Overcoming Initial Convergence in Multi-objective Evolution of Robot Control and Morphology Using a Two-Phase Approach

  • Tønnes F. Nygaard
  • Eivind Samuelsen
  • Kyrre Glette
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

Co-evolution of robot morphologies and control systems is a new and interesting approach for robotic design. However, the increased size and ruggedness of the search space becomes a challenge, often leading to early convergence with sub-optimal morphology-controller combinations. Further, mutations in the robot morphologies tend to cause large perturbations in the search, effectively changing the environment, from the controller’s perspective. In this paper, we present a two-stage approach to tackle the early convergence in morphology-controller co-evolution. In the first phase, we allow free evolution of morphologies and controllers simultaneously, while in the second phase we re-evolve the controllers while locking the morphology. The feasibility of the approach is demonstrated in physics simulations, and later verified on three different real-world instances of the robot morphologies. The results demonstrate that by introducing the two-phase approach, the search produces solutions which outperform the single co-evolutionary run by over 10%.

References

  1. 1.
    Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)CrossRefGoogle Scholar
  2. 2.
    Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)CrossRefGoogle Scholar
  3. 3.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)CrossRefGoogle Scholar
  4. 4.
    Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM (1994)Google Scholar
  5. 5.
    Lessin, D., Risi, S.: Soft-body muscles for evolved virtual creatures: the next step on a bio-mimetic path to meaningful morphological complexity. In: European Conference on Artificial Life, pp. 761–762 (2015)Google Scholar
  6. 6.
    Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the automated design of modular physical robots. IEEE Trans. Robot. Autom. 19(4), 703–719 (2003)CrossRefGoogle Scholar
  7. 7.
    Samuelsen, E., Glette, K.: Real-world reproduction of evolved robot morphologies: automated categorization and evaluation. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 771–782. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16549-3_62 Google Scholar
  8. 8.
    Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLoS ONE 10(6), 1–17 (2015)CrossRefGoogle Scholar
  9. 9.
    Cheney, N., Bongard, J., Sunspiral, V., Lipson, H.: On the difficulty of co-optimizing morphology and control in evolved virtual creatures. In: Proceedings of the Artificial Life Conference 2016 (ALIFE XV), pp. 226–234. MIT Press (2016)Google Scholar
  10. 10.
    Samuelsen, E., Glette, K.: Some distance measures for morphological diversification in generative evolutionary robotics. In: GECCO 2014 - Proceedings of the 2014 Genetic and Evolutionary Computation Conference, pp. 721–728 (2014)Google Scholar
  11. 11.
    Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)CrossRefGoogle Scholar
  12. 12.
    Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)CrossRefGoogle Scholar
  13. 13.
    Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 167–174. ACM (2013)Google Scholar
  14. 14.
    Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218. ACM (2011)Google Scholar
  15. 15.
    Auerbach, J.E., Bongard, J.C.: Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10(1), e1003399 (2014)CrossRefGoogle Scholar
  16. 16.
    Lund, H.H.: Co-evolving control and morphology with LEGO robots. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species, pp. 59–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Leger, C.: Automated synthesis and optimization of robot configurations: an evolutionary approach. Ph.D. thesis, Carnegie Mellon University (1999)Google Scholar
  18. 18.
    Passault, G., Rouxel, Q., Fabre, R., N’Guyen, S., Ly, O.: Optimizing morphology and locomotion on a corpus of parametric legged robots. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 227–238. Springer, Heidelberg (2016). doi:10.1007/978-3-319-42417-0_21 CrossRefGoogle Scholar
  19. 19.
    Clark, A.J., Moore, J.M., Wang, J., Tan, X., McKinley, P.K.: Evolutionary design and experimental validation of a flexible caudal fin for robotic fish. Artif. Life 13, 325–332 (2012)Google Scholar
  20. 20.
    Corucci, F., Calisti, M., Laschi, C.: Novelty-based evolutionary design of morphing underwater robots. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 145–152 (2015)Google Scholar
  21. 21.
    Koos, S., Cully, A., Mouret, J.B.: Fast damage recovery in robotics with the T-resilience algorithm. Int. J. Robot. Res. 32(14), 1700–1723 (2013)CrossRefGoogle Scholar
  22. 22.
    Deb, K., Srinivasan, A.: Innovization: discovery of innovative design principles through multiobjective evolutionary optimization. In: Knowles, J., Corne, D., Deb, K., Chair, D. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 243–262. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  24. 24.
    Ruud, E.L., Samuelsen, E., Glette, K.: Memetic robot control evolution and adaption to reality. In: Proceedings of ICES: 2016 IEEE International Conference on Evolvable Systems (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tønnes F. Nygaard
    • 1
  • Eivind Samuelsen
    • 1
  • Kyrre Glette
    • 1
  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations