Annexins: Ca2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment

  • Carlos Enrich
  • Carles Rentero
  • Elsa Meneses-Salas
  • Francesc Tebar
  • Thomas Grewal
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 981)

Abstract

Despite the discovery of annexins 40 years ago, we are just beginning to understand some of the functions of these still enigmatic proteins. Defined and characterized by their ability to bind anionic membrane lipids in a Ca2+-dependent manner, each annexin has to be considered a multifunctional protein, with a multitude of cellular locations and diverse activities. Underlying causes for this considerable functional diversity include their capability to associate with multiple cytosolic and membrane proteins. In recent years, the increasingly recognized establishment of membrane contact sites between subcellular compartments opens a new scenario for annexins as instrumental players to link Ca2+ signalling with the integration of membrane trafficking in many facets of cell physiology. In this chapter, we review and discuss current knowledge on the contribution of annexins in the biogenesis and functioning of the late endocytic compartment, affecting endo- and exocytic pathways in a variety of physiological consequences ranging from membrane repair, lysosomal exocytosis, to cell migration.

Keywords

Annexins AnxA6 Late endosomes Lysosomes Cholesterol Ca2+-signaling Membrane trafficking 

Notes

Acknowledgements

We would like to thank all members of our laboratories, past and present, for their invaluable contributions and apologize to all those researchers whose work could not be discussed owing to space limitations. C.E. was supported by grants from the Ministerio de Economía y Competitividad (BFU2015–66785-P and CSD2009–00016) and Fundació Marató TV3 (PI042182), Spain. T.G. was supported by the University of Sydney (U7042, U7113, RY253, U3367), Sydney, Australia.

References

  1. 1.
    Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6(6):449–461.  https://doi.org/10.1038/nrm1661CrossRefPubMedGoogle Scholar
  2. 2.
    Gerke V, Moss SE (1997) Annexins and membrane dynamics. Biochim Biophys Acta 1357(2):129–154CrossRefPubMedGoogle Scholar
  3. 3.
    Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82(2):331–371.  https://doi.org/10.1152/physrev.00030.2001CrossRefPubMedGoogle Scholar
  4. 4.
    Grewal T, Enrich C (2006) Molecular mechanisms involved in Ras inactivation: the annexin A6-p120GAP complex. Bioessays 28(12):1211–1220.  https://doi.org/10.1002/bies.20503CrossRefPubMedGoogle Scholar
  5. 5.
    Grewal T, Enrich C (2009) Annexins – modulators of EGF receptor signalling and trafficking. Cell Signal 21(6):847–858CrossRefPubMedGoogle Scholar
  6. 6.
    Hayes MJ, Rescher U, Gerke V, Moss SE (2004) Annexin-actin interactions. Traffic 5(8):571–576.  https://doi.org/10.1111/j.1600-0854.2004.00210.xCrossRefPubMedGoogle Scholar
  7. 7.
    McNeil AK, Rescher U, Gerke V, McNeil PL (2006) Requirement for annexin A1 in plasma membrane repair. J Biol Chem 281(46):35202–35207.  https://doi.org/10.1074/jbc.M606406200CrossRefPubMedGoogle Scholar
  8. 8.
    Monastyrskaya K, Babiychuk EB, Draeger A (2009a) The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci 66(16):2623–2642.  https://doi.org/10.1007/s00018-009-0027-1CrossRefPubMedGoogle Scholar
  9. 9.
    Monastyrskaya K, Babiychuk EB, Hostettler A, Rescher U, Draeger A (2007) Annexins as intracellular calcium sensors. Cell Calcium 41(3):207–219.  https://doi.org/10.1016/j.ceca.2006.06.008CrossRefPubMedGoogle Scholar
  10. 10.
    Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197(1):63–93CrossRefPubMedGoogle Scholar
  11. 11.
    Golczak M, Kicinska A, Bandorowicz-Pikula J, Buchet R, Szewczyk A, Pikula S (2001) Acidic pH-induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB J 15(6):1083–1085CrossRefPubMedGoogle Scholar
  12. 12.
    Hawkins TE, Merrifield CJ, Moss SE (2000) Calcium signaling and annexins. Cell Biochem Biophys 33(3):275–296.  https://doi.org/10.1385/CBB:47:1:159CrossRefPubMedGoogle Scholar
  13. 13.
    Hegde BG, Isas JM, Zampighi G, Haigler HT, Langen R (2006) A novel calcium-independent peripheral membrane-bound form of annexin B12. Biochemistry 45(3):934–942.  https://doi.org/10.1021/bi052143+CrossRefPubMedGoogle Scholar
  14. 14.
    Huber R, Berendes R, Burger A, Schneider M, Karshikov A, Luecke H, Romisch J, Paques E (1992) Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J Mol Biol 223(3):683–704CrossRefPubMedGoogle Scholar
  15. 15.
    Isas JM, Cartailler JP, Sokolov Y, Patel DR, Langen R, Luecke H, Hall JE, Haigler HT (2000) Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochemistry 39(11):3015–3022CrossRefPubMedGoogle Scholar
  16. 16.
    Kirilenko A, Pikula S, Bandorowicz-Pikula J (2006) Effects of mutagenesis of W343 in human annexin A6 isoform 1 on its interaction with GTP: nucleotide-induced oligomer formation and ion channel activity. Biochemistry 45(15):4965–4973.  https://doi.org/10.1021/bi051629nCrossRefPubMedGoogle Scholar
  17. 17.
    Kourie JI, Wood HB (2000) Biophysical and molecular properties of annexin-formed channels. Prog Biophys Mol Biol 73(2–4):91–134CrossRefPubMedGoogle Scholar
  18. 18.
    Langen R, Isas JM, Hubbell WL, Haigler HT (1998) A transmembrane form of annexin XII detected by site-directed spin labeling. Proc Natl Acad Sci USA 95(24):14060–14065CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Enrich C, Rentero C, de Muga SV, Reverter M, Mulay V, Wood P, Koese M, Grewal T (2011) Annexin A6-linking Ca(2+) signaling with cholesterol transport. Biochim Biophys Acta 1813(5):935–947.  https://doi.org/10.1016/j.bbamcr.2010.09.015CrossRefPubMedGoogle Scholar
  20. 20.
    Huber R, Romisch J, Paques EP (1990) The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J 9(12):3867–3874PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lewit-Bentley A, Morera S, Huber R, Bodo G (1992) The effect of metal binding on the structure of annexin V and implications for membrane binding. Eur J Biochem 210(1):73–77CrossRefPubMedGoogle Scholar
  22. 22.
    Schlaepfer DD, Mehlman T, Burgess WH, Haigler HT (1987) Structural and functional characterization of endonexin II, a calcium- and phospholipid-binding protein. Proc Natl Acad Sci USA 84(17):6078–6082CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Avila-Sakar AJ, Creutz CE, Kretsinger RH (1998) Crystal structure of bovine annexin VI in a calcium-bound state. Biochim Biophys Acta 1387(1–2):103–116CrossRefPubMedGoogle Scholar
  24. 24.
    Avila-Sakar AJ, Kretsinger RH, Creutz CE (2000) Membrane-bound 3D structures reveal the intrinsic flexibility of annexin VI. J Struct Biol 130(1):54–62.  https://doi.org/10.1006/jsbi.2000.4246CrossRefPubMedGoogle Scholar
  25. 25.
    Benz J, Bergner A, Hofmann A, Demange P, Gottig P, Liemann S, Huber R, Voges D (1996) The structure of recombinant human annexin VI in crystals and membrane-bound. J Mol Biol 260(5):638–643.  https://doi.org/10.1006/jmbi.1996.0426CrossRefPubMedGoogle Scholar
  26. 26.
    Owens RJ, Crumpton MJ (1984) Isolation and characterization of a novel 68,000-Mr Ca2+-binding protein of lymphocyte plasma membrane. Biochem J 219(1):309–316CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rosengarth A, Gerke V, Luecke H (2001) X-ray structure of full-length annexin 1 and implications for membrane aggregation. J Mol Biol 306(3):489–498.  https://doi.org/10.1006/jmbi.2000.4423CrossRefPubMedGoogle Scholar
  28. 28.
    Weng X, Luecke H, Song IS, Kang DS, Kim SH, Huber R (1993) Crystal structure of human annexin I at 2.5 A resolution. Protein Sci 2(3):448–458.  https://doi.org/10.1002/pro.5560020317CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rosengarth A, Luecke H (2004) Annexins: calcium binding proteins with unusual binding sites. In: Messerschmidt A, Bode W, Cygler M (eds) Handbook of Metalloproteins, vol 3. Wiley, Chichester, pp 649–663Google Scholar
  30. 30.
    Swairjo MA, Concha NO, Kaetzel MA, Dedman JR, Seaton BA (1995) Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat Struct Biol 2(11):968–974CrossRefPubMedGoogle Scholar
  31. 31.
    Herzberg O, James MN (1985) Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature 313(6004):653–659CrossRefPubMedGoogle Scholar
  32. 32.
    Nelson MR, Chazin WJ (1998) Structures of EF-hand Ca(2+)-binding proteins: diversity in the organization, packing and response to Ca2+ binding. Biometals 11(4):297–318CrossRefPubMedGoogle Scholar
  33. 33.
    Maler L, Sastry M, Chazin WJ (2002) A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin. J Mol Biol 317(2):279–290.  https://doi.org/10.1006/jmbi.2002.5421CrossRefPubMedGoogle Scholar
  34. 34.
    Rintala-Dempsey AC, Rezvanpour A, Shaw GS (2008) S100-annexin complexes – structural insights. FEBS J 275(20):4956–4966.  https://doi.org/10.1111/j.1742-4658.2008.06654.xCrossRefPubMedGoogle Scholar
  35. 35.
    Enrich C, Rentero C, Grewal T (2016) Annexin A6 in the liver: from the endocytic compartment to cellular physiology. Biochim Biophys Acta 1864(6):933–946.  https://doi.org/10.1016/j.bbamcr.2016.10.017CrossRefPubMedGoogle Scholar
  36. 36.
    Geisow MJ, Fritsche U, Hexham JM, Dash B, Johnson T (1986) A consensus amino-acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane-binding proteins. Nature 320(6063):636–638.  https://doi.org/10.1038/320636a0CrossRefPubMedGoogle Scholar
  37. 37.
    Lizarbe MA, Barrasa JI, Olmo N, Gavilanes F, Turnay J (2013) Annexin-phospholipid interactions. Functional implications. Int J Mol Sci 14(2):2652–2683.  https://doi.org/10.3390/ijms14022652CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Buzhynskyy N, Golczak M, Lai-Kee-Him J, Lambert O, Tessier B, Gounou C, Berat R, Simon A, Granier T, Chevalier JM, Mazeres S, Bandorowicz-Pikula J, Pikula S, Brisson AR (2009) Annexin-A6 presents two modes of association with phospholipid membranes. A combined QCM-D, AFM and cryo-TEM study. J Struct Biol 168(1):107–116.  https://doi.org/10.1016/j.jsb.2009.03.007CrossRefPubMedGoogle Scholar
  39. 39.
    Edwards HC, Crumpton MJ (1991) Ca(2+)-dependent phospholipid and arachidonic acid binding by the placental annexins VI and IV. Eur J Biochem 198(1):121–129CrossRefPubMedGoogle Scholar
  40. 40.
    Kobayashi T, Beuchat MH, Chevallier J, Makino A, Mayran N, Escola JM, Lebrand C, Cosson P, Kobayashi T, Gruenberg J (2002) Separation and characterization of late endosomal membrane domains. J Biol Chem 277(35):32157–32164.  https://doi.org/10.1074/jbc.M202838200CrossRefPubMedGoogle Scholar
  41. 41.
    Tharkeshwar AK, Trekker J, Vermeire W, Pauwels J, Sannerud R, Priestman DA, Te Vruchte D, Vints K, Baatsen P, Decuypere JP, Lu H, Martin S, Vangheluwe P, Swinnen JV, Lagae L, Impens F, Platt FM, Gevaert K, Annaert W (2017) A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency. Sci Rep 7:41408.  https://doi.org/10.1038/srep41408CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    de Diego I, Schwartz F, Siegfried H, Dauterstedt P, Heeren J, Beisiegel U, Enrich C, Grewal T (2002) Cholesterol modulates the membrane binding and intracellular distribution of annexin 6. J Biol Chem 277(35):32187–32194.  https://doi.org/10.1074/jbc.M205499200CrossRefPubMedGoogle Scholar
  43. 43.
    Domon MM, Matar G, Strzelecka-Kiliszek A, Bandorowicz-Pikula J, Pikula S, Besson F (2010) Interaction of annexin A6 with cholesterol rich membranes is pH-dependent and mediated by the sterol OH. J Colloid Interface Sci 346(2):436–441.  https://doi.org/10.1016/j.jcis.2010.03.015CrossRefPubMedGoogle Scholar
  44. 44.
    Garver WS, Xie C, Repa JJ, Turley SD, Dietschy JM (2005) Niemann-Pick C1 expression is not regulated by the amount of cholesterol flowing through cells in the mouse. J Lipid Res 46(8):1745–1754.  https://doi.org/10.1194/jlr.M500130-JLR200CrossRefPubMedGoogle Scholar
  45. 45.
    Golczak M, Kirilenko A, Bandorowicz-Pikula J, Desbat B, Pikula S (2004) Structure of human annexin a6 at the air-water interface and in a membrane-bound state. Biophys J 87(2):1215–1226.  https://doi.org/10.1529/biophysj.103.038240CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Grewal T, Heeren J, Mewawala D, Schnitgerhans T, Wendt D, Salomon G, Enrich C, Beisiegel U, Jackle S (2000) Annexin VI stimulates endocytosis and is involved in the trafficking of low density lipoprotein to the prelysosomal compartment. J Biol Chem 275(43):33806–33813.  https://doi.org/10.1074/jbc.M002662200CrossRefPubMedGoogle Scholar
  47. 47.
    Grewal T, Koese M, Rentero C, Enrich C (2010) Annexin A6-regulator of the EGFR/Ras signalling pathway and cholesterol homeostasis. Int J Biochem Cell Biol 42(5):580–584.  https://doi.org/10.1016/j.biocel.2009.12.020CrossRefPubMedGoogle Scholar
  48. 48.
    Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20(4):177–186.  https://doi.org/10.1016/j.tcb.2010.01.005CrossRefPubMedGoogle Scholar
  49. 49.
    Jackle S, Beisiegel U, Rinninger F, Buck F, Grigoleit A, Block A, Groger I, Greten H, Windler E (1994) Annexin VI, a marker protein of hepatocytic endosomes. J Biol Chem 269(2):1026–1032PubMedGoogle Scholar
  50. 50.
    Pol A, Ortega D, Enrich C (1997) Identification of cytoskeleton-associated proteins in isolated rat liver endosomes. Biochem J 327(Pt 3):741–746CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sprenger RR, Speijer D, Back JW, De Koster CG, Pannekoek H, Horrevoets AJ (2004) Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 25(1):156–172.  https://doi.org/10.1002/elps.200305675CrossRefPubMedGoogle Scholar
  52. 52.
    Sztolsztener ME, Strzelecka-Kiliszek A, Pikula S, Tylki-Szymanska A, Bandorowicz-Pikula J (2010) Cholesterol as a factor regulating intracellular localization of annexin A6 in Niemann-Pick type C human skin fibroblasts. Arch Biochem Biophys 493(2):221–233.  https://doi.org/10.1016/j.abb.2009.11.001CrossRefPubMedGoogle Scholar
  53. 53.
    Alvarez-Guaita A, Vilà de Muga S, Owen DM, Williamson D, Magenau A, Garcia-Melero A, Reverter M, Hoque M, Cairns R, Cornely R, Tebar F, Grewal T, Gaus K, Ayala-Sanmartin J, Enrich C, Rentero C (2015) Evidence for annexin A6-dependent plasma membrane remodelling of lipid domains. Br J Pharmacol 172(7):1677–1690.  https://doi.org/10.1111/bph.13022CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cornely R, Pollock AH, Rentero C, Norris SE, Alvarez-Guaita A, Grewal T, Mitchell T, Enrich C, Moss SE, Parton RG, Rossy J, Gaus K (2016) Annexin A6 regulates interleukin-2-mediated T-cell proliferation. Immunol Cell Biol 94(6):543–553.  https://doi.org/10.1038/icb.2016.15CrossRefPubMedGoogle Scholar
  55. 55.
    Cornely R, Rentero C, Enrich C, Grewal T, Gaus K (2011) Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life 63(11):1009–1017.  https://doi.org/10.1002/iub.540CrossRefPubMedGoogle Scholar
  56. 56.
    Pons M, Grewal T, Rius E, Schnitgerhans T, Jackle S, Enrich C (2001) Evidence for the involvement of annexin 6 in the trafficking between the endocytic compartment and lysosomes. Exp Cell Res 269(1):13–22.  https://doi.org/10.1006/excr.2001.5268CrossRefPubMedGoogle Scholar
  57. 57.
    Pons M, Ihrke G, Koch S, Biermer M, Pol A, Grewal T, Jackle S, Enrich C (2000) Late endocytic compartments are major sites of annexin VI localization in NRK fibroblasts and polarized WIF-B hepatoma cells. Exp Cell Res 257(1):33–47.  https://doi.org/10.1006/excr.2000.4861CrossRefPubMedGoogle Scholar
  58. 58.
    Cubells L, Vilà de Muga S, Tebar F, Wood P, Evans R, Ingelmo-Torres M, Calvo M, Gaus K, Pol A, Grewal T, Enrich C (2007) Annexin A6-induced alterations in cholesterol transport and caveolin export from the Golgi complex. Traffic 8(11):1568–1589.  https://doi.org/10.1111/j.1600-0854.2007.00640.xCrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Grewal T, Evans R, Rentero C, Tebar F, Cubells L, de Diego I, Kirchhoff MF, Hughes WE, Heeren J, Rye KA, Rinninger F, Daly RJ, Pol A, Enrich C (2005) Annexin A6 stimulates the membrane recruitment of p120GAP to modulate Ras and Raf-1 activity. Oncogene 24(38):5809–5820.  https://doi.org/10.1038/sj.onc.1208743CrossRefPubMedGoogle Scholar
  60. 60.
    Smythe E, Smith PD, Jacob SM, Theobald J, Moss SE (1994) Endocytosis occurs independently of annexin VI in human A431 cells. J Cell Biol 124(3):301–306CrossRefPubMedGoogle Scholar
  61. 61.
    Cubells L, Vilà de Muga S, Tebar F, Bonventre JV, Balsinde J, Pol A, Grewal T, Enrich C (2008) Annexin A6-induced inhibition of cytoplasmic phospholipase A2 is linked to caveolin-1 export from the Golgi. J Biol Chem 283(15):10174–10183.  https://doi.org/10.1074/jbc.M706618200CrossRefPubMedGoogle Scholar
  62. 62.
    Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C (2011) Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 22(21):4108–4123.  https://doi.org/10.1091/mbc.E11-04-0332CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Garcia-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JR, Johnsen CH, Alvarez-Guaita A, Morales-Paytuvi F, Elmaghrabi YA, Pol A, Tebar F, Murray RZ, Timpson P, Enrich C, Grewal T, Rentero C (2016) Annexin A6 and late endosomal cholesterol modulate integrin recycling and cell migration. J Biol Chem 291(3):1320–1335.  https://doi.org/10.1074/jbc.M115.683557CrossRefPubMedGoogle Scholar
  64. 64.
    Reverter M, Rentero C, Garcia-Melero A, Hoque M, Vilà de Muga S, Alvarez-Guaita A, Conway JR, Wood P, Cairns R, Lykopoulou L, Grinberg D, Vilageliu L, Bosch M, Heeren J, Blasi J, Timpson P, Pol A, Tebar F, Murray RZ, Grewal T, Enrich C (2014) Cholesterol regulates Syntaxin 6 trafficking at trans-Golgi network endosomal boundaries. Cell Rep 7(3):883–897.  https://doi.org/10.1016/j.celrep.2014.03.043CrossRefPubMedGoogle Scholar
  65. 65.
    Hoque M, Rentero C, Conway JR, Murray RZ, Timpson P, Enrich C, Grewal T (2015) The cross-talk of LDL-cholesterol with cell motility: insights from the Niemann Pick Type C1 mutation and altered integrin trafficking. Cell Adh Migr 9(5):384–391.  https://doi.org/10.1080/19336918.2015.1019996CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14(11):1247–1255.  https://doi.org/10.1038/nm.1876CrossRefPubMedGoogle Scholar
  67. 67.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529.  https://doi.org/10.1038/nrm1155CrossRefPubMedGoogle Scholar
  68. 68.
    Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058.  https://doi.org/10.1016/j.cell.2007.11.028CrossRefPubMedGoogle Scholar
  69. 69.
    Xu H, Martinoia E, Szabo I (2015) Organellar channels and transporters. Cell Calcium 58(1):1–10.  https://doi.org/10.1016/j.ceca.2015.02.006CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Andrews NW, Almeida PE, Corrotte M (2014) Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol 24(12):734–742.  https://doi.org/10.1016/j.tcb.2014.07.008CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Cheng X, Zhang X, Yu L, Xu H (2015) Calcium signaling in membrane repair. Semin Cell Dev Biol 45:24–31.  https://doi.org/10.1016/j.semcdb.2015.10.031CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    McNeil PL, Kirchhausen T (2005) An emergency response team for membrane repair. Nat Rev Mol Cell Biol 6(6):499–505.  https://doi.org/10.1038/nrm1665CrossRefPubMedGoogle Scholar
  73. 73.
    Prins D, Michalak M (2011) Organellar calcium buffers. Cold Spring Harb Perspect Biol 3(3).  https://doi.org/10.1101/cshperspect.a004069
  74. 74.
    Krebs J, Agellon LB, Michalak M (2015) Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun 460(1):114–121.  https://doi.org/10.1016/j.bbrc.2015.02.004CrossRefPubMedGoogle Scholar
  75. 75.
    Strehler EE, Treiman M (2004) Calcium pumps of plasma membrane and cell interior. Curr Mol Med 4(3):323–335CrossRefPubMedGoogle Scholar
  76. 76.
    Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82(4):893–922.  https://doi.org/10.1152/physrev.00013.2002CrossRefPubMedGoogle Scholar
  77. 77.
    Lam AK, Galione A (2013) The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim Biophys Acta 1833(11):2542–2559.  https://doi.org/10.1016/j.bbamcr.2013.06.004CrossRefPubMedGoogle Scholar
  78. 78.
    Missiaen L, Van Acker K, Van Baelen K, Raeymaekers L, Wuytack F, Parys JB, De Smedt H, Vanoevelen J, Dode L, Rizzuto R, Callewaert G (2004) Calcium release from the Golgi apparatus and the endoplasmic reticulum in HeLa cells stably expressing targeted aequorin to these compartments. Cell Calcium 36(6):479–487.  https://doi.org/10.1016/j.ceca.2004.04.007CrossRefPubMedGoogle Scholar
  79. 79.
    Bentley M, Nycz DC, Joglekar A, Fertschai I, Malli R, Graier WF, Hay JC (2010) Vesicular calcium regulates coat retention, fusogenicity, and size of pre-Golgi intermediates. Mol Biol Cell 21(6):1033–1046.  https://doi.org/10.1091/mbc.E09-10-0914CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Dolman NJ, Tepikin AV (2006) Calcium gradients and the Golgi. Cell Calcium 40(5–6):505–512.  https://doi.org/10.1016/j.ceca.2006.08.012CrossRefPubMedGoogle Scholar
  81. 81.
    Pizzo P, Lissandron V, Capitanio P, Pozzan T (2011) Ca(2+) signalling in the Golgi apparatus. Cell Calcium 50(2):184–192.  https://doi.org/10.1016/j.ceca.2011.01.006CrossRefPubMedGoogle Scholar
  82. 82.
    Yang Z, Kirton HM, MacDougall DA, Boyle JP, Deuchars J, Frater B, Ponnambalam S, Hardy ME, White E, Calaghan SC, Peers C, Steele DS (2015) The Golgi apparatus is a functionally distinct Ca2+ store regulated by the PKA and Epac branches of the beta1-adrenergic signaling pathway. Sci Signal 8(398):ra101.  https://doi.org/10.1126/scisignal.aaa7677CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Mayinger P (2009) Regulation of Golgi function via phosphoinositide lipids. Semin Cell Dev Biol 20(7):793–800.  https://doi.org/10.1016/j.semcdb.2009.03.016CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Jha A, Ahuja M, Patel S, Brailoiu E, Muallem S (2014) Convergent regulation of the lysosomal two-pore channel-2 by Mg(2)(+), NAADP, PI(3,5)P(2) and multiple protein kinases. EMBO J 33(5):501–511.  https://doi.org/10.1002/embj.201387035CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Maki M, Takahara T, Shibata H (2016) Multifaceted roles of ALG-2 in Ca(2+)-regulated membrane trafficking. Int J Mol Sci 17(9).  https://doi.org/10.3390/ijms17091401
  86. 86.
    Yamasaki A, Tani K, Yamamoto A, Kitamura N, Komada M (2006) The Ca2+-binding protein ALG-2 is recruited to endoplasmic reticulum exit sites by Sec31A and stabilizes the localization of Sec31A. Mol Biol Cell 17(11):4876–4887.  https://doi.org/10.1091/mbc.E06-05-0444CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    La Rovere RM, Roest G, Bultynck G, Parys JB (2016) Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 60(2):74–87.  https://doi.org/10.1016/j.ceca.2016.04.005CrossRefPubMedGoogle Scholar
  88. 88.
    Csordas G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18(1):96–108.  https://doi.org/10.1093/emboj/18.1.96CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262(5134):744–747CrossRefPubMedGoogle Scholar
  90. 90.
    Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P (2015) Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 22(12):995–1019.  https://doi.org/10.1089/ars.2014.6223CrossRefPubMedGoogle Scholar
  91. 91.
    Sala-Vila A, Navarro-Lerida I, Sanchez-Alvarez M, Bosch M, Calvo C, Lopez JA, Calvo E, Ferguson C, Giacomello M, Serafini A, Scorrano L, Enriquez JA, Balsinde J, Parton RG, Vazquez J, Pol A, Del Pozo MA (2016) Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci Rep 6:27351.  https://doi.org/10.1038/srep27351CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Morgan AJ, Platt FM, Lloyd-Evans E, Galione A (2011) Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 439(3):349–374.  https://doi.org/10.1042/BJ20110949CrossRefPubMedGoogle Scholar
  93. 93.
    Patel S, Docampo R (2010) Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 20(5):277–286.  https://doi.org/10.1016/j.tcb.2010.02.003CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Gerasimenko JV, Tepikin AV, Petersen OH, Gerasimenko OV (1998) Calcium uptake via endocytosis with rapid release from acidifying endosomes. Curr Biol 8(24):1335–1338CrossRefPubMedGoogle Scholar
  95. 95.
    Yamaguchi S, Jha A, Li Q, Soyombo AA, Dickinson GD, Churamani D, Brailoiu E, Patel S, Muallem S (2011) Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels. J Biol Chem 286(26):22934–22942.  https://doi.org/10.1074/jbc.M110.210930CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80.  https://doi.org/10.1146/annurev-physiol-021014-071649CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Berg TO, Stromhaug E, Lovdal T, Seglen O, Berg T (1994) Use of glycyl-L-phenylalanine 2-naphthylamide, a lysosome-disrupting cathepsin C substrate, to distinguish between lysosomes and prelysosomal endocytic vacuoles. Biochem J 300(Pt 1):229–236CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Menteyne A, Burdakov A, Charpentier G, Petersen OH, Cancela JM (2006) Generation of specific Ca(2+) signals from Ca(2+) stores and endocytosis by differential coupling to messengers. Curr Biol 16(19):1931–1937.  https://doi.org/10.1016/j.cub.2006.07.070CrossRefPubMedGoogle Scholar
  99. 99.
    Grimm C, Hassan S, Wahl-Schott C, Biel M (2012) Role of TRPML and two-pore channels in endolysosomal cation homeostasis. J Pharmacol Exp Ther 342(2):236–244.  https://doi.org/10.1124/jpet.112.192880CrossRefPubMedGoogle Scholar
  100. 100.
    Cheng X, Shen D, Samie M, Xu H (2010) Mucolipins: intracellular TRPML1-3 channels. FEBS Lett 584(10):2013–2021.  https://doi.org/10.1016/j.febslet.2009.12.056CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1:38.  https://doi.org/10.1038/ncomms1037CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459(7246):596–600.  https://doi.org/10.1038/nature08030CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Christensen KA, Myers JT, Swanson JA (2002) pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 115(Pt 3):599–607PubMedGoogle Scholar
  104. 104.
    Garrity AG, Wang W, Collier CM, Levey SA, Gao Q, Xu H (2016) The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. Elife 5.  https://doi.org/10.7554/eLife.15887
  105. 105.
    Brailoiu GC, Brailoiu E (2016) Modulation of calcium entry by the endo-lysosomal system. Adv Exp Med Biol 898:423–447.  https://doi.org/10.1007/978-3-319-26974-0_18CrossRefPubMedGoogle Scholar
  106. 106.
    Li X, Garrity AG, Xu H (2013) Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes. J Physiol 591(18):4389–4401.  https://doi.org/10.1113/jphysiol.2013.258301CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Melchionda M, Pittman JK, Mayor R, Patel S (2016) Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo. J Cell Biol 212(7):803–813.  https://doi.org/10.1083/jcb.201510019CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Burgoyne T, Patel S, Eden ER (2015) Calcium signaling at ER membrane contact sites. Biochim Biophys Acta 1853(9):2012–2017.  https://doi.org/10.1016/j.bbamcr.2015.01.022CrossRefPubMedGoogle Scholar
  109. 109.
    Eden ER (2016) The formation and function of ER-endosome membrane contact sites. Biochim Biophys Acta 1861(8 Pt B):874–879.  https://doi.org/10.1016/j.bbalip.2016.01.020CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Eden ER, Sanchez-Heras E, Tsapara A, Sobota A, Levine TP, Futter CE (2016) Annexin A1 tethers membrane contact sites that mediate ER to endosome cholesterol transport. Dev Cell 37(5):473–483.  https://doi.org/10.1016/j.devcel.2016.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Ghislat G, Aguado C, Knecht E (2012) Annexin A5 stimulates autophagy and inhibits endocytosis. J Cell Sci 125(Pt 1):92–107.  https://doi.org/10.1242/jcs.086728CrossRefPubMedGoogle Scholar
  112. 112.
    Ghislat G, Knecht E (2012) New Ca(2+)-dependent regulators of autophagosome maturation. Commun Integr Biol 5(4):308–311.  https://doi.org/10.4161/cib.20076CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Samie MA, Xu H (2014) Lysosomal exocytosis and lipid storage disorders. J Lipid Res 55(6):995–1009.  https://doi.org/10.1194/jlr.R046896CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17(3):288–299.  https://doi.org/10.1038/ncb3114CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Futter CE, White IJ (2007) Annexins and endocytosis. Traffic 8(8):951–958.  https://doi.org/10.1111/j.1600-0854.2007.00590.xCrossRefPubMedGoogle Scholar
  116. 116.
    Rescher U, Gerke V (2004) Annexins – unique membrane binding proteins with diverse functions. J Cell Sci 117(Pt 13):2631–2639.  https://doi.org/10.1242/jcs.01245CrossRefPubMedGoogle Scholar
  117. 117.
    Futter CE, Felder S, Schlessinger J, Ullrich A, Hopkins CR (1993) Annexin I is phosphorylated in the multivesicular body during the processing of the epidermal growth factor receptor. J Cell Biol 120(1):77–83CrossRefPubMedGoogle Scholar
  118. 118.
    Harder T, Kellner R, Parton RG, Gruenberg J (1997) Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol Biol Cell 8(3):533–545CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Liu L, Tao JQ, Zimmerman UJ (1997) Annexin II binds to the membrane of A549 cells in a calcium-dependent and calcium-independent manner. Cell Signal 9(3–4):299–304CrossRefPubMedGoogle Scholar
  120. 120.
    Trotter PJ, Orchard MA, Walker JH (1995) EGTA-resistant binding of annexin V to platelet membranes can be induced by physiological calcium concentrations. Biochem Soc Trans 23(1):37SCrossRefPubMedGoogle Scholar
  121. 121.
    Goebeler V, Ruhe D, Gerke V, Rescher U (2006) Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Lett 580(10):2430–2434.  https://doi.org/10.1016/j.febslet.2006.03.076CrossRefPubMedGoogle Scholar
  122. 122.
    Rescher U, Ruhe D, Ludwig C, Zobiack N, Gerke V (2004) Annexin 2 is a phosphatidylinositol (4,5)-bisphosphate binding protein recruited to actin assembly sites at cellular membranes. J Cell Sci 117(Pt 16):3473–3480.  https://doi.org/10.1242/jcs.01208CrossRefPubMedGoogle Scholar
  123. 123.
    Ayala-Sanmartin J (2001) Cholesterol enhances phospholipid binding and aggregation of annexins by their core domain. Biochem Biophys Res Commun 283(1):72–79.  https://doi.org/10.1006/bbrc.2001.4748CrossRefPubMedGoogle Scholar
  124. 124.
    Ayala-Sanmartin J, Henry JP, Pradel LA (2001) Cholesterol regulates membrane binding and aggregation by annexin 2 at submicromolar Ca(2+) concentration. Biochim Biophys Acta 1510(1–2):18–28CrossRefPubMedGoogle Scholar
  125. 125.
    Domon MM, Besson F, Tylki-Szymanska A, Bandorowicz-Pikula J, Pikula S (2013) Interaction of AnxA6 with isolated and artificial lipid microdomains; importance of lipid composition and calcium content. Mol Biosyst 9(4):668–676.  https://doi.org/10.1039/c3mb25487aCrossRefPubMedGoogle Scholar
  126. 126.
    Emans N, Gorvel JP, Walter C, Gerke V, Kellner R, Griffiths G, Gruenberg J (1993) Annexin II is a major component of fusogenic endosomal vesicles. J Cell Biol 120(6):1357–1369CrossRefPubMedGoogle Scholar
  127. 127.
    Lin-Moshier Y, Keebler MV, Hooper R, Boulware MJ, Liu X, Churamani D, Abood ME, Walseth TF, Brailoiu E, Patel S, Marchant JS (2014) The two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation. Proc Natl Acad Sci USA 111(36):13087–13092.  https://doi.org/10.1073/pnas.1407004111CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Diaz-Munoz M, Hamilton SL, Kaetzel MA, Hazarika P, Dedman JR (1990) Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin). J Biol Chem 265(26):15894–15899PubMedGoogle Scholar
  129. 129.
    Fleet A, Ashworth R, Kubista H, Edwards H, Bolsover S, Mobbs P, Moss SE (1999) Inhibition of EGF-dependent calcium influx by annexin VI is splice form-specific. Biochem Biophys Res Commun 260(2):540–546.  https://doi.org/10.1006/bbrc.1999.0915CrossRefPubMedGoogle Scholar
  130. 130.
    Monastyrskaya K, Babiychuk EB, Hostettler A, Wood P, Grewal T, Draeger A (2009b) Plasma membrane-associated annexin A6 reduces Ca2+ entry by stabilizing the cortical actin cytoskeleton. J Biol Chem 284(25):17227–17242.  https://doi.org/10.1074/jbc.M109.004457CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Matallanas D, Sanz-Moreno V, Arozarena I, Calvo F, Agudo-Ibanez L, Santos E, Berciano MT, Crespo P (2006) Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation. Mol Cell Biol 26(1):100–116.  https://doi.org/10.1128/MCB.26.1.100-116.2006CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Tebar F, Gelabert-Baldrich M, Hoque M, Cairns R, Rentero C, Pol A, Grewal T, Enrich C (2014) Annexins and endosomal signaling. Methods Enzymol 535:55–74.  https://doi.org/10.1016/B978-0-12-397925-4.00004-3CrossRefPubMedGoogle Scholar
  133. 133.
    Shibata H, Kanadome T, Sugiura H, Yokoyama T, Yamamuro M, Moss SE, Maki M (2015) A new role for annexin A11 in the early secretory pathway via stabilizing Sec31A protein at the endoplasmic reticulum exit sites (ERES). J Biol Chem 290(8):4981–4993.  https://doi.org/10.1074/jbc.M114.592089CrossRefPubMedGoogle Scholar
  134. 134.
    Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H (2002) Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. Biochim Biophys Acta 1600(1–2):51–60CrossRefPubMedGoogle Scholar
  135. 135.
    Satoh H, Nakano Y, Shibata H, Maki M (2002) The penta-EF-hand domain of ALG-2 interacts with amino-terminal domains of both annexin VII and annexin XI in a Ca2+-dependent manner. Biochim Biophys Acta 1600(1–2):61–67CrossRefPubMedGoogle Scholar
  136. 136.
    Wartosch L, Bright NA, Luzio JP (2015) Lysosomes. Curr Biol 25(8):R315–R316.  https://doi.org/10.1016/j.cub.2015.02.027CrossRefPubMedGoogle Scholar
  137. 137.
    Mittelbrunn M, Sanchez-Madrid F (2012) Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 13(5):328–335.  https://doi.org/10.1038/nrm3335CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Luzio JP, Pryor PR, Bright NA (2007b) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8(8):622–632.  https://doi.org/10.1038/nrm2217CrossRefPubMedGoogle Scholar
  139. 139.
    Falguieres T, Luyet PP, Gruenberg J (2009) Molecular assemblies and membrane domains in multivesicular endosome dynamics. Exp Cell Res 315(9):1567–1573.  https://doi.org/10.1016/j.yexcr.2008.12.006CrossRefPubMedGoogle Scholar
  140. 140.
    Sobo K, Le Blanc I, Luyet PP, Fivaz M, Ferguson C, Parton RG, Gruenberg J, van der Goot FG (2007) Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking. PLoS One 2(9):e851.  https://doi.org/10.1371/journal.pone.0000851CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    van der Goot FG, Gruenberg J (2006) Intra-endosomal membrane traffic. Trends Cell Biol 16(10):514–521.  https://doi.org/10.1016/j.tcb.2006.08.003CrossRefPubMedGoogle Scholar
  142. 142.
    Hurley JH (2015) ESCRTs are everywhere. EMBO J 34(19):2398–2407.  https://doi.org/10.15252/embj.201592484CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452.  https://doi.org/10.1038/nature07961CrossRefPubMedGoogle Scholar
  144. 144.
    Bari R, Guo Q, Xia B, Zhang YH, Giesert EE, Levy S, Zheng JJ, Zhang XA (2011) Tetraspanins regulate the protrusive activities of cell membrane. Biochem Biophys Res Commun 415(4):619–626.  https://doi.org/10.1016/j.bbrc.2011.10.121CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Edgar JR, Eden ER, Futter CE (2014) Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 15(2):197–211.  https://doi.org/10.1111/tra.12139CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21(4):708–721.  https://doi.org/10.1016/j.devcel.2011.08.019CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247.  https://doi.org/10.1126/science.1153124CrossRefPubMedGoogle Scholar
  148. 148.
    Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C, Faure J, Blanc NS, Matile S, Dubochet J, Sadoul R, Parton RG, Vilbois F, Gruenberg J (2004) Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303(5657):531–534.  https://doi.org/10.1126/science.1092425CrossRefPubMedGoogle Scholar
  149. 149.
    Mayran N, Parton RG, Gruenberg J (2003) Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J 22(13):3242–3253.  https://doi.org/10.1093/emboj/cdg321CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Morel E, Parton RG, Gruenberg J (2009) Annexin A2-dependent polymerization of actin mediates endosome biogenesis. Dev Cell 16(3):445–457.  https://doi.org/10.1016/j.devcel.2009.01.007CrossRefPubMedGoogle Scholar
  151. 151.
    Desdin-Mico G, Mittelbrunn M (2017) Role of exosomes in the protection of cellular homeostasis. Cell Adh Migr 11(2):127–134.  https://doi.org/10.1080/19336918.2016.1251000CrossRefPubMedGoogle Scholar
  152. 152.
    Luyet PP, Falguieres T, Pons V, Pattnaik AK, Gruenberg J (2008) The ESCRT-I subunit TSG101 controls endosome-to-cytosol release of viral RNA. Traffic 9(12):2279–2290.  https://doi.org/10.1111/j.1600-0854.2008.00820.xCrossRefPubMedGoogle Scholar
  153. 153.
    Bissig C, Gruenberg J (2014) ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 24(1):19–25.  https://doi.org/10.1016/j.tcb.2013.10.009CrossRefPubMedGoogle Scholar
  154. 154.
    Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavik J, Machala M, Zimmermann P (2014) Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 5:3477.  https://doi.org/10.1038/ncomms4477CrossRefPubMedGoogle Scholar
  155. 155.
    Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20(1):131–139.  https://doi.org/10.1016/j.devcel.2010.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273(5274):501–503CrossRefPubMedGoogle Scholar
  157. 157.
    Cuervo AM, Gomes AV, Barnes JA, Dice JF (2000) Selective degradation of annexins by chaperone-mediated autophagy. J Biol Chem 275(43):33329–33335.  https://doi.org/10.1074/jbc.M005655200CrossRefPubMedGoogle Scholar
  158. 158.
    Gomes AV, Barnes JA (1995) Pest sequences in EF-hand calcium-binding proteins. Biochem Mol Biol Int 37(5):853–860PubMedGoogle Scholar
  159. 159.
    Kobayashi T, Vischer UM, Rosnoblet C, Lebrand C, Lindsay M, Parton RG, Kruithof EK, Gruenberg J (2000) The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol Biol Cell 11(5):1829–1843CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Poeter M, Brandherm I, Rossaint J, Rosso G, Shahin V, Skryabin BV, Zarbock A, Gerke V, Rescher U (2014) Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63. Nat Commun 5:3738.  https://doi.org/10.1038/ncomms4738CrossRefPubMedGoogle Scholar
  161. 161.
    Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S (1988) The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 52(3):329–341CrossRefPubMedGoogle Scholar
  162. 162.
    Jahraus A, Egeberg M, Hinner B, Habermann A, Sackman E, Pralle A, Faulstich H, Rybin V, Defacque H, Griffiths G (2001) ATP-dependent membrane assembly of F-actin facilitates membrane fusion. Mol Biol Cell 12(1):155–170CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Kjeken R, Egeberg M, Habermann A, Kuehnel M, Peyron P, Floetenmeyer M, Walther P, Jahraus A, Defacque H, Kuznetsov SA, Griffiths G (2004) Fusion between phagosomes, early and late endosomes: a role for actin in fusion between late, but not early endocytic organelles. Mol Biol Cell 15(1):345–358.  https://doi.org/10.1091/mbc.E03-05-0334CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Taunton J, Rowning BA, Coughlin ML, Wu M, Moon RT, Mitchison TJ, Larabell CA (2000) Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J Cell Biol 148(3):519–530CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Goebeler V, Poeter M, Zeuschner D, Gerke V, Rescher U (2008) Annexin A8 regulates late endosome organization and function. Mol Biol Cell 19(12):5267–5278.  https://doi.org/10.1091/mbc.E08-04-0383CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Jaiswal JK, Andrews NW, Simon SM (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 159(4):625–635.  https://doi.org/10.1083/jcb.200208154CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106(2):157–169CrossRefPubMedGoogle Scholar
  168. 168.
    Rodriguez A, Webster P, Ortego J, Andrews NW (1997) Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 137(1):93–104CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Pryor PR, Mullock BM, Bright NA, Gray SR, Luzio JP (2000) The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol 149(5):1053–1062CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263(5145):390–393CrossRefPubMedGoogle Scholar
  171. 171.
    Luzio JP, Bright NA, Pryor PR (2007a) The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans 35(Pt 5):1088–1091.  https://doi.org/10.1042/BST0351088CrossRefPubMedGoogle Scholar
  172. 172.
    Creutz CE (1992) The annexins and exocytosis. Science 258(5084):924–931CrossRefPubMedGoogle Scholar
  173. 173.
    Donnelly SR, Moss SE (1997) Annexins in the secretory pathway. Cell Mol Life Sci 53(6):533–538CrossRefPubMedGoogle Scholar
  174. 174.
    Sjölin C, Dahlgren C (1996) Isolation by calcium-dependent translation to neutrophil-specific granules of a 42-kD cytosolic protein, identified as being a fragment of annexin XI. Blood 87(11):4817–4823PubMedGoogle Scholar
  175. 175.
    Wang J, Guo C, Liu S, Qi H, Yin Y, Liang R, Sun MZ, Greenaway FT (2014) Annexin A11 in disease. Clin Chim Acta 431:164–168.  https://doi.org/10.1016/j.cca.2014.01.031CrossRefPubMedGoogle Scholar
  176. 176.
    Iino S, Sudo T, Niwa T, Fukasawa T, Hidaka H, Niki I (2000) Annexin XI may be involved in Ca2+ – or GTP-gammaS-induced insulin secretion in the pancreatic beta-cell. FEBS Lett 479(1–2):46–50CrossRefPubMedGoogle Scholar
  177. 177.
    McArthur S, Yazid S, Christian H, Sirha R, Flower R, Buckingham J, Solito E (2009) Annexin A1 regulates hormone exocytosis through a mechanism involving actin reorganization. FASEB J 23(11):4000–4010.  https://doi.org/10.1096/fj.09-131391CrossRefPubMedGoogle Scholar
  178. 178.
    Bharadwaj A, Bydoun M, Holloway R, Waisman D (2013) Annexin A2 heterotetramer: structure and function. Int J Mol Sci 14(3):6259–6305.  https://doi.org/10.3390/ijms14036259CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Faure AV, Migne C, Devilliers G, Ayala-Sanmartin J (2002) Annexin 2 “secretion” accompanying exocytosis of chromaffin cells: possible mechanisms of annexin release. Exp Cell Res 276(1):79–89.  https://doi.org/10.1006/excr.2002.5512CrossRefPubMedGoogle Scholar
  180. 180.
    Gabel M, Delavoie F, Demais V, Royer C, Bailly Y, Vitale N, Bader MF, Chasserot-Golaz S (2015) Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. J Cell Biol 210(5):785–800.  https://doi.org/10.1083/jcb.201412030CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Gerke V (2016) Annexins A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis. Biol Chem 397(10):995–1003.  https://doi.org/10.1515/hsz-2016-0207CrossRefPubMedGoogle Scholar
  182. 182.
    Umbrecht-Jenck E, Demais V, Calco V, Bailly Y, Bader MF, Chasserot-Golaz S (2010) S100A10-mediated translocation of annexin-A2 to SNARE proteins in adrenergic chromaffin cells undergoing exocytosis. Traffic 11(7):958–971.  https://doi.org/10.1111/j.1600-0854.2010.01065.xCrossRefPubMedGoogle Scholar
  183. 183.
    Wang P, Chintagari NR, Gou D, Su L, Liu L (2007) Physical and functional interactions of SNAP-23 with annexin A2. Am J Respir Cell Mol Biol 37(4):467–476.  https://doi.org/10.1165/rcmb.2006-0447OCCrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Coorssen JR, Schmitt H, Almers W (1996) Ca2+ triggers massive exocytosis in Chinese hamster ovary cells. EMBO J 15(15):3787–3791PubMedPubMedCentralGoogle Scholar
  185. 185.
    Venkatachalam K, Wong CO, Zhu MX (2015) The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58(1):48–56.  https://doi.org/10.1016/j.ceca.2014.10.008CrossRefPubMedGoogle Scholar
  186. 186.
    Wang W, Gao Q, Yang M, Zhang X, Yu L, Lawas M, Li X, Bryant-Genevier M, Southall NT, Marugan J, Ferrer M, Xu H (2015) Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc Natl Acad Sci USA 112(11):E1373–E1381.  https://doi.org/10.1073/pnas.1419669112CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Weiss N (2012) Cross-talk between TRPML1 channel, lipids and lysosomal storage diseases. Commun Integr Biol 5(2):111–113.  https://doi.org/10.4161/cib.20373CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Roostalu U, Strähle U (2012) In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 22(3):515–529.  https://doi.org/10.1016/j.devcel.2011.12.008CrossRefPubMedGoogle Scholar
  189. 189.
    Yu QC, McNeil PL (1992) Transient disruptions of aortic endothelial cell plasma membranes. Am J Pathol 141(6):1349–1360PubMedPubMedCentralGoogle Scholar
  190. 190.
    Cooper ST, McNeil PL (2015) Membrane repair: mechanisms and pathophysiology. Physiol Rev 95(4):1205–1240.  https://doi.org/10.1152/physrev.00037.2014CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Demonbreun AR, McNally EM (2016) Plasma membrane repair in health and disease. Curr Top Membr 77:67–96.  https://doi.org/10.1016/bs.ctm.2015.10.006CrossRefPubMedGoogle Scholar
  192. 192.
    Jaiswal JK, Nylandsted J (2015) S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 14(4):502–509.  https://doi.org/10.1080/15384101.2014.995495CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Lauritzen SP, Boye TL, Nylandsted J (2015) Annexins are instrumental for efficient plasma membrane repair in cancer cells. Semin Cell Dev Biol 45:32–38.  https://doi.org/10.1016/j.semcdb.2015.10.028CrossRefPubMedGoogle Scholar
  194. 194.
    Helm JR, Bentley M, Thorsen KD, Wang T, Foltz L, Oorschot V, Klumperman J, Hay JC (2014) Apoptosis-linked gene-2 (ALG-2)/Sec31 interactions regulate endoplasmic reticulum (ER)-to-Golgi transport: a potential effector pathway for luminal calcium. J Biol Chem 289(34):23609–23628.  https://doi.org/10.1074/jbc.M114.561829CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A, Jaiswal JK (2014) Mechanism of Ca(2)(+)-triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun 5:5646.  https://doi.org/10.1038/ncomms6646CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Ono Y, Sorimachi H (2012) Calpains: an elaborate proteolytic system. Biochim Biophys Acta 1824(1):224–236.  https://doi.org/10.1016/j.bbapap.2011.08.005CrossRefPubMedGoogle Scholar
  197. 197.
    Nigro V, Savarese M (2014) Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol 33(1):1–12PubMedPubMedCentralGoogle Scholar
  198. 198.
    Mellgren RL, Miyake K, Kramerova I, Spencer MJ, Bourg N, Bartoli M, Richard I, Greer PA, McNeil PL (2009) Calcium-dependent plasma membrane repair requires m- or mu-calpain, but not calpain-3, the proteasome, or caspases. Biochim Biophys Acta 1793(12):1886–1893.  https://doi.org/10.1016/j.bbamcr.2009.09.013CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Mellgren RL, Zhang W, Miyake K, McNeil PL (2007) Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J Biol Chem 282(4):2567–2575.  https://doi.org/10.1074/jbc.M604560200CrossRefPubMedGoogle Scholar
  200. 200.
    Redpath GM, Woolger N, Piper AK, Lemckert FA, Lek A, Greer PA, North KN, Cooper ST (2014) Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair. Mol Biol Cell 25(19):3037–3048.  https://doi.org/10.1091/mbc.E14-04-0947CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Lennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT, Brown RH Jr (2003) Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J Biol Chem 278(50):50466–50473.  https://doi.org/10.1074/jbc.M307247200CrossRefPubMedGoogle Scholar
  202. 202.
    Draeger A, Wray S, Babiychuk EB (2005) Domain architecture of the smooth-muscle plasma membrane: regulation by annexins. Biochem J 387(Pt 2):309–314.  https://doi.org/10.1042/BJ20041363CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Diakonova M, Gerke V, Ernst J, Liautard JP, van der Vusse G, Griffiths G (1997) Localization of five annexins in J774 macrophages and on isolated phagosomes. J Cell Sci 110(Pt 10):1199–1213PubMedGoogle Scholar
  204. 204.
    Merrifield CJ, Moss SE, Ballestrem C, Imhof BA, Giese G, Wunderlich I, Almers W (1999) Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat Cell Biol 1(1):72–74.  https://doi.org/10.1038/9048CrossRefPubMedGoogle Scholar
  205. 205.
    Rambotti MG, Spreca A, Donato R (1993) Immunocytochemical localization of annexins V and VI in human placentae of different gestational ages. Cell Mol Biol Res 39(6):579–588PubMedGoogle Scholar
  206. 206.
    Zobiack N, Rescher U, Ludwig C, Zeuschner D, Gerke V (2003) The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol Biol Cell 14(12):4896–4908.  https://doi.org/10.1091/mbc.E03-06-0387CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Demonbreun AR, Quattrocelli M, Barefield DY, Allen MV, Swanson KE, McNally EM (2016) An actin-dependent annexin complex mediates plasma membrane repair in muscle. J Cell Biol 213(6):705–718.  https://doi.org/10.1083/jcb.201512022CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Gavins FN, Hickey MJ (2012) Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol 3:354.  https://doi.org/10.3389/fimmu.2012.00354CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, Reutelingsperger C, Perretti M, Parkos CA, Neish AS, Nusrat A (2013) Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 123(1):443–454.  https://doi.org/10.1172/JCI65831CrossRefPubMedGoogle Scholar
  210. 210.
    Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9(1):62–70.  https://doi.org/10.1038/nri2470CrossRefPubMedGoogle Scholar
  211. 211.
    Perretti M, Dalli J (2009) Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br J Pharmacol 158(4):936–946.  https://doi.org/10.1111/j.1476-5381.2009.00483.xCrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Sugimoto MA, Vago JP, Teixeira MM, Sousa LP (2016) Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. J Immunol Res 2016:8239258.  https://doi.org/10.1155/2016/8239258CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Jaiswal JK, Lauritzen SP, Scheffer L, Sakaguchi M, Bunkenborg J, Simon SM, Kallunki T, Jaattela M, Nylandsted J (2014) S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat Commun 5:3795.  https://doi.org/10.1038/ncomms4795CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Defour A, Van der Meulen JH, Bhat R, Bigot A, Bashir R, Nagaraju K, Jaiswal JK (2014) Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis 5:e1306.  https://doi.org/10.1038/cddis.2014.272CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Hayes MJ, Shao D, Bailly M, Moss SE (2006) Regulation of actin dynamics by annexin 2. EMBO J 25(9):1816–1826.  https://doi.org/10.1038/sj.emboj.7601078CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Cagliani R, Magri F, Toscano A, Merlini L, Fortunato F, Lamperti C, Rodolico C, Prelle A, Sironi M, Aguennouz M, Ciscato P, Uncini A, Moggio M, Bresolin N, Comi GP (2005) Mutation finding in patients with dysferlin deficiency and role of the dysferlin interacting proteins annexin A1 and A2 in muscular dystrophies. Hum Mutat 26(3):283.  https://doi.org/10.1002/humu.9364CrossRefPubMedGoogle Scholar
  217. 217.
    Saurel O, Cezanne L, Milon A, Tocanne JF, Demange P (1998) Influence of annexin V on the structure and dynamics of phosphatidylcholine/phosphatidylserine bilayers: a fluorescence and NMR study. Biochemistry 37(5):1403–1410.  https://doi.org/10.1021/bi971484nCrossRefPubMedGoogle Scholar
  218. 218.
    Swaggart KA, Demonbreun AR, Vo AH, Swanson KE, Kim EY, Fahrenbach JP, Holley-Cuthrell J, Eskin A, Chen Z, Squire K, Heydemann A, Palmer AA, Nelson SF, McNally EM (2014) Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. Proc Natl Acad Sci USA 111(16):6004–6009.  https://doi.org/10.1073/pnas.1324242111CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Draeger A, Monastyrskaya K, Babiychuk EB (2011) Plasma membrane repair and cellular damage control: the annexin survival kit. Biochem Pharmacol 81(6):703–712.  https://doi.org/10.1016/j.bcp.2010.12.027CrossRefPubMedGoogle Scholar
  220. 220.
    Potez S, Luginbuhl M, Monastyrskaya K, Hostettler A, Draeger A, Babiychuk EB (2011) Tailored protection against plasmalemmal injury by annexins with different Ca2+ sensitivities. J Biol Chem 286(20):17982–17991.  https://doi.org/10.1074/jbc.M110.187625CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Morel E, Gruenberg J (2007) The p11/S100A10 light chain of annexin A2 is dispensable for annexin A2 association to endosomes and functions in endosomal transport. PLoS One 2(10):e1118.  https://doi.org/10.1371/journal.pone.0001118CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Seemann J, Weber K, Gerke V (1997) Annexin I targets S100C to early endosomes. FEBS Lett 413(1):185–190CrossRefPubMedGoogle Scholar
  223. 223.
    Creutz CE, Hira JK, Gee VE, Eaton JM (2012) Protection of the membrane permeability barrier by annexins. Biochemistry 51(50):9966–9983.  https://doi.org/10.1021/bi3013559CrossRefPubMedGoogle Scholar
  224. 224.
    Li X, Rydzewski N, Hider A, Zhang X, Yang J, Wang W, Gao Q, Cheng X, Xu H (2016) A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol 18(4):404–417.  https://doi.org/10.1038/ncb3324CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS (2016) Mechanisms and functions of lysosome positioning. J Cell Sci 129(23):4329–4339.  https://doi.org/10.1242/jcs.196287CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500.  https://doi.org/10.1038/emboj.2011.286CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10(9):623–635.  https://doi.org/10.1038/nrm2745CrossRefPubMedGoogle Scholar
  228. 228.
    Kurz T, Terman A, Gustafsson B, Brunk UT (2008) Lysosomes and oxidative stress in aging and apoptosis. Biochim Biophys Acta 1780(11):1291–1303.  https://doi.org/10.1016/j.bbagen.2008.01.009CrossRefPubMedGoogle Scholar
  229. 229.
    Khatter D, Raina VB, Dwivedi D, Sindhwani A, Bahl S, Sharma M (2015a) The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes. J Cell Sci 128(9):1746–1761.  https://doi.org/10.1242/jcs.162651CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Khatter D, Sindhwani A, Sharma M (2015b) Arf-like GTPase Arl8: moving from the periphery to the center of lysosomal biology. Cell Logist 5(3):e1086501.  https://doi.org/10.1080/21592799.2015.1086501CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11(2):467–480CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Kilpatrick BS, Eden ER, Schapira AH, Futter CE, Patel S (2013) Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. J Cell Sci 126(Pt 1):60–66.  https://doi.org/10.1242/jcs.118836CrossRefPubMedGoogle Scholar
  233. 233.
    Marchant JS, Patel S (2015) Two-pore channels at the intersection of endolysosomal membrane traffic. Biochem Soc Trans 43(3):434–441.  https://doi.org/10.1042/BST20140303CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R, Guarani V, Vaites LP, Ordureau A, Rad R, Erickson BK, Wuhr M, Chick J, Zhai B, Kolippakkam D, Mintseris J, Obar RA, Harris T, Artavanis-Tsakonas S, Sowa ME, De Camilli P, Paulo JA, Harper JW, Gygi SP (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162(2):425–440.  https://doi.org/10.1016/j.cell.2015.06.043CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Chu BB, Liao YC, Qi W, Xie C, Du X, Wang J, Yang H, Miao HH, Li BL, Song BL (2015) Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161(2):291–306.  https://doi.org/10.1016/j.cell.2015.02.019CrossRefPubMedGoogle Scholar
  236. 236.
    Luo J, Jiang L, Yang H, Song BL (2017) Routes and mechanisms of post-endosomal cholesterol trafficking: a story that never ends. Traffic 18(4):209–217.  https://doi.org/10.1111/tra.12471CrossRefPubMedGoogle Scholar
  237. 237.
    Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong XP, Yu T, Lieberman AP, Showalter HD, Xu H (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 3:731.  https://doi.org/10.1038/ncomms1735CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Styrt B, Pollack CR, Klempner MS (1988) An abnormal calcium uptake pump in Chediak-Higashi neutrophil lysosomes. J Leukoc Biol 44(2):130–135CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Carlos Enrich
    • 1
    • 2
  • Carles Rentero
    • 1
    • 2
  • Elsa Meneses-Salas
    • 1
    • 2
  • Francesc Tebar
    • 1
    • 2
  • Thomas Grewal
    • 3
  1. 1.Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX)Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
  2. 2.Facultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
  3. 3.Faculty of PharmacyUniversity of SydneySydneyAustralia

Personalised recommendations