Advertisement

Evolutionary Adaptation to Social Information Use Without Learning

  • James M. Borg
  • Alastair Channon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

Social information can provide information about the presence, state and intentions of other agents; therefore it follows that the use of social information may be of some adaptive benefit. As with all information, social information must be interpretable and relatively accurate given the situation in which it is derived. In both nature and robotics, agents learn which social information is relevant and under which circumstances it may be relied upon to provide useful information about the current environmental state. However, it is not clear to what extent social information alone is beneficial when decoupled from a within-lifetime learning process, leaving evolution to determine whether social information provides any long term adaptive benefits. In this work we assess this question of the adaptive value of social information when it is not accompanied by a within-lifetime learning process. The aim here is to begin to understand when social information, here expressed as a form of public information, is adaptive; the rationale being that any social information that is adaptive without learning will be a good base to allow the learning processes associated with social information to evolve and develop later. Here we show, using grounded neuroevolutionary artificial life simulations incorporating simulated agents, that social information can in certain circumstances provide an adaptive advantage to agents, and that social information that more accurately indicates success confers more reliable information to agents leading to improved success over less reliable sources of social information.

Keywords

Social information Public information Evolutionary adaptation Neuroevolution Artificial life 

References

  1. 1.
    King, A.J., Cowlishaw, G.: When to use social information: the advantage of large group size in individual decision making. Biol. Lett. 3(2), 137–139 (2007)CrossRefGoogle Scholar
  2. 2.
    Bonnie, K.E., Earley, R.L.: Expanding the scope for social information use. Anim. Behav. 74(2), 171–181 (2007)CrossRefGoogle Scholar
  3. 3.
    Nolfi, S., Floreano, D.: Learning and evolution. Auton. Rob. 7(1), 89–113 (1999)CrossRefGoogle Scholar
  4. 4.
    Borg, J.M., Channon, A., Day, C.: Discovering and maintaining behaviours inaccessible to incremental genetic evolution through transcription errors and cultural transmission. In: ECAL 2011: Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems, pp. 101–108. MIT Press (2011)Google Scholar
  5. 5.
    Whiten, A., Van Schaik, C.P.: The evolution of animal cultures and social intelligence. Philos. Trans. Roy. Soc. B: Biol. Sci. 362(1480), 603–620 (2007)CrossRefGoogle Scholar
  6. 6.
    Reader, S.M., Biro, D.: Experimental identification of social learning in wild animals. Learn. Behav. 38(3), 265–283 (2010)CrossRefGoogle Scholar
  7. 7.
    Kendal, J.R., Rendell, L., Pike, T.W., Laland, K.N.: Nine-spined sticklebacks deploy a hill-climbing social learning strategy. Behav. Ecol. 20(2), 238–244 (2009)CrossRefGoogle Scholar
  8. 8.
    Galef, B.G.: Social learning and traditions in animals: evidence, definitions, and relationship to human culture. Wiley Interdisc. Rev.: Cogn. Sci. 3(6), 581–592 (2012)CrossRefGoogle Scholar
  9. 9.
    Zwirner, E., Thornton, A.: Cognitive requirements of cumulative culture: teaching is useful but not essential. Sci. Rep. 5 (2015). Article no. 16781Google Scholar
  10. 10.
    Jolley, B.P., Borg, J.M., Channon, A.: Analysis of social learning strategies when discovering and maintaining behaviours inaccessible to incremental genetic evolution. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds.) SAB 2016. LNCS (LNAI), vol. 9825, pp. 293–304. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-43488-9_26CrossRefGoogle Scholar
  11. 11.
    Whitehead, H., Richerson, P.J.: The evolution of conformist social learning can cause population collapse in realistically variable environments. Evol. Hum. Behav. 30(4), 261–273 (2009)CrossRefGoogle Scholar
  12. 12.
    Borg, J.M., Channon, A.: Testing the variability selection hypothesis - the adoption of social learning in increasingly variable environments. In: ALIFE 13: The Thirteenth Conference on the Synthesis and Simulation of Living Systems, pp. 317–324. MIT Press (2012)Google Scholar
  13. 13.
    Rendell, L., Fogarty, L., Hoppitt, W.J., Morgan, T.J., Webster, M.M., Laland, K.N.: Cognitive culture: theoretical and empirical insights into social learning strategies. Trends Cogn. Sci. 15(2), 68–76 (2011)CrossRefGoogle Scholar
  14. 14.
    van der Post, D.J., Franz, M., Laland, K.N.: Skill learning and the evolution of social learning mechanisms. BMC Evol. Biol. 16(1), 166 (2016)CrossRefGoogle Scholar
  15. 15.
    Noble, J., Todd, P.M.: Imitation or something simpler? Modeling simple mechanisms for social information processing. In: Nehaniv, C.L., Dautenhahn, K. (eds.) Imitation in Animals and Artifacts, pp. 423–439. MIT Press, Cambridge (2002)Google Scholar
  16. 16.
    McNamara, J.M., Dall, S.R.: Information is a fitness enhancing resource. Oikos 119(2), 231–236 (2010)CrossRefGoogle Scholar
  17. 17.
    Mitri, S., Floreano, D., Keller, L.: The evolution of information suppression in communicating robots with conflicting interests. Proc. Nat. Acad. Sci. 106(37), 15786–15790 (2009)CrossRefGoogle Scholar
  18. 18.
    Watson, R.A., Szathmáry, E.: How can evolution learn? Trends Ecol. Evol. 31(2), 147–157 (2016)CrossRefGoogle Scholar
  19. 19.
    Floreano, D., Keller, L.: Evolution of adaptive behaviour in robots by means of darwinian selection. PLoS Biol. 8(1), e1000292 (2010)CrossRefGoogle Scholar
  20. 20.
    Channon, A.D., Damper, R.: The evolutionary emergence of socially intelligent agents. In: Edmonds, B., Dautenhahn, K. (eds.) Socially Situated Intelligence: A Workshop Held at SAB 1998, University of Zurich Technical Report, pp. 41–49 (1998)Google Scholar
  21. 21.
    Danchin, É., Giraldeau, L.A., Valone, T.J., Wagner, R.H.: Public information: from nosy neighbors to cultural evolution. Science 305(5683), 487–491 (2004)CrossRefGoogle Scholar
  22. 22.
    Yang, S.X., Meng, M.: An efficient neural network approach to dynamic robot motion planning. Neural Netw. 13(2), 143–148 (2000)CrossRefGoogle Scholar
  23. 23.
    Robinson, E., Ellis, T., Channon, A.: Neuroevolution of agents capable of reactive and deliberative behaviours in novel and dynamic environments. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 345–354. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74913-4_35CrossRefGoogle Scholar
  24. 24.
    Stanton, A., Channon, A.: Incremental neuroevolution of reactive and deliberative 3D agents. In: ECAL 2015: Proceedings of the Thirteenth European Conference on the Synthesis and Simulation of Living Systems, pp. 341–348. MIT Press (2015)Google Scholar
  25. 25.
    Acerbi, A., Marocco, D., Nolfi, S.: Social facilitation on the development of foraging behaviors in a population of autonomous robots. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 625–634. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74913-4_63CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing and MathematicsKeele UniversityKeeleUK

Personalised recommendations