Skip to main content

Interactive Evolution of Complex Behaviours Through Skill Encapsulation

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

Abstract

Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution by iteratively selecting the parents for the next generation. IEC has shown promise in a variety of different domains, but evolving more complex or hierarchically composed behaviours remains challenging with the traditional IEC approach. To overcome this challenge, this paper combines the recently introduced ESP (encapsulation, syllabus and pandemonium) algorithm with IEC to allow users to intuitively break complex challenges into smaller pieces and preserve, reuse and combine interactively evolved sub-skills. The combination of ESP principles with IEC provides a new way in which human insights can be leveraged in evolutionary computation and, as the results in this paper show, IEC-ESP is able to solve complex control problems that are challenging for a traditional fitness-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/lordjesus/UnityNEAT.

References

  1. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intel. 1(1), 47–62 (2008)

    Article  Google Scholar 

  2. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  3. Risi, S., Togelius, J.: Neuroevolution in games: state of the art and open challenges. IEEE Trans. Comput. Intell. AI Games PP(99), 1–1 (2015)

    Google Scholar 

  4. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: Proceedings of the Eleventh International Conference on Artificial Life. Alife XI, MIT Press (2008)

    Google Scholar 

  5. Goldberg, D.E.: Simple genetic algorithms and the minimal, deceptive problem. Genet. Algorithms Simul. Annealing 74, 88 (1987)

    Google Scholar 

  6. Takagi, H.: Interactive evolutionary computation: fusion of the capacities of EC optimization and human evaluation. Proc. IEEE 89, 1275–1296 (2001)

    Article  Google Scholar 

  7. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  8. Woolley, B.G., Stanley, K.O.: A novel human-computer collaboration: combining novelty search with interactive evolution. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 233–240. ACM, New York (2014)

    Google Scholar 

  9. Löwe, M., Risi, S.: Accelerating the evolution of cognitive behaviors through human-computer collaboration. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016, pp. 133–140. ACM, New York (2016)

    Google Scholar 

  10. Lessin, D., Fussell, D., Miikkulainen, R.: Open-ended behavioral complexity for evolved virtual creatures. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 335–342. ACM, New York (2013)

    Google Scholar 

  11. Lessin, D., Fussell, D., Miikkulainen, R., Risi, S.: Increasing behavioral complexity for evolved virtual creatures with the ESP method. arXiv preprint arXiv:1510.07957 (2015)

  12. Michelucci, P., Dickinson, J.L.: The power of crowds. Science 351(6268), 32–33 (2016)

    Article  Google Scholar 

  13. Khatib, F., Dimaio, F., Cooper, S., Kazmierczyk, M., Gilski, M., Krzywda, S., Zabranska, H., Pichova, I., Thompson, J., Popović, Z., Jaskolski, M., Baker, D.: Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat. Struct. Mol. Biol. 18(10), 1175–1177 (2010)

    Article  Google Scholar 

  14. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  15. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  16. Doucette, J.A., Lichodzijewski, P., Heywood, M.I.: Hierarchical task decomposition through symbiosis in reinforcement learning. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 97–104. ACM (2012)

    Google Scholar 

  17. Whiteson, S., Kohl, N., Miikkulainen, R., Stone, P.: Evolving keepaway soccer players through task decomposition. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 356–368. Springer, Heidelberg (2003). doi:10.1007/3-540-45105-6_41

    Chapter  Google Scholar 

  18. Lee, W.P., Hallam, J., Lund, H.H.: Applying genetic programming to evolve behavior primitives and arbitrators for mobile robots. In: IEEE International Conference on Evolutionary Computation, pp. 501–506, April 1997

    Google Scholar 

  19. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

    Article  Google Scholar 

  20. Clune, J., Lipson, H.: Evolving 3D objects with a generative encoding inspired by developmental biology. SIGEVOlution 5(4), 2–12 (2011)

    Article  Google Scholar 

  21. Hoover, A.K., Szerlip, P.A., Norton, M.E., Brindle, T.A., Merritt, Z., Stanley, K.O.: Generating a complete multipart musical composition from a single monophonic melody with functional scaffolding. In: Proceedings of the Third International Conference on Computational Creativity, Dublin, Ireland, pp. 111–118, May 2012

    Google Scholar 

  22. Bernatskiy, A., Hornby, G., Bongard, J.: Improving robot behavior optimization by combining user preferences. In: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, ALIFE 2014 (2014)

    Google Scholar 

  23. Wagy, M.D., Bongard, J.C.: Combining computational and social effort for collaborative problem solving. PLoS ONE 10(11), e0142524 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Fundación Ramón Areces for funding as part of their postdoc fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo González de Prado Salas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

González de Prado Salas, P., Risi, S. (2017). Interactive Evolution of Complex Behaviours Through Skill Encapsulation. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics