Objective Assessment of Cognitive Impairment in Parkinson’s Disease Using Evolutionary Algorithm

  • Chiara Picardi
  • Jeremy Cosgrove
  • Stephen L. Smith
  • Stuart Jamieson
  • Jane E. Alty
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)


Parkinson’s disease (PD) is a common and disabling condition without cure. An early and accurate diagnosis is important for monitoring the disease and managing symptoms. Over time, the majority of patients with PD develop cognitive impairment, which is diagnosed using global tests of cognitive function or more detailed neuropsychological assessment. This paper presents an approach to detect PD and to discriminate different degrees of PD cognitive impairment in an objective way, considering a simple and non-invasive “reach and grasp” task performed with the patient wearing sensor-enabled data gloves recording movements in real-time. The PD patients comprised three subgroups: 22 PD patients with normal cognition (PD-NC), 23 PD patients with mild cognitive impairment (PD-MCI) and 10 PD patients with dementia (PDD). In addition, 30 age-matched healthy subjects (Controls) were also measured. From the experimental data, 25 kinematic features were extracted with the aim of generating a classifier that is able to discriminate not only between Controls and PD patients, but also between the PD cognitive subgroups. The technique used to find the best classifier was an Evolutionary Algorithm - Cartesian Genetic Programming (CGP), and this is compared with Support Vector Machine (SVM) and Artificial Neural Network (ANN). In all cases, the CGP classifiers were comparable with SVM and ANN, and in some cases performed better. The results are promising and show both the potential of the computed features and of CGP in aiding PD diagnosis.


Classification Genetic programming Parkinson’s disease Machine learning Artificial intelligence 


  1. 1.
    Website of the Parkinsons’s UK (2016).
  2. 2.
    Gibb, W.R., Lees, A.J.: The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752 (1988)CrossRefGoogle Scholar
  3. 3.
    Playfer, J.R.: Parkinson’s disease. Postgrad. Med. J. 73, 257–264 (1997)CrossRefGoogle Scholar
  4. 4.
    Pedersen, K.F., Larsen, J.P., Tysnes, O.B., et al.: Prognosis of mild cognitive impairment in early Parkinson disease: the Norwegian ParkWest study. JAMA Neurol. 70, 580–586 (2013)CrossRefGoogle Scholar
  5. 5.
    Litvan, I., Goldman, J.G., Tröster, A.I., Schmand, B.A., Weintraub, D., Petersen, R.C., Mollenhauer, B., Adler, C.H., Marder, K., Williams-Gray, C.H., Aarsland, D.: Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov. Disord. 27(3), 349–356 (2012)CrossRefGoogle Scholar
  6. 6.
    Broeders, M., De Bie, R.M.A., Velseboer, D.C., Speelman, J.D., Muslimovic, D., Schmand, B.: Evolution of mild cognitive impairment in Parkinson disease. Neurology 81(4), 346–352 (2013)CrossRefGoogle Scholar
  7. 7.
    Yarnall, A.J., Breen, D.P., Duncan, G.W., Khoo, T.K., Coleman, S.Y., Firbank, M.J., Nombela, C., Winder-Rhodes, S., Evans, J.R., Rowe, J.B., Mollenhauer, B.: Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD study. Neurology 82(4), 308–316 (2014)CrossRefGoogle Scholar
  8. 8.
    Janvin, C.C., Larsen, J.P., Aarsland, D., Hugdahl, K.: Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov. Disord. 21(9), 1343–1349 (2006)CrossRefGoogle Scholar
  9. 9.
    Pedersen, K.F., Larsen, J.P., Tysnes, O.B., Alves, G.: Prognosis of mild cognitive impairment in early Parkinson disease: the Norwegian ParkWest study. JAMA Neurol. 70(5), 580–586 (2013)CrossRefGoogle Scholar
  10. 10.
    Cosgrove, J., Alty, J.E., Jamieson, S.: Cognitive impairment in Parkinson’s disease. Postgrad. Med. J. 91, 212–220 (1074)CrossRefGoogle Scholar
  11. 11.
    Website of the Cognitive Impairment Parkinson’s Disease Foundation (PDF).
  12. 12.
    Caselli, R.J., Stelmach, G.E., Caviness, J.N., Timmann, D., Royer, T., Boeve, B.F., Parisi, J.E.: A kinematic study of progressive apraxia with and without dementia. Mov. Disord. 14, 276–287 (1999)CrossRefGoogle Scholar
  13. 13.
    Zhang, M., Wong, P.: Genetic programming for medical classification: a program simplification approach. Genet. Program Evolvable Mach. 9(3), 229–255 (2008)CrossRefGoogle Scholar
  14. 14.
    Paul, T., Iba, H.: Prediction of cancer class with majority voting genetic programming classifier using gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(2), 353–367 (2009)CrossRefGoogle Scholar
  15. 15.
    Winkler, S., Affenzeller, M., Wagner, S.: Using enhanced genetic programming techniques for evolving classifiers in the context of medical diagnosis. Genet. Program. Evolvable Mach. 10(2), 111–140.
  16. 16.
    Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evol. Comput. 17(3), 368–386 (2013)CrossRefGoogle Scholar
  17. 17.
    Freitas, A.A.: A review of evolutionary algorithms for data mining. In: Maimon, O., Rokach, L. (eds.) Soft Computing for Knowledge Discovery and Data Mining, pp. 79–111. Springer, Boston (2008)CrossRefGoogle Scholar
  18. 18.
    Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). doi: 10.1007/978-3-540-46239-2_9CrossRefGoogle Scholar
  19. 19.
    Banzhaf, W., et al.: Genetic Programming—An Introduction. Morgan Kaufmann, San Francisco (1998)CrossRefGoogle Scholar
  20. 20.
    Turner, A.J., Miller, J.F.: Cartesian genetic programming: why no bloat? In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., García-Sánchez, P., Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 222–233. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44303-3_19Google Scholar
  21. 21.
    Smith, S.L., Gaughan, P., Halliday, D.M., Ju, Q., Aly, N.M., Playfer, J.R.: Diagnosis of Parkinson’s disease using evolutionary algorithms. Genet. Program. Evolvable Mach. 8, 433–447 (2007). doi: 10.1007/s10710-007-9043-9CrossRefGoogle Scholar
  22. 22.
    Lones, M.A., Smith, S.L., Alty, J.E., Lacy, S.E., Possin, K.L., Jamieson, D.R.S., Tyrrell, A.M.: Evolving classifiers to recognize the movement characteristics of Parkinson’s disease patients. IEEE Trans. Evol. Comput. 18, 559–576 (2014)CrossRefGoogle Scholar
  23. 23.
    Lacy, S., Lones, M.A., Smith, S.L., Alty, J.E., Jamieson, S., Possin, K., Schuff, N.: Characterisation of movement disorder in Parkinson’s disease using evolutionary algorithms. In: Blum, C., Alba, E. (eds.) Proceedings of the 2013 Genetic and Evolutionary Computation Conference (GECCO), pp. 1479–1486. ACM Digital Library, New York (2013)Google Scholar
  24. 24.
    Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)CrossRefGoogle Scholar
  25. 25.
    Castiello, U., Stelmach, G.E., Lieberman, A.N.: Temporal dissociation of the prehension pattern in Parkinson’s disease. Neuropsychologia 31(4), 395–402 (1993)CrossRefGoogle Scholar
  26. 26.
    Jakobson, L.S., Goodale, M.A.: Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp. Brain Res. 86(1), 199–208 (1991)CrossRefGoogle Scholar
  27. 27.
    Jeannerod, M.: The timing of natural prehension movements. J. Mot. Behav. 16(3), 235–254 (1984)CrossRefGoogle Scholar
  28. 28.
    Alberts, J.L., Saling, M., Adler, C.H., Stelmach, G.E.: Disruptions in the reach-to-grasp actions of Parkinson’s patients. Exp. Brain Res. 134(3), 353–362 (2000)CrossRefGoogle Scholar
  29. 29.
    Website of the Fifth Dimension Technologies (5DT) (2016).
  30. 30.
    Website of the Polhemus Company (2016).
  31. 31.
    Documentation of the Aereospace MATLAB Toolbox.
  32. 32.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics Modelling, pp. 106–107. Planning and Control. Springer, London (2009)CrossRefGoogle Scholar
  33. 33.
    Luo, J., Ying, K., Bai, J.: Savitzky-Golay smoothing and differentiation filter for even number data. Sig. Process. 85, 1429–1434 (2005)CrossRefzbMATHGoogle Scholar
  34. 34.
    Teulings, H.L., Contreras-Vidal, J.L., Stelmach, G.E., Adler, C.H.: Parkisonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp. Neurol. 146, 159–170 (1997)CrossRefGoogle Scholar
  35. 35.
    Schneider, K., Zernicke, R.F.: Jerk-cost modulations during the practice of rapid arm movements. Biol. Cybern. 60, 221–230 (1989)CrossRefGoogle Scholar
  36. 36.
    Maind, S.B., Wankar, P.: Research paper on basic of artificial neural network. Int. J. Recent Innov. Trends Comput. Commun. 2(1), 96–100 (2014)Google Scholar
  37. 37.
    Durgesh, K.S., Lekha, B.: Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 12(1), 1–7 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chiara Picardi
    • 1
  • Jeremy Cosgrove
    • 2
  • Stephen L. Smith
    • 1
  • Stuart Jamieson
    • 2
  • Jane E. Alty
    • 2
  1. 1.Department of ElectronicsUniversity of YorkHeslington, YorkUK
  2. 2.Department of NeurologyLeeds Teaching Hospitals NHS TrustLeedsUK

Personalised recommendations