2013.77CrossRefPubMedPubMedCentralGoogle Scholar
- 203.Kuchay S, Giorgi C, Simoneschi D et al (2017) PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature 546:554–558. https://doi.org/10.1038/nature22965PubMedPubMedCentralGoogle Scholar
- 204.Ilyin GP, Rialland M, Glaise D, Guguen-Guillouzo C (1999) Identification of a novel Skp2-like mammalian protein containing F-box and leucine-rich repeats. FEBS Lett 459:75–79CrossRefPubMedGoogle Scholar
- 205.Chen BB, Glasser JR, Coon TA, Mallampalli RK (2011) FBXL2 is a ubiquitin E3 ligase subunit that triggers mitotic arrest. Cell Cycle 10:3487–3494. https://doi.org/10.4161/cc.10.20.17742CrossRefPubMedPubMedCentralGoogle Scholar
- 206.Chen BB, Glasser JR, Coon TA, Mallampalli RK (2012) F-box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest. Oncogene 31:2566–2579. https://doi.org/10.1038/onc.2011.432CrossRefPubMedGoogle Scholar
- 207.Giorgi C, Ito K, Lin H-K et al (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330:1247–1251. https://doi.org/10.1126/science.1189157CrossRefPubMedPubMedCentralGoogle Scholar
- 208.Paillard M, Tubbs E, Thiebaut P-A et al (2013) Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 128:1555–1565. https://doi.org/10.1161/CIRCULATIONAHA.113.001225CrossRefPubMedGoogle Scholar
- 209.Gomez L, Thiebaut P-A, Paillard M et al (2016) The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ 23:313–322. https://doi.org/10.1038/cdd.2015.101CrossRefPubMedGoogle Scholar
- 210.Wiel C, Lallet-Daher H, Gitenay D et al (2014) Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun 5:3792. https://doi.org/10.1038/ncomms4792CrossRefPubMedGoogle Scholar
- 211.Morgan AJ (2016) Ca2+ dialogue between acidic vesicles and ER. Biochem Soc Trans 44:546–553. https://doi.org/10.1042/BST20150290CrossRefPubMedGoogle Scholar
- 212.Morgan AJ, Platt FM, Lloyd-Evans E, Galione A (2011) Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 439:349–374. https://doi.org/10.1042/BJ20110949CrossRefPubMedGoogle Scholar
- 213.Penny CJ, Kilpatrick BS, Eden ER, Patel S (2015) Coupling acidic organelles with the ER through Ca2+ microdomains at membrane contact sites. Cell Calcium 58:387–396. https://doi.org/10.1016/j.ceca.2015.03.006CrossRefPubMedGoogle Scholar
- 214.Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80. https://doi.org/10.1146/annurev-physiol-021014-071649CrossRefPubMedPubMedCentralGoogle Scholar
- 215.Melchionda M, Pittman JK, Mayor R, Patel S (2016) Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo. J Cell Biol 212:803–813. https://doi.org/10.1083/jcb.201510019CrossRefPubMedPubMedCentralGoogle Scholar
- 216.Patel S, Cai X (2015) Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium 57:222–230. https://doi.org/10.1016/j.ceca.2014.12.005CrossRefPubMedGoogle Scholar
- 217.Galione A (2015) A primer of NAADP-mediated Ca2+ signalling: From sea urchin eggs to mammalian cells. Cell Calcium 58:27–47. https://doi.org/10.1016/j.ceca.2014.09.010CrossRefPubMedGoogle Scholar
- 218.Morgan AJ, Davis LC, Ruas M, Galione A (2015) TPC: the NAADP discovery channel? Biochem Soc Trans 43:384–389. https://doi.org/10.1042/BST20140300CrossRefPubMedGoogle Scholar
- 219.Patel S (2015) Function and dysfunction of two-pore channels. Sci Signal 8:re7. https://doi.org/10.1126/scisignal.aab3314CrossRefPubMedGoogle Scholar
- 220.Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815CrossRefPubMedGoogle Scholar
- 221.Sukumaran P, Schaar A, Sun Y, Singh BB (2016) Functional role of TRP channels in modulating ER stress and autophagy. Cell Calcium 60:123–132. https://doi.org/10.1016/j.ceca.2016.02.012CrossRefPubMedPubMedCentralGoogle Scholar
- 222.Waller-Evans H, Lloyd-Evans E (2015) Regulation of TRPML1 function. Biochem Soc Trans 43:442–446. https://doi.org/10.1042/BST20140311CrossRefPubMedGoogle Scholar
- 223.Wang W, Zhang X, Gao Q, Xu H (2014) TRPML1: an ion channel in the lysosome. Handb Exp Pharmacol 222:631–645. https://doi.org/10.1007/978-3-642-54215-2_24CrossRefPubMedGoogle Scholar
- 224.Galione A (2011) NAADP receptors. Cold Spring Harb Perspect Biol 3:a004036. https://doi.org/10.1101/cshperspect.a004036CrossRefPubMedPubMedCentralGoogle Scholar
- 225.Grimm C, Chen C-C, Wahl-Schott C, Biel M (2017) Two-pore channels: catalyzers of endolysosomal transport and function. Front Pharmacol 8:45. https://doi.org/10.3389/fphar.2017.00045CrossRefPubMedPubMedCentralGoogle Scholar
- 226.Kilpatrick BS, Eden ER, Schapira AH et al (2013) Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. J Cell Sci 126:60–66. https://doi.org/10.1242/jcs.118836CrossRefPubMedGoogle Scholar
- 227.Fameli N, Ogunbayo OA, van Breemen C, Evans AM (2014) Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Research 3:93. https://doi.org/10.12688/f1000research.3720.1PubMedPubMedCentralGoogle Scholar
- 228.Lam AKM, Galione A (2013) The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim Biophys Acta 1833:2542–2559. https://doi.org/10.1016/j.bbamcr.2013.06.004CrossRefPubMedGoogle Scholar
- 229.Raiborg C, Wenzel EM, Stenmark H (2015) ER-endosome contact sites: molecular compositions and functions. EMBO J 34:1848–1858. https://doi.org/10.15252/embj.201591481CrossRefPubMedPubMedCentralGoogle Scholar
- 230.Cancela JM, Churchill GC, Galione A (1999) Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature 398:74–76. https://doi.org/10.1038/18032CrossRefPubMedGoogle Scholar
- 231.Churchill GC, Galione A (2001) NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J 20:2666–2671. https://doi.org/10.1093/emboj/20.11.2666CrossRefPubMedPubMedCentralGoogle Scholar
- 232.Gerasimenko JV, Charlesworth RM, Sherwood MW et al (2015) Both RyRs and TPCs are required for NAADP-induced intracellular Ca2+ release. Cell Calcium 58:237–245. https://doi.org/10.1016/j.ceca.2015.05.005CrossRefPubMedPubMedCentralGoogle Scholar
- 233.Morgan AJ, Davis LC, Wagner SKTY et al (2013) Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles. J Cell Biol 200:789–805. https://doi.org/10.1083/jcb.201204078CrossRefPubMedPubMedCentralGoogle Scholar
- 234.López Sanjurjo CI, Tovey SC, Taylor CW (2014) Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes. PloS One 9:e111275. https://doi.org/10.1371/journal.pone.0111275CrossRefPubMedPubMedCentralGoogle Scholar
- 235.López-Sanjurjo CI, Tovey SC, Prole DL, Taylor CW (2013) Lysosomes shape Ins(1,4,5)P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. J Cell Sci 126:289–300. https://doi.org/10.1242/jcs.116103CrossRefPubMedPubMedCentralGoogle Scholar
- 236.Kilpatrick BS, Yates E, Grimm C et al (2016) Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx. J Cell Sci 129:3859–3867. https://doi.org/10.1242/jcs.190322CrossRefPubMedPubMedCentralGoogle Scholar
- 237.Decuypere J-P, Parys JB, Bultynck G (2015) ITPRs/inositol 1,4,5-trisphosphate receptors in autophagy: From enemy to ally. Autophagy 11:1944–1948. https://doi.org/10.1080/15548627.2015.1083666CrossRefPubMedPubMedCentralGoogle Scholar
- 238.Penny CJ, Kilpatrick BS, Han JM et al (2014) A computational model of lysosome-ER Ca2+ microdomains. J Cell Sci 127:2934–2943. https://doi.org/10.1242/jcs.149047CrossRefPubMedGoogle Scholar
- 239.Raffaello A, Mammucari C, Gherardi G, Rizzuto R (2016) Calcium at the center of cell signaling: Interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41:1035–1049. https://doi.org/10.1016/j.tibs.2016.09.001CrossRefPubMedPubMedCentralGoogle Scholar
- 240.Ronco V, Potenza DM, Denti F et al (2015) A novel Ca2+-mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADP-dependent Ca2+ signalling. Cell Calcium 57:89–100. https://doi.org/10.1016/j.ceca.2015.01.001CrossRefPubMedGoogle Scholar
- 241.Gómez-Suaga P, Luzón-Toro B, Churamani D et al (2012) Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet 21:511–525. https://doi.org/10.1093/hmg/ddr481CrossRefPubMedGoogle Scholar
- 242.Pereira GJS, Hirata H, Fimia GM et al (2011) Nicotinic acid adenine dinucleotide phosphate (NAADP) regulates autophagy in cultured astrocytes. J Biol Chem 286:27875–27881. https://doi.org/10.1074/jbc.C110.216580CrossRefPubMedPubMedCentralGoogle Scholar
- 243.Lin P-H, Duann P, Komazaki S et al (2015) Lysosomal two-pore channel subtype 2 (TPC2) regulates skeletal muscle autophagic signaling. J Biol Chem 290:3377–3389. https://doi.org/10.1074/jbc.M114.608471CrossRefPubMedGoogle Scholar
- 244.Lu Y, Hao B-X, Graeff R et al (2013) Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH. J Biol Chem 288:24247–24263. https://doi.org/10.1074/jbc.M113.484253CrossRefPubMedPubMedCentralGoogle Scholar
- 245.Wong C-O, Li R, Montell C, Venkatachalam K (2012) Drosophila TRPML is required for TORC1 activation. Curr Biol 22:1616–1621. https://doi.org/10.1016/j.cub.2012.06.055CrossRefPubMedPubMedCentralGoogle Scholar
- 246.Wang W, Gao Q, Yang M et al (2015) Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc Natl Acad Sci USA 112:E1373–E1381. https://doi.org/10.1073/pnas.1419669112CrossRefPubMedPubMedCentralGoogle Scholar
- 247.Li X, Rydzewski N, Hider A et al (2016) A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol 18:404–417. https://doi.org/10.1038/ncb3324CrossRefPubMedPubMedCentralGoogle Scholar
- 248.García-Rúa V, Feijóo-Bandín S, Rodríguez-Penas D et al (2016) Endolysosomal two-pore channels regulate autophagy in cardiomyocytes. J Physiol 594:3061–3077. https://doi.org/10.1113/JP271332CrossRefPubMedPubMedCentralGoogle Scholar
- 249.Manzoni C (2017) The LRRK2-macroautophagy axis and its relevance to Parkinson’s disease. Biochem Soc Trans 45:155–162. https://doi.org/10.1042/BST20160265CrossRefPubMedPubMedCentralGoogle Scholar
- 250.Hockey LN, Kilpatrick BS, Eden ER et al (2015) Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition. J Cell Sci 128:232–238. https://doi.org/10.1242/jcs.164152CrossRefPubMedPubMedCentralGoogle Scholar
- 251.Medina DL, Di Paola S, Peluso I et al (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17:288–299. https://doi.org/10.1038/ncb3114CrossRefPubMedPubMedCentralGoogle Scholar
- 252.Settembre C, Di Malta C, Polito VA et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. https://doi.org/10.1126/science.1204592CrossRefPubMedPubMedCentralGoogle Scholar
- 253.Medina DL, Fraldi A, Bouche V et al (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 21:421–430. https://doi.org/10.1016/j.devcel.2011.07.016CrossRefPubMedPubMedCentralGoogle Scholar
- 254.Sardiello M, Palmieri M, di Ronza A et al (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477. https://doi.org/10.1126/science.1174447PubMedGoogle Scholar