Advertisement

Assembly of ER-PM Junctions: A Critical Determinant in the Regulation of SOCE and TRPC1

  • Krishna P. Subedi
  • Hwei Ling Ong
  • Indu S. Ambudkar
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 981)

Abstract

Store-operated calcium entry (SOCE), a unique plasma membrane Ca2+ entry mechanism, is activated when ER-[Ca2+] is decreased. SOCE is mediated via the primary channel, Orai1, as well as others such as TRPC1. STIM1 and STIM2 are ER-Ca2+ sensor proteins that regulate Orai1 and TRPC1. SOCE requires assembly of STIM proteins with the plasma membrane channels which occurs within distinct regions in the cell that have been termed as endoplasmic reticulum (ER)-plasma membrane (PM) junctions. The PM and ER are in close proximity to each other within this region, which allows STIM1 in the ER to interact with and activate either Orai1 or TRPC1 in the plasma membrane. Activation and regulation of SOCE involves dynamic assembly of various components that are involved in mediating Ca2+ entry as well as those that determine the formation and stabilization of the junctions. These components include proteins in the cytosol, ER and PM, as well as lipids in the PM. Recent studies have also suggested that SOCE and its components are compartmentalized within ER-PM junctions and that this process might require remodeling of the plasma membrane lipids and reorganization of structural and scaffolding proteins. Such compartmentalization leads to the generation of spatially- and temporally-controlled Ca2+signals that are critical for regulating many downstream cellular functions.

Keywords

ER-PM junctions SOCE TRPC1 Orai1 STIM1 STIM2 

References

  1. 1.
    Ambudkar IS (2014) Ca2+ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium 55:297–305CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Berridge MJ (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40:297–309CrossRefPubMedGoogle Scholar
  3. 3.
    Berridge MJ (2016) The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol Rev 96:1261–1296CrossRefPubMedGoogle Scholar
  4. 4.
    Putney JW, Steinckwich-Besancon N, Numaga-Tomita T, Davis FM, Desai PN, D’Agostin DM, Wu S, Bird GS (2017) The functions of store-operated calcium channels. Biochim Biophys Acta 1864:900–906CrossRefPubMedGoogle Scholar
  5. 5.
    Gudlur A, Zhou Y, Hogan PG (2013) STIM-ORAI interactions that control the CRAC channel. Curr Top Membr 71:33–58CrossRefPubMedGoogle Scholar
  6. 6.
    Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ong HL, de Souza LB, Ambudkar IS (2016) Role of TRPC channels in store-operated calcium entry. Adv Exp Med Biol 898:87–109CrossRefPubMedGoogle Scholar
  8. 8.
    Ong HL, de Souza LB, Cheng KT, Ambudkar IS (2014) Physiological functions and regulation of TRPC channels. Handb Exp Pharmacol 223:1005–1034CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca2+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca2+ signals required for specific cell functions. PLoS Biol 9:e1001025CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ong HL, Jang SI, Ambudkar IS (2012) Distinct contributions of Orai1 and TRPC1 to agonist-induced [Ca2+]i signals determine specificity of Ca2+ -dependent gene expression. PLoS One 7:e47146CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chang CL, Chen YJ, Liou J (2017) ER-plasma membrane junctions: why and how do we study them? Biochim Biophys Acta 1864(9):1494–1506CrossRefPubMedGoogle Scholar
  12. 12.
    Shin DM, Son A, Park S, Kim MS, Ahuja M, Muallem S (2016) The TRPCs, Orais and STIMs in ER/PM junctions. Adv Exp Med Biol 898:47–66CrossRefPubMedGoogle Scholar
  13. 13.
    Parekh AB (2008) Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. J Physiol 586:3043–3054CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bhardwaj R, Muller HM, Nickel W, Seedorf M (2013) Oligomerization and Ca2+/calmodulin control binding of the ER Ca2+-sensors STIM1 and STIM2 to plasma membrane lipids. Biosci Rep 33:e00077CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ercan E, Momburg F, Engel U, Temmerman K, Nickel W, Seedorf M (2009) A conserved, lipid-mediated sorting mechanism of yeast Ist2 and mammalian STIM proteins to the peripheral ER. Traffic 10:1802–1818CrossRefPubMedGoogle Scholar
  16. 16.
    Ambudkar IS, Ong HL, Singh BB (2010) Molecular and functional determinants of Ca2+ signaling microdomains. In: Sitaramayya A (ed) Signal transduction: pathways, mechanisms and diseases. Springer, HeidelbergGoogle Scholar
  17. 17.
    Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14CrossRefPubMedGoogle Scholar
  18. 18.
    Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45:625–633CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50CrossRefPubMedGoogle Scholar
  20. 20.
    Hartzell CA, Jankowska KI, Burkhardt JK, Lewis RS (2016) Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse. elife 5:e14850CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ong HL, Ambudkar IS (2015) Molecular determinants of TRPC1 regulation within ER-PM junctions. Cell Calcium 58:376–386CrossRefPubMedGoogle Scholar
  22. 22.
    Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11:611–624CrossRefPubMedGoogle Scholar
  23. 23.
    Birnbaumer L, Zhu X, Jiang M, Boulay G, Peyton M, Vannier B, Brown D, Platano D, Sadeghi H, Stefani E, Birnbaumer M (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA 93:15195–15202CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108:595–598CrossRefPubMedGoogle Scholar
  25. 25.
    Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717CrossRefPubMedGoogle Scholar
  27. 27.
    Fanger CM, Hoth M, Crabtree GR, Lewis RS (1995) Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels. J Cell Biol 131:655–667CrossRefPubMedGoogle Scholar
  28. 28.
    Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356CrossRefPubMedGoogle Scholar
  29. 29.
    Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lewis RS, Cahalan MD (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1:99–112PubMedPubMedCentralGoogle Scholar
  31. 31.
    Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209CrossRefPubMedGoogle Scholar
  32. 32.
    Dehaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282:17548–17556CrossRefPubMedGoogle Scholar
  33. 33.
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185CrossRefPubMedGoogle Scholar
  34. 34.
    Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gwack Y, Srikanth S, Oh-Hora M, Hogan PG, Lamperti ED, Yamashita M, Gelinas C, Neems DS, Sasaki Y, Feske S, Prakriya M, Rajewsky K, Rao A (2008) Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol 28:5209–5222CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vig M, Dehaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9:89–96CrossRefPubMedGoogle Scholar
  38. 38.
    Hwang SY, Foley J, Numaga-Tomita T, Petranka JG, Bird GS, Putney JW Jr (2012) Deletion of Orai1 alters expression of multiple genes during osteoclast and osteoblast maturation. Cell Calcium 52:488–500CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lyfenko AD, Dirksen RT (2008) Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1. J Physiol 586:4815–4824CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Robinson LJ, Mancarella S, Songsawad D, Tourkova IL, Barnett JB, Gill DL, Soboloff J, Blair HC (2012) Gene disruption of the calcium channel Orai1 results in inhibition of osteoclast and osteoblast differentiation and impairs skeletal development. Lab Investig 92:1071–1083CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Xing J, Petranka JG, Davis FM, Desai PN, Putney JW, Bird GS (2014) Role of Orai1 and store-operated calcium entry in mouse lacrimal gland signalling and function. J Physiol 592:927–939CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Davis FM, Janoshazi A, Janardhan KS, Steinckwich N, D’Agostin DM, Petranka JG, Desai PN, Roberts-Thomson SJ, Bird GS, Tucker DK, Fenton SE, Feske S, Monteith GR, Putney JW, JR. (2015) Essential role of Orai1 store-operated calcium channels in lactation. Proc Natl Acad Sci USA 112:5827–5832CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ahuja M, Schwartz DM, Tandon M, Son A, Zeng M, Swaim W, Eckhaus M, Hoffman V, Cui Y, Xiao B, Worley PF, Muallem S (2017) Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab 25:635–646CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Berna-Erro A, Jardin I, Salido GM, Rosado JA (2017) Role of STIM2 in cell function and physiopathology. J Physiol 595(10):3111–3128CrossRefPubMedGoogle Scholar
  45. 45.
    Lopez E, Salido GM, Rosado JA, Berna-Erro A (2012) Unraveling STIM2 function. J Physiol Biochem 68:619–633CrossRefPubMedGoogle Scholar
  46. 46.
    Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Darbellay B, Arnaudeau S, Ceroni D, Bader CR, Konig S, Bernheim L (2010) Human muscle economy myoblast differentiation and excitation-contraction coupling use the same molecular partners, STIM1 and STIM2. J Biol Chem 285:22437–22447CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ong HL, de Souza LB, Zheng C, Cheng KT, Liu X, Goldsmith CM, Feske S, Ambudkar IS (2015) STIM2 enhances receptor-stimulated Ca2+ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions. Sci Signal 8:ra3CrossRefPubMedGoogle Scholar
  49. 49.
    Wang X, Wang Y, Zhou Y, Hendron E, Mancarella S, Andrake MD, Rothberg BS, Soboloff J, Gill DL (2014) Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 5:3183–3193PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang Y, Deng X, Zhou Y, Hendron E, Mancarella S, Ritchie MF, Tang XD, Baba Y, Kurosaki T, Mori Y, Soboloff J, Gill DL (2009) STIM protein coupling in the activation of Orai channels. Proc Natl Acad Sci USA 106:7391–7396CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Stathopulos PB, Ikura M (2013) Structural aspects of calcium-release activated calcium channel function. Channels (Austin) 7:344–353CrossRefGoogle Scholar
  52. 52.
    Stathopulos PB, Zheng L, Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284:728–732CrossRefPubMedGoogle Scholar
  53. 53.
    Zheng L, Stathopulos PB, Li GY, Ikura M (2008) Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 369:240–246CrossRefPubMedGoogle Scholar
  54. 54.
    Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C, Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci USA 108:1337–1342CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kar P, Bakowski D, Di Capite J, Nelson C, Parekh AB (2012) Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. Proc Natl Acad Sci USA 109:6969–6974CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Thiel M, Lis A, Penner R (2013) STIM2 drives Ca2+ oscillations through store-operated Ca2+ entry caused by mild store depletion. J Physiol 591:1433–1445CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sun S, Zhang H, Liu J, Popugaeva E, Xu NJ, Feske S, White CL 3rd, Bezprozvanny I (2014) Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. Neuron 82:79–93CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Brueggemann LI, Markun DR, Henderson KK, Cribbs LL, Byron KL (2006) Pharmacological and electrophysiological characterization of store-operated currents and capacitative Ca2+ entry in vascular smooth muscle cells. J Pharmacol Exp Ther 317:488–499CrossRefPubMedGoogle Scholar
  60. 60.
    Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280:21600–21606CrossRefPubMedGoogle Scholar
  61. 61.
    Liu X, Groschner K, Ambudkar IS (2004) Distinct Ca2+ -permeable cation currents are activated by internal Ca2+ -store depletion in RBL-2H3 cells and human salivary gland cells, HSG and HSY. J Membr Biol 200:93–104CrossRefPubMedGoogle Scholar
  62. 62.
    Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J Biol Chem 278:11337–11343CrossRefPubMedGoogle Scholar
  63. 63.
    Brownlow SL, Harper AG, Harper MT, Sage SO (2004) A role for hTRPC1 and lipid raft domains in store-mediated calcium entry in human platelets. Cell Calcium 35:107–113CrossRefPubMedGoogle Scholar
  64. 64.
    Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112:744–760CrossRefPubMedGoogle Scholar
  65. 65.
    Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411CrossRefPubMedGoogle Scholar
  66. 66.
    Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (2003) RhoA interaction with inositol 1,4,5-triphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. J Biol Chem 278:33492–33500CrossRefPubMedGoogle Scholar
  67. 67.
    Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277:42157–42163CrossRefPubMedGoogle Scholar
  68. 68.
    Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13:693–708CrossRefPubMedGoogle Scholar
  69. 69.
    Hong JH, Li Q, Kim MS, Shin DM, Feske S, Birnbaumer L, Cheng KT, Ambudkar IS, Muallem S (2011) Polarized but differential localization and recruitment of STIM1, Orai1 and TRPC channels in secretory cells. Traffic 12:232–245CrossRefPubMedGoogle Scholar
  70. 70.
    Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1-/- mice. Proc Natl Acad Sci USA 104:17542–17547CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ma X, Cheng KT, Wong CO, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X (2011) Heteromeric TRPV4-C1 channels contribute to storeoperated Ca2+ entry in vascular endothelial cells. Cell Calcium 50:502–509CrossRefPubMedGoogle Scholar
  72. 72.
    Bomben VC, Turner KL, Barclay TT, Sontheimer H (2011) Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. J Cell Physiol 226:1879–1888CrossRefPubMedGoogle Scholar
  73. 73.
    Rao JN, Platoshyn O, Golovina VA, Liu L, Zou T, Marasa BS, Turner DJ, Yuan JX, Wang JY (2006) TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. Am J Physiol Gastrointest Liver Physiol 290:G782–G792CrossRefPubMedGoogle Scholar
  74. 74.
    Cuddapah VA, Turner KL, Seifert S, Sontheimer H (2013) Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and ClC-3. J Neurosci 33:1427–1440CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Fiorio Pla A, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25:2687–2701CrossRefPubMedGoogle Scholar
  76. 76.
    Li M, Chen C, Zhou Z, Xu S, Yu Z (2012) A TRPC1-mediated increase in store-operated Ca2+ entry is required for the proliferation of adult hippocampal neural progenitor cells. Cell Calcium 51:486–496CrossRefPubMedGoogle Scholar
  77. 77.
    Mcgurk JS, Shim S, Kim JY, Wen Z, Song H, Ming GL (2011) Postsynaptic TRPC1 function contributes to BDNF-induced synaptic potentiation at the developing neuromuscular junction. J Neurosci 31:14754–14762CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M (2005) TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J Biol Chem 280:2132–2140CrossRefPubMedGoogle Scholar
  79. 79.
    Du J, Sours-Brothers S, Coleman R, Ding M, Graham S, Kong DH, Ma R (2007) Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells. J Am Soc Nephrol 18:1437–1445CrossRefPubMedGoogle Scholar
  80. 80.
    Ong EC, Nesin V, Long CL, Bai CX, Guz JL, Ivanov IP, Abramowitz J, Birnbaumer L, Humphrey MB, Tsiokas L (2013) A TRPC1-dependent pathway regulates osteoclast formation and function. J Biol Chem 288:22219–22231CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, Tiruppathi C (2004) Tumor necrosis factor-α-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Phys Lung Cell Mol Phys 287:L1303–L1313Google Scholar
  82. 82.
    Sours S, Du J, Chu S, Ding M, Zhou XJ, Ma R (2006) Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells. Am J Physiol Ren Physiol 290:F1507–F1515CrossRefGoogle Scholar
  83. 83.
    Dietrich A, Fahlbusch M, Gudermann T (2014) Classical transient receptor potential 1 (TRPC1): channel or channel regulator? Cell 3:939–962CrossRefGoogle Scholar
  84. 84.
    Pani B, Bollimuntha S, Singh BB (2012) The TR (i)P to Ca2+ signaling just got STIMy: an update on STIM1 activated TRPC channels. Front Biosci 17:805–823CrossRefGoogle Scholar
  85. 85.
    Sun Y, Birnbaumer L, Singh BB (2015) TRPC1 regulates calcium-activated chloride channels in salivary gland cells. J Cell Physiol 230(11):2848–2856CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-Hora M, Neems DS, Hogan PG, Rao A (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282:16232–16243CrossRefPubMedGoogle Scholar
  87. 87.
    Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+ -store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233CrossRefPubMedGoogle Scholar
  90. 90.
    Roos J, Digregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem 283:12935–12940CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels. Nat Cell Biol 8:1003–1010CrossRefPubMedGoogle Scholar
  93. 93.
    Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281:28254–28264CrossRefPubMedGoogle Scholar
  94. 94.
    Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282:9105–9116CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Pani B, Ong HL, Liu X, Rauser K, Ambudkar IS, Singh BB (2008) Lipid rafts determine clustering of STIM1 in endoplasmic reticulum-plasma membrane junctions and regulation of store-operated Ca2+ entry (SOCE). J Biol Chem 283:17333–17340CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32:439–448CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Pani B, Ong HL, Brazer SC, Liu X, Rauser K, Singh BB, Ambudkar IS (2009) Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1. Proc Natl Acad Sci USA 106:20087–20092CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283:25296–25304CrossRefPubMedGoogle Scholar
  101. 101.
    Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S (2009) Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem 284:9733–9741CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Lu M, Branstrom R, Berglund E, Hoog A, Bjorklund P, Westin G, Larsson C, Farnebo LO, Forsberg L (2010) Expression and association of TRPC subtypes with Orai1 and STIM1 in human parathyroid. J Mol Endocrinol 44:285–294CrossRefPubMedGoogle Scholar
  103. 103.
    Zhang ZY, Pan LJ, Zhang ZM (2010) Functional interactions among STIM1, Orai1 and TRPC1 on the activation of SOCs in HL-7702 cells. Amino Acids 39:195–204CrossRefPubMedGoogle Scholar
  104. 104.
    Gueguinou M, Harnois T, Crottes D, Uguen A, Deliot N, Gambade A, Chantome A, Haelters JP, Jaffres PA, Jourdan ML, Weber G, Soriani O, Bougnoux P, Mignen O, Bourmeyster N, Constantin B, Lecomte T, Vandier C, Potier-Cartereau M (2016) SK3/TRPC1/Orai1 complex regulates SOCE-dependent colon cancer cell migration: a novel opportunity to modulate anti-EGFR mAb action by the alkyl-lipid Ohmline. Oncotarget 7:36168–36184CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Ng LC, Mccormack MD, Airey JA, Singer CA, Keller PS, Shen XM, Hume JR (2009) TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells. J Physiol 587:2429–2442CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Ng LC, O’Neill KG, French D, Airey JA, Singer CA, Tian H, Shen XM, Hume JR (2012) TRPC1 and Orai1 interact with STIM1 and mediate capacitative Ca2+ entry caused by acute hypoxia in mouse pulmonary arterial smooth muscle cells. Am J Phys Cell Phys 303:C1156–C1172CrossRefGoogle Scholar
  107. 107.
    Almirza WH, Peters PH, Van Zoelen EJ, Theuvenet AP (2012) Role of Trpc channels, Stim1 and Orai1 in PGF2α-induced calcium signaling in NRK fibroblasts. Cell Calcium 51:12–21CrossRefPubMedGoogle Scholar
  108. 108.
    Sabourin J, Le Gal L, Saurwein L, Haefliger JA, Raddatz E, Allagnat F (2015) Store-operated Ca2+ entry mediated by Orai1 and TRPC1 participates to insulin secretion in rat β -cells. J Biol Chem 290:30530–30539CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Pani B, Liu X, Bollimuntha S, Cheng KT, Niesman IR, Zheng C, Achen VR, Patel HH, Ambudkar IS, Singh BB (2013) Impairment of TRPC1-STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1. J Cell Sci 126:667–675CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179CrossRefPubMedGoogle Scholar
  111. 111.
    Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87CrossRefPubMedGoogle Scholar
  112. 112.
    de Souza LB, Ong HL, Liu X, Ambudkar IS (2015) Fast endocytic recycling determines TRPC1-STIM1 clustering in ER-PM junctions and plasma membrane function of the channel. Biochim Biophys Acta 1853:2709–2721CrossRefPubMedGoogle Scholar
  113. 113.
    Rosado JA, Redondo PC, Salido GM, Sage SO, Pariente JA (2005) Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+ entry in mouse pancreatic acinar cells. Am J Phys Cell Phys 288:C214–C221CrossRefGoogle Scholar
  114. 114.
    Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149:425–438CrossRefPubMedGoogle Scholar
  115. 115.
    Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B, Jain M, Nilsson R, Rao A, Hogan PG (2013) An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 499:238–242CrossRefPubMedGoogle Scholar
  116. 116.
    Chang CL, Hsieh TS, Yang TT, Rothberg KG, Azizoglu DB, Volk E, Liao JC, Liou J (2013) Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep 5:813–825CrossRefPubMedGoogle Scholar
  117. 117.
    Maleth J, Choi S, Muallem S, Ahuja M (2014) Translocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating. Nat Commun 5:5843CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Parton RG, Hanzal-Bayer M, Hancock JF (2006) Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J Cell Sci 119:787–796CrossRefPubMedGoogle Scholar
  119. 119.
    Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194CrossRefPubMedGoogle Scholar
  120. 120.
    Thomas CM, Smart EJ (2008) Caveolae structure and function. J Cell Mol Med 12:796–809CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Duchen MR, Verkhratsky A, Muallem S (2008) Mitochondria and calcium in health and disease. Cell Calcium 44:1–5CrossRefPubMedGoogle Scholar
  122. 122.
    Ambudkar IS, Bandyopadhyay BC, Liu X, Lockwich TP, Paria B, Ong HL (2006) Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains. Cell Calcium 40:495–504CrossRefPubMedGoogle Scholar
  123. 123.
    Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20(4):177–186CrossRefPubMedGoogle Scholar
  124. 124.
    Isshiki M, Ying Y, Fujita T, Anderson RGW (2002) A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 277:23389–23398CrossRefGoogle Scholar
  125. 125.
    Ong HL, Ambudkar IS (2012) Role of lipid rafts in the regulation of store-operated Ca2+ channels. Cholesterol regulation of ion channels and receptors. Wiley, HobokenGoogle Scholar
  126. 126.
    Chen TY, Liu PH, Ruan CT, Chiu L, Kung FL (2006) The intracellular domain of amyloid precursor protein interacts with flotillin-1, a lipid raft protein. Biochem Biophys Res Commun 342:266–272CrossRefPubMedGoogle Scholar
  127. 127.
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, Von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162CrossRefPubMedGoogle Scholar
  128. 128.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefPubMedGoogle Scholar
  129. 129.
    Head BP, Patel HH, Roth DM, Murray F, Swaney JS, Niesman IR, Farquhar MG, Insel PA (2006) Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 281:26391–26399CrossRefPubMedGoogle Scholar
  130. 130.
    Suzuki T, Zhang J, Miyazawa S, Liu Q, Farzan MR, Yao WD (2011) Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. J Neurochem 119:64–77CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Goudenege S, Dargelos E, Claverol S, Bonneu M, Cottin P, Poussard S (2007) Comparative proteomic analysis of myotube caveolae after milli-calpain deregulation. Proteomics 7:3289–3298CrossRefPubMedGoogle Scholar
  132. 132.
    Whitehead SN, Gangaraju S, Aylsworth A, Hou ST (2012) Membrane raft disruption results in neuritic retraction prior to neuronal death in cortical neurons. Biosci Trends 6:183–191CrossRefPubMedGoogle Scholar
  133. 133.
    Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, Raghupathy R, Chadda R, Vishwakarma R, Rao M, Mayor S (2008) Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:1085–1097CrossRefPubMedGoogle Scholar
  134. 134.
    Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5:213–230CrossRefPubMedGoogle Scholar
  135. 135.
    Ritchie K, Iino R, Fujiwara T, Murase K, Kusumi A (2003) The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (review). Mol Membr Biol 20:13–18CrossRefPubMedGoogle Scholar
  136. 136.
    Lopreiato R, Giacomello M, Carafoli E (2014) The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 289:10261–10268CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Ong HL, Ambudkar IS (2011) The dynamic complexity of the TRPC1 channelosome. Channels (Austin) 5:424–431CrossRefGoogle Scholar
  138. 138.
    Krebs J (2015) The plethora of PMCA isoforms: alternative splicing and differential expression. Biochim Biophys Acta 1853:2018–2024CrossRefPubMedGoogle Scholar
  139. 139.
    Krebs J, Agellon LB, Michalak M (2015) Ca2+ homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun 460:114–121CrossRefPubMedGoogle Scholar
  140. 140.
    Alonso MT, Manjarres IM, Garcia-Sancho J (2012) Privileged coupling between Ca2+ entry through plasma membrane store-operated Ca2+ channels and the endoplasmic reticulum Ca2+ pump. Mol Cell Endocrinol 353:37–44CrossRefPubMedGoogle Scholar
  141. 141.
    Elaib Z, Saller F, Bobe R (2016) The calcium entry-calcium refilling coupling. Adv Exp Med Biol 898:333–352CrossRefPubMedGoogle Scholar
  142. 142.
    Choquette D, Hakim G, Filoteo AG, Plishker GA, Bostwick JR, Penniston JT (1984) Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun 125:908–915CrossRefPubMedGoogle Scholar
  143. 143.
    Luciani S, Antolini M, Bova S, Cargnelli G, Cusinato F, Debetto P, Trevisi L, Varotto R (1995) Inhibition of cardiac sarcolemmal sodium-calcium exchanger by glycerophosphoinositol 4-phosphate and glycerophosphoinositol 4-5-bisphosphate. Biochem Biophys Res Commun 206:674–680CrossRefPubMedGoogle Scholar
  144. 144.
    Niggli V, Adunyah ES, Carafoli E (1981) Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+ - ATPase. J Biol Chem 256:8588–8592PubMedGoogle Scholar
  145. 145.
    Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001:re19PubMedGoogle Scholar
  146. 146.
    Hope HR, Pike LJ (1996) Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol Biol Cell 7:843–851CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Pike LJ, Casey L (1996) Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem 271:26453–26456CrossRefPubMedGoogle Scholar
  148. 148.
    Kim JY, Zeng W, Kiselyov K, Yuan JP, Dehoff MH, Mikoshiba K, Worley PF, Muallem S (2006) Homer 1 mediates store- and inositol 1,4,5-trisphosphate receptor-dependent translocation and retrieval of TRPC3 to the plasma membrane. J Biol Chem 281:32540–32549CrossRefPubMedGoogle Scholar
  149. 149.
    Lockwich T, Pant J, Makusky A, Jankowska-Stephens E, Kowalak JA, Markey SP, Ambudkar IS (2008) Analysis of TRPC3-interacting proteins by tandem mass spectrometry. J Proteome Res 7:979–989CrossRefPubMedGoogle Scholar
  150. 150.
    Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS (2002) Calmodulin regulates Ca2+ -dependent feedback inhibition of store-operated Ca2+ influx by interaction with a site in the C terminus of TrpC1. Mol Cell 9:739–750CrossRefPubMedGoogle Scholar
  151. 151.
    Ritchie MF, Samakai E, Soboloff J (2012) STIM1 is required for attenuation of PMCA-mediated Ca2+ clearance during T-cell activation. EMBO J 31:1123–1133CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Srikanth S, Gwack Y (2012) Orai1, STIM1, and their associating partners. J Physiol 590:4169–4177CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Kim E, DeMarco SJ, Marfatia SM, Chishti AH, Sheng M, Strehler EE (1998) Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains. J Biol Chem 273:1591–1595CrossRefPubMedGoogle Scholar
  154. 154.
    Carafoli E, Zurini M (1982) The Ca2+-pumping ATPase of plasma membranes. Purification, reconstitution and properties. Biochim Biophys Acta 683:279–301CrossRefPubMedGoogle Scholar
  155. 155.
    Manjarres IM, Rodriguez-Garcia A, Alonso MT, Garcia-Sancho J (2010) The sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) is the third element in capacitative calcium entry. Cell Calcium 47:412–418CrossRefPubMedGoogle Scholar
  156. 156.
    Sampieri A, Zepeda A, Asanov A, Vaca L (2009) Visualizing the store-operated channel complex assembly in real time: identification of SERCA2 as a new member. Cell Calcium 45:439–446CrossRefPubMedGoogle Scholar
  157. 157.
    Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Alicia S, Angelica Z, Carlos S, Alfonso S, Vaca L (2008) STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: moving TRPC1 in and out of lipid rafts. Cell Calcium 44:479–491CrossRefPubMedGoogle Scholar
  160. 160.
    Hancock JF, Parton RG (2005) Ras plasma membrane signalling platforms. Biochem J 389:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Feron O, Smith TW, Michel T, Kelly RA (1997) Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 272:17744–17748CrossRefPubMedGoogle Scholar
  162. 162.
    Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942CrossRefPubMedGoogle Scholar
  163. 163.
    Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278:27208–27215CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, Luciani G, Sbrana F, Zecchi-Orlandini S, Francini F, Meacci E (2009) Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J Cell Sci 122:1322–1333CrossRefPubMedGoogle Scholar
  165. 165.
    Sabourin J, Cognard C, Constantin B (2009) Regulation by scaffolding proteins of canonical transient receptor potential channels in striated muscle. J Muscle Res Cell Motil 30:289–297CrossRefPubMedGoogle Scholar
  166. 166.
    Kannan KB, Barlos D, Hauser CJ (2007) Free cholesterol alters lipid raft structure and function regulating neutrophil Ca2+ entry and respiratory burst: correlations with calcium channel raft trafficking. J Immunol 178:5253–5261CrossRefPubMedGoogle Scholar
  167. 167.
    Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC (2007) Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem 282:16631–16643CrossRefPubMedGoogle Scholar
  168. 168.
    Brownlow SL, Sage SO (2005) Transient receptor potential protein subunit assembly and membrane distribution in human platelets. Thromb Haemost 94:839–845PubMedGoogle Scholar
  169. 169.
    Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G, Pais de Barros JP, Laubriet A, Gambert P, Lizard G, Neel D (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11:897–905CrossRefPubMedGoogle Scholar
  170. 170.
    Trevino CL, Serrano CJ, Beltran C, Felix R, Darszon A (2001) Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 509:119–125CrossRefPubMedGoogle Scholar
  171. 171.
    Yu F, Sun L, MachaCa2+ K (2010) Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. J Cell Biol 191:523–535Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Krishna P. Subedi
    • 1
  • Hwei Ling Ong
    • 1
  • Indu S. Ambudkar
    • 1
  1. 1.Secretory Physiology SectionMolecular Physiology and Therapeutics Branch, NIDCR, NIHBethesdaUSA

Personalised recommendations