Advertisement

Overcoming Initial Convergence in Multi-objective Evolution of Robot Control and Morphology Using a Two-Phase Approach

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

Co-evolution of robot morphologies and control systems is a new and interesting approach for robotic design. However, the increased size and ruggedness of the search space becomes a challenge, often leading to early convergence with sub-optimal morphology-controller combinations. Further, mutations in the robot morphologies tend to cause large perturbations in the search, effectively changing the environment, from the controller’s perspective. In this paper, we present a two-stage approach to tackle the early convergence in morphology-controller co-evolution. In the first phase, we allow free evolution of morphologies and controllers simultaneously, while in the second phase we re-evolve the controllers while locking the morphology. The feasibility of the approach is demonstrated in physics simulations, and later verified on three different real-world instances of the robot morphologies. The results demonstrate that by introducing the two-phase approach, the search produces solutions which outperform the single co-evolutionary run by over 10%.

Keywords

Robot Hand Design Robot Morphology Virtual Creatures Evolutionary Run Rigid Body Physics Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)CrossRefGoogle Scholar
  2. 2.
    Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)CrossRefGoogle Scholar
  3. 3.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)CrossRefGoogle Scholar
  4. 4.
    Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM (1994)Google Scholar
  5. 5.
    Lessin, D., Risi, S.: Soft-body muscles for evolved virtual creatures: the next step on a bio-mimetic path to meaningful morphological complexity. In: European Conference on Artificial Life, pp. 761–762 (2015)Google Scholar
  6. 6.
    Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the automated design of modular physical robots. IEEE Trans. Robot. Autom. 19(4), 703–719 (2003)CrossRefGoogle Scholar
  7. 7.
    Samuelsen, E., Glette, K.: Real-world reproduction of evolved robot morphologies: automated categorization and evaluation. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 771–782. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-16549-3_62Google Scholar
  8. 8.
    Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLoS ONE 10(6), 1–17 (2015)CrossRefGoogle Scholar
  9. 9.
    Cheney, N., Bongard, J., Sunspiral, V., Lipson, H.: On the difficulty of co-optimizing morphology and control in evolved virtual creatures. In: Proceedings of the Artificial Life Conference 2016 (ALIFE XV), pp. 226–234. MIT Press (2016)Google Scholar
  10. 10.
    Samuelsen, E., Glette, K.: Some distance measures for morphological diversification in generative evolutionary robotics. In: GECCO 2014 - Proceedings of the 2014 Genetic and Evolutionary Computation Conference, pp. 721–728 (2014)Google Scholar
  11. 11.
    Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)CrossRefGoogle Scholar
  12. 12.
    Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)CrossRefGoogle Scholar
  13. 13.
    Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 167–174. ACM (2013)Google Scholar
  14. 14.
    Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218. ACM (2011)Google Scholar
  15. 15.
    Auerbach, J.E., Bongard, J.C.: Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10(1), e1003399 (2014)CrossRefGoogle Scholar
  16. 16.
    Lund, H.H.: Co-evolving control and morphology with LEGO robots. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species, pp. 59–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Leger, C.: Automated synthesis and optimization of robot configurations: an evolutionary approach. Ph.D. thesis, Carnegie Mellon University (1999)Google Scholar
  18. 18.
    Passault, G., Rouxel, Q., Fabre, R., N’Guyen, S., Ly, O.: Optimizing morphology and locomotion on a corpus of parametric legged robots. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 227–238. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-42417-0_21CrossRefGoogle Scholar
  19. 19.
    Clark, A.J., Moore, J.M., Wang, J., Tan, X., McKinley, P.K.: Evolutionary design and experimental validation of a flexible caudal fin for robotic fish. Artif. Life 13, 325–332 (2012)Google Scholar
  20. 20.
    Corucci, F., Calisti, M., Laschi, C.: Novelty-based evolutionary design of morphing underwater robots. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 145–152 (2015)Google Scholar
  21. 21.
    Koos, S., Cully, A., Mouret, J.B.: Fast damage recovery in robotics with the T-resilience algorithm. Int. J. Robot. Res. 32(14), 1700–1723 (2013)CrossRefGoogle Scholar
  22. 22.
    Deb, K., Srinivasan, A.: Innovization: discovery of innovative design principles through multiobjective evolutionary optimization. In: Knowles, J., Corne, D., Deb, K., Chair, D. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 243–262. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  24. 24.
    Ruud, E.L., Samuelsen, E., Glette, K.: Memetic robot control evolution and adaption to reality. In: Proceedings of ICES: 2016 IEEE International Conference on Evolvable Systems (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations